U.S. DEPARTMENT OF THE INTERIOR # BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director For information on the water program in Virginia write to District Chief Water Resources Division U.S. Geological Survey 1730 East Parham Road Richmond, Virginia 23228 or Virginia Department of Environmental Quality Surface Water Investigations 900 Natural Resource Drive Suite 1060 Charlottesville, Virginia 22903 ### PREFACE This volume of the annual hydrologic data report of Virginia is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's and cooperating agencies' surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Virginia are contained in two volumes: - Volume 1. Surface-Water-Discharge and Surface-Water-Quality Records - Volume 2. Ground-Water-Level and Ground-Water-Quality Records This report (Volume 2) is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey and the Virginia Department of Environmental Quality who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following personnel contributed significantly to the collection, computation, processing, and completion of this information: Dennis W. Adams Richard J. Ahlin Donna L. Belval David P. Brower Robert W. Buck William V. Daniels, Jr. Karl M. Dydak Michael R. Eckenwiler Matthew J. Ferrari Patsy S. Francisco Thomas L. Gibson Joel R. Guyer George E. Harlow Harold G. Henderlite Daniel W. Henry James R. Jeffries Donna S. Justus Ronnie E. Lawson Roger M. Moberg David L. Nelms Daniel A. Nissen Joseph A. Owens Gary K. Speiran Derek A. Tribble Stephen L. Wheeler Roger K. White This report was prepared in cooperation with the State of Virginia and with other agencies under the general supervision of Ward W. Staubitz, District Chief. ### CONTENTS | P | age | | | |---|-------------------|--|--| | Preface List of surface-water stations, in downstream order, for which records are published in this volume | iii
vi | | | | List of discontinued surface-water-discharge or stage-only stations. List of discontinued surface-water-quality stations xv Introduction xv | x
viii
1 | | | | Records collected by the State of Virginia | 1 2 | | | | Summary of hydrologic conditions | 2 | | | | Special networks and programs Explanation of the records Station identification numbers | 5
5
5 | | | | | 5-6
6 | | | | Records of stage and water discharge | 6
7 | | | | Data presentation Station manuscript Data table of daily mean values. | 7
8
9 | | | | Statistics of monthly mean data | 9 | | | | Identifying estimated daily discharge | 10 | | | | Other records available Records of surface-water quality Classification of records | 10
11
11 | | | | Arrangement of records | 11
11 | | | | Water temperature
Sediment
Laboratory measurements | 12
12
12 | | | | Data presentation Remark codes | 12 | | | | Water-quality control data | 13
15 | | | | Definition of terms Publications on Techniques of Water-Resources Investigations Selected U.S. Geological Survey reports on water resources in Virginia | 15
23
26 | | | | Station records, surface-water-discharge and surface-water-quality | 36
518 | | | | Special study and miscellaneous sites | 518
530
553 | | | | | 571 | | | | | | | | | | | | | | | | | | | ILLUSTRATIONS | | | | | | | | | | Figure 1. Annual mean discharge at selected stream-gaging stations | 3 | | | | and annual mean discharge for 1961-90 at four representative stream-gaging stations 3. System for numbering selected miscellaneous sites | 4
6 | | | | 4. Map of Virginia showing location of surface-water-discharge and surface-water-quality data-collection stations | 30
32 | | | ### WATER RESOURCES DATA - VIRGINIA, 1998 # VOLUME 1. SURFACE-WATER-DISCHARGE AND SURFACE-WATER-QUALITY RECORDS #### INTRODUCTION The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Virginia each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Virginia." This report series includes records of stage, discharge, and water quality of streams and stage, contents, and water quality of lakes and reservoirs. This volume contains records for water discharge at 152 gaging stations; stage only at 2 gaging station; stage and contents at 10 lakes and reservoirs; and water quality at 24 gaging stations. Also included are data for 55 crest-stage partial-record stations. Locations of these sites are shown on figures 4 and 5. Miscellaneous hydrologic data were collected at 199 measuring sites and 17 water-quality sampling sites not involved in the systematic data-collection program. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia. This series of annual reports for Virginia began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. Beginning with the 1990 water year, the report format was changed to two volumes. Volume 1 contains surface-water-discharge and surface-water-quality data and Volume 2 contains ground-water-level and ground-water-quality data. Prior to the introduction of this series and for several water years concurrent with it, water-resources data for Virginia were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Parts 6A and 6B." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Bldg. 41, Box 25286, Denver, Colorado 80225. Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report VA-98-1." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Office at the address given on the back of the title page or by telephone $(804)\ 278-4750$. Water resources data, including those provided in water data reports, are available through the World Wide Web on the Internet. The Universal Resource Location (URL) to the Virignia District's home page is: http://va.usgs.gov ### COOPERATION The U.S. Geological Survey and agencies of the State of Virginia have had joint-funding agreements for the collection of water-resource records since 1930. Organizations that assisted in collecting the data in this report through joint-funding agreements with the Survey are: VIRGINIA DEPARTMENT OF ENVIRONMENTAL QUALITY, Dennis H. Treacy, executive director. VIRGINIA DEPARTMENT OF TRANSPORTATION, David P. Gehr, commissioner. CITY OF ALEXANDRIA, Vola Lawson, city manager. CITY OF DANVILLE, Herbert Dawson, director, Water and Wastewater. CITY OF NEWPORT NEWS, Brian Ramaley, director, Department of Public Utilities. CITY OF ROANOKE, Kit B. Kiser, director, Utilities and Operations. ${\tt NORTHERN~VIRGINIA~PLANNING~DISTRICT~COMMISSION,~G.~Mark~Gibb,~executive~director.}$ WEST PIEDMONT PLANNING DISTRICT COMMISSION, Robert W. Dowd, executive director. SOUTHEASTERN PUBLIC SERVICE AUTHORITY, Durwood S. Curling, executive director. UNIVERSITY OF VIRGINIA, Dr. James N. Galloway, chairman, Graduate Admissions. CITY OF NORFOLK, Shurl Montgomery, asistant city manager. HAMPTON ROADS PLANNING DISTRICT COMMISSION, Arthur L. Collins, executive director. WASHINGTON COUNTY SERVICE AUTHORITY, Bert C. Mullins, general manager. Assistance with funds or services was given by the U.S. Army Corps of Engineers in collecting records for gaging
stations and water-quality stations throughout the State. Under a cooperative agreement covering the Tennessee River Basin, the Tennessee Valley Authority provided financial assistance for the operation of gaging stations, the records for which are published herein. Similar financial assistance for water-quality studies was provided by the U.S. Marine Corps Base, Quantico, VA, for the Quantico, Cannon, and Aquia Creek Basins. Other cooperators that provided funds for the collection of records are the American Electric Power, Virginia Power, City of Danville, City of Radford, City of Bedford, Multitrade of Pittsylvania County, LG & E, Synergics Incorporated, and Georgia Pacific Corporation. Organizations that provided data are acknowledged in station descriptions. ### RECORDS COLLECTED BY THE STATE OF VIRGINIA In addition to data collected by the U.S. Geological Survey, there are included herein records for 66 gaging stations operated by the Virginia Department of Environmental Quality. These records are published as provided and are acknowledged in the "COOPERATION" paragraph of each individual station. The Virginia Department of Environmental Quality is under the direction of Dennis H. Treacy, executive director. Published material for the gaging-station records is supplied through the Division of Water Program Coordination, Larry G. Lawson, P.E., director. #### SUMMARY OF HYDROLOGIC CONDITIONS ### Surface-Water Discharge Annual mean discharges for the 1998 water year in the Potomac, Rappahannock, York, James, Chowan, Kanawha, and Big Sandy River Basins were in the above-normal range of flow (greater than the 75th percentile of annual mean flow) based on streamflow data at the most downstream gaged location in each basin. In the Roanoke and Tennessee River Basins, annual mean discharges of contributing basins were either in the normal range of flow (between the 25th and 75th percentile of annual mean flows) or in the above-normal range of flow based on streamflow data at the most downstream gaged locations of the contributing basins. No stream-gaging stations in the State had annual mean discharges in the below-normal range of flow (below the 25th percentile of annual mean flows). A comparison of annual mean discharges with the long-term mean discharge at selected stations throughout the State is shown in figure 1. Drought conditions from July through September 1997 resulted in monthly mean discharges well below the median monthly mean discharges for October in many basins across the State, especially the smaller basins with unregulated streams. Above normal precipitation, beginning in October 1997 and continuing through the winter of 1998, resulted in monthly mean discharges above the median monthly mean discharges across the State, except for basins in the southwest portion of the State, which remained below the 25th percentile for monthly mean discharges through December 1997. Monthly mean discharges in basins across the State generally were well above the median monthly mean discharges from January through June 1998. Drought conditions from July through December 1998, resulting from the third lowest statewide precipitation totals on record for the July-December time frame, reduced monthly mean discharges in most basins to levels below the median monthly mean discharges from July through September 1998. By mid to late September, daily mean discharges in many smaller basins were below the 25th percentile of monthly mean flows; however, daily mean discharges in many larger basins remained equal to, or just below, the median monthly mean discharges. The distribution of monthly and annual mean discharges for selected stations is shown in figure 2. One new annual maximum instantaneous discharge was recorded in the Piankatank River Basin at Dragon Swamp at Mascot, Va. (station 01669520; 16 years of record). A new annual minimum instantaneous discharge also was recorded in the Piankatank River Basin at Dragon Swamp at Mascot, Va., and a new annual minimum instantaneous discharge was recorded in the Potomac River Basin at Cedar Run near Aden, Va. (station 01656100; 17 years of record). Figure 1. Annualm ean discharge at four selected stream -gaging stations. Figure 2. M onthly and annualm ean discharges during 1998 wateryear and m edian of m onthly and annualm ean discharges for 1961-90 wateryears at four representative stream -gaging stations. #### SPECIAL NETWORKS AND PROGRAMS Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within four of the Nation's largest river basins—the Mississippi, Columbia, Colorado, and Rio Grande. The network consists of 39 stations. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment—bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical climate of precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to accomplish the following objectives; (1) Provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 191 precipitation chemistry monitoring sites. (2) Provide the mechanism to evaluate the effectiveness of the significant reduction in SO2 emissions that began in 1995 as implementation of the Clean Air Act Amendments (CAAA) occurred. (3) Provide the scientific basis and nationwide evaluation mechanism for implementation of the Phase II CAAA emission reductions for SO2 and NOx scheduled to begin in 2000. Data from the network, as well as information about individual sites, are available through the world wide web at: #### http://nadp.nrel.colostate.edu/NADP The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies. Assessment activities are being conducted in 53 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest. Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWOA Program is available through the world wide web at: http://wwwrvares.er.usgs.gov/nawqa/nawqa_home.html ### EXPLANATION OF THE RECORDS The surface-water-discharge and surface-water-quality records published in this report are for the 1998 water year that began October 1, 1997, and ended September 30, 1998. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, and water-quality data for surface water. The locations of the stations where the data were collected are shown in figures 4 and 5. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation. ### Station Identification Numbers Each data station in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station
indefinitely. The system used by the U.S. Geological Survey to assign identification numbers for surface-water stations is based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is occasionally used for surface-water stations where only miscellaneous measurements are made. ### Downstream Order System Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 02027500, which appears just to the left of the station name, includes the two-digit Part number "02" plus the six-digit downstream-order number "027500." The Part number designates the major river basin; for example, Part "02" is the James River Basin. ### Latitude-Longitude System The identification numbers for some miscellaneous surface-water and water-quality sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. Figure 3. System for numbering selected ${\tt m}$ is cellaneous sites. ### Records of Stage and Water Discharge Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations." By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device, and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and crest-stage partial-record stations for which data are given in this report are shown in figures 4 and 5. 7 ### Data Collection and Computation The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage. Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations (TWRI's), Book 3, Chapter Al through Al9 and Book 8, Chapters A2 to B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO). In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques. Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods. At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge. In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed. For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge." ### Data Presentation Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of
discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences. The records published for each continuous-record surface-water-discharge station (gaging station) now consist of four parts: the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration. #### Station manuscript The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; extremes for the current year; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description. LOCATION.---Information on locations is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers. <u>DRAINAGE AREA</u>.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available. <u>PERIOD OF RECORD</u>.--This indicates the period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that flow at it can reasonably be considered equivalent to flow at the present station REVISED RECORDS. --Because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given. \underline{GAGE} .--The type of gage in current use, the datum of the current gage referred to sea level (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading. <u>REMARKS</u>.--All periods of estimated daily discharge will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir. <u>COOPERATION</u>.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here. EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey. EXTREMES FOR CURRENT YEAR.--Extremes given here are similar to those for the period of record, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and equal to or greater than a selected base discharge are presented under this heading. The peaks equal to or greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data. $\underline{REVISIONS}$.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error. Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage. Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given. Headings for AVERAGE DISCHARGE and EXTREMES FOR PERIOD OF RECORD have been deleted and the information contained in these paragraphs is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentation of lake contents. #### Data table of daily mean values The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"); or in inches (line headed "IN."); or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figures are identified by a symbol and corresponding footnote. ### Statistics of monthly mean data A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS ______, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. ### Summary statistics A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS _____," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will
be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years. The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin. The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table. ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations, the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. HIGHEST ANNUAL MEAN .-- The maximum annual mean discharge occurring for the designated period. LOWEST ANNUAL MEAN. -- The minimum annual mean discharge occurring for the designated period. HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period. LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period. ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) <u>INSTANTANEOUS PEAK FLOW</u>.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.) <u>INSTANTANEOUS PEAK STAGE</u>.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information $\underline{INSTANTANEOUS\ LOW\ FLOW}. - \text{-The minimum instantaneous discharge occurring for the water year or for the designated period.}$ - ANNUAL RUNOFF. -- Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data: - Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. - Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and area. - Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it. - $\underline{10}$ PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period. - 50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period. - 90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period. Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. ### Identifying Estimated Daily Discharge Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description. ### Accuracy of the Records The accuracy of streamflow records depends primarily on: (1) The stability of the stage- discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records. The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record. Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 $\rm ft^3/s$ to the nearest tenth between 1.0 and 10 $\rm ft^3/s$; to whole numbers between 10 and 1,000 $\rm ft^3/s$; and to 3 significant figures for more than 1,000 $\rm ft^3/s$. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites. Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge. ### Other Records Available Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in the Virginia District Office. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the Virginia District Office. (See address on back of title page of this report.) #### Records of Surface-Water Ouality Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. ### Classification of records Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. A careful distinction needs to be made between "continuing records", as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 6. ### Arrangement of Records
Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. ### On-site Measurements and Sample Collection In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are detailed in the "Techniques of Water-Resources Investigations," Book 1, Chapter D2; Book 3, Chapter C2; Book 5, Chapters A1, A3, and A4. These references are listed in the "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" section of this report which appears at the end of the introductory text. These methods are consistent with American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO). Detailed information on collecting, treating, and shipping samples may be obtained from the Virginia District Office. (Address on back of title page.) One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and other factors which must be evaluated by the collector. Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory. For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the Virginia District Office whose address is given on the back of the title page of this report. ### Water Temperature Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at the time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the Virginia District Office. (Address on back of title page.) #### Sediment Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. Methods used in the computation of sediment records are described in the TWRI Book 3, Chapters C1 and C3. These methods are consistent with American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO). At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream. In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations. ### Laboratory Measurements Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the Geological Survey laboratory in Arvada, Colorado. Methods used to analyze sediment samples and to compute sediment records are given in TWRI Book 5, Chapter Cl. Methods used by the Geological Survey laboratories are given in TWRI Book 1, Chapter D2; Book 3, Chapter C2; Book 5, Chapters A1, A3, A4, and A5. These methods are consistent with American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO). ### Data Presentation For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily, are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence. In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description. LOCATION .-- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. DRAINAGE AREA. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. <u>PERIOD OF RECORD</u>.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually. <u>INSTRUMENTATION</u>.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station. $\underline{REMARKS}$.--Remarks provide added information pertinent to the collection, analysis, or computation of the records. <u>COOPERATION</u>. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here. EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of
record and for the current water year. <u>REVISIONS</u>.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates. The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence. #### REMARK CODES The following remark codes may appear with the water-quality data in this report: | PRINTED OUTPUT | REMARK | |----------------|---| | E | Estimated value. | | > | Actual value is known to be greater than the value shown. | | < | Actual value is known to be less than the value shown. | | К | Results based on colony count outside the acceptance range (non-ideal colony count). | | L | Biological organism count less than 0.5 percent (organism may be observed rather than counted). | | D | Biological organism count equal to or greater than 15 percent (dominant). | | & | Biological organism estimated as dominant. | | V | Analyte was detected in both the environmental sample and the associated blanks. | ### WATER QUALITY-CONTROL DATA Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this district are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples. ### Blank Samples Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collect in this district are: Field blank - a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample. Trip blank - a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection. Equipment blank - a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office). Sampler blank - a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample. Filter blank - a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample. Splitter blank - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample. Preservation blank - a blank solution that is treated with the sampler preservatives used for an environmental sample. #### Reference Samples Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties. ### Replicate Samples Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are: Sequential samples - a type of replicate sample in which the samples are collected one after the other, typically over a short time. Split sample - a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space. ### Spike Samples Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis. ### ACCESS TO USGS WATER DATA The USGS provides near real-time stage and discharge datas for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (WWW). These data may be accessed at: http://va.water.usgs.gov Some water-quality and ground-water data also are available through the WWW. In addition, data can be proveded in various machine-readable formats on magnetic tape or 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page.). ### DEFINITION OF TERMS Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover. Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample. $\underline{\text{Algae}}$ are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves. Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. <u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. - Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C + or 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. - <u>Fecal coliform bacteria</u> are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5°C + or 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. <u>Fecal streptococcal bacteria</u> are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as grampositive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C + or - 1.0°C on KF-streptococcus medium (nutrient medium for bacterial
growth). Their concentrations are expressed as number of colonies per 100 mL of sample. <u>Bed material</u> is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. <u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria. <u>Biomass</u> is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat. - <u>Dry mass</u> refers to the mass of residue present after drying in an oven at 105°C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. - <u>Organic mass</u> or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass. Wet mass is the mass of living matter plus contained water. Bottom material: See Bed material. $\underline{\text{Cells/volume}}$ refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L). <u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes. $\underline{Chlorophyll} \text{ refers to the green pigments of plants. } \text{ Chlorophyll "a" and "b" are the two most common green pigments in plants.}$ $\underline{\text{Color unit}}$ is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale. $\underline{\text{Contents}}$ is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. $\underline{\texttt{Control}}$ designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel. <u>Control structure</u> as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water. <u>Cubic feet per second per square mile</u> $[(ft^3/s)/mi^2]$ is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area. <u>Cubic foot per second</u> (ft^3/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second. $\underline{\text{Discharge}}$ is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time. <u>Mean discharge</u> (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. Instantaneous discharge is the discharge at a particular instant of time. Annual 7-day minimum is the lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-yearlow-flow statistic.) $\underline{\text{Dissolved}}_{\text{refers}} \text{ refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.$ <u>Dissolved-solids concentration</u> of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change. <u>Drainage area</u> of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified. $\underline{\text{Drainage basin}}$ is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water. $\underline{\text{Gage height}} \hspace{0.1cm} \text{(G.H.)} \hspace{0.1cm} \text{is the water-surface elevation referred to some arbitrary gage datum.} \hspace{0.1cm} \text{Gage height} \\ \text{is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.} \\$ <u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained. $\underline{\text{Hardness of water}}$ is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCO $_3$). <u>Hydrologic Bench-Mark Network</u> is a network of 53 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man. <u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number. <u>Metamorphic stage</u> refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult. Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds. $\underline{\text{Micrograms per gram}} \ (\mu g/g) \ \text{is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.}$ $\underline{\text{Micrograms per liter}} \ (\mu\text{G/L}, \ \mu\text{g/L}) \ \text{is a unit expressing the concentration of chemical constituents} \\ \text{in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter} \\ \text{is equivalent to one milligram per liter.}$ <u>Milligrams per liter</u> (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of watersediment mixture. <u>National Geodetic Vertical Datum of 1929</u> (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place. National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 284 sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this
and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP). The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, diverse, and geographically distributed part of the Nation's ground- and surface-water resources, and to identify, describe, and explain the major natural and human factors that affect these observed conditions and trends. Assessment activities have begun in more than one-third of the study units and ultimately will be conducted in 60 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide a basis for decision making on the use of water resources within the study units and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest. Organism is any living entity. Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m^2) , acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms. $\underline{\texttt{Organism count/volume}} \text{ refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.}$ <u>Total organism count</u> is the total number of organisms collected and enumerated in any particular sample. <u>Parameter Code</u> is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes. $\underline{Partial\text{--record station}} \text{ is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.}$ $\underline{Particle\ size}\ is\ the\ diameter,\ in\ millimeters\ (mm),\ of\ a\ particle\ determined\ by\ either\ sieve\ or\ sedimentation\ methods.\ Sedimentation\ methods\ (pipet,\ bottom-withdrawal\ tube,\ visual-accumulation\ tube)\ determine\ fall\ diameter\ of\ particles\ in\ either\ distilled\ water\ (chemically\ dispersed)\ or\ in\ native\ water\ (the\ river\ water\ at\ the\ time\ and\ point\ of\ sampling.$ <u>Particle-size classification</u> used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: | Classification | <u>Size (mm)</u> | Method of analysis | |----------------|------------------|------------------------| | Clay | 0.00024 - 0.004 | Sedimentation | | Silt | .004062 | Sedimentation | | Sand | .062 - 2.0 | Sedimentation or sieve | | Gravel | 2.0 - 64.0 | Sieve | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis. <u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume. $\underline{\texttt{Periphyton}} \text{ is the assemblage of microorganisms attached to and living upon submerged solid surfaces.} \\ \text{While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms.} \\$ $\underline{Pesticides} \text{ are chemical compounds used to control undesirable organisms.} \quad \texttt{Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.}$ <u>Picocurie</u> (PC, pCi) is one trillionth (1×10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute). <u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. - <u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and are commonly known as algae. - <u>Blue-green algae</u> are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. - $\frac{\hbox{Diatoms}}{\hbox{are the unicellular or colonial algae having a siliceous shell. Their concentrations}$ are expressed as number of cells per milliliter (cells/mL) of sample. - <u>Green algae</u> have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. - Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. <u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method). Milligrams of oxygen per area or volume per unit time $[mg\ O_2\ /(m^2.time)]$ for periphyton and macrophytes and $[mg\ O_2\ /(m^3.time)]$ for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. <u>Radiochemical program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States. Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. $\underline{\text{Return period}}$ is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval. <u>Runoff in inches</u> (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it. $\underline{\text{Sea level}}$: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929. <u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope,
length of slope, soil characteristics, land usage, and quantity and intensity of precipitation. - $\underline{\operatorname{Bed}\ load}$ is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed. - $\frac{Bed\ load\ discharge}{moves\ past\ a\ section\ as\ bed\ load\ in\ a\ given\ time.}$ - $\underline{\text{Suspended sediment}}$ is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. - <u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). - $\underline{\text{Mean concentration}}$ is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day. - <u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft^3/s) x 0.0027. - <u>Suspended-sediment load</u> is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration. - <u>Total sediment discharge</u> (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time. - <u>Total-sediment load or total load</u> is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge. - $\frac{7-\text{day }10-\text{year low flow}}{\text{frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow)}$ <u>Sodium-adsorption-ratio</u> (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation. Solute is any substance that is dissolved in water. <u>Specific conductance</u> is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25° C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. <u>Stage-discharge relation</u> is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel. Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. $\underline{Substrate}$ is the physical surface upon which an organism lives. <u>Natural substrate</u> refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives. Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. <u>Surface area</u> of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made. $\underline{Surficial\ bed\ material}$ is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers. <u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter. Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 μm membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. $\underline{Suspended}$, \underline{total} is the total amount of a given constituent in the part of a representative watersuspended sediment sample that is retained on a 0.45 μm membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent. <u>Taxonomy</u> is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, <u>Hexagenia limbata</u>, is the following: Kingdom. Animal Phylum. Arthropoda Class. Insecta Order. Ephemeroptera Family Ephemeridae Genus. Hexagenia Species Hexagenia limbata $\frac{Thermograph}{temperature} \ is \ an \ instrument \ that \ continuously \ records \ variations \ of \ temperature \ on \ a \ chart. \ The \ more general \ term "temperature \ recorder" \ is used in the table headings and refers to any instrument that records temperature \ whether \ on \ a \ chart, \ a \ tape, \ or \ any \ other \ medium.$ <u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year. $\underline{\text{Tons per acre-foot}}$ indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136. $\underline{\text{Tons per day}}$ (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period. <u>Total</u> is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.) <u>Total discharge</u> is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on. Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of
all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. <u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. <u>Water year</u> in Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1998, is called the "1998 water year." \underline{WDR} is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976). <u>Weighted average</u> is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. WSP is used as an abbreviaton for "Water-Supply Paper" in reference to previously published reports. ### PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations." ### Book 1. Collection of Water Data by Direct Measurement ### Section D. Water Quality - 1-D1. Water temperature—influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J.F. Ficke, and G. F. Smoot: USGS-TWRI Book 1, Chapter D1. 1975. 65 pages. - 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS-TWRI Book 1, Chapter D2. 1976. 24 pages. #### Book 2. Collection of Environmental Data #### Section D. Surface Geophysical Methods - 2-D1. Application of surface geophysics to ground-water investigations, by A.A. R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS-TWRI Book 2, Chapter D1. 1974. 116 pages. - 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS-TWRI Book 2, Chapter D2. 1988. 86 pages. ### Section E. Subsurface Geophysical Methods - 2-E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS-TWRI Book 2, Chapter E1. 1971. 126 pages. - 2-E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS-TWRI Book 2, Chapter E2. 1990. 150 pages. ### Section F. Drilling and Sampling Methods 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS-TWRI Book 2, Chapter F1. 1989. 97 pages. ### Book 3. Applications of Hydraulics ### Section A. Surface-Water Techniques - 3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS-TWRI Book 3, Chapter A1. 1967. 30 pages. - 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS-TWRI Book 3, Chapter A2. 1967. 12 pages. - 3-A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS-TWRI Book 3, Chapter A3. 1968. 60 pages. - 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H.F. Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 pages. - 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS-TWRI Book 3. Chapter A5. 1967. 29 pages. - 3-A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS-TWRI Book 3, Chapter A6. 1968. 13 pages. - 3-A7. Stage measurement at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI Book 3, Chapter A7. 1968. 28 pages. - 3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI Book 3, Chapter A8. 1969. 65 pages. - 3-A9. Measurement of time of travel in streams by dye tracing, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS-TWRI Book 3, Chapter A9. 1989. 27 pages. - 3-AlO. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI Book 3, Chapter AlO. 1984. 59 pages. - 3-All. Measurement of discharge by the moving-boat method, by G.F. Smoot and C.E. Novak: USGS-TWRI Book 3, Chapter All. 1969. 22 pages. - 3-A12. Fluorometric procedures for dye tracing, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS-TWRI Book 3, Chapter A12. 1986. 41 pages. - 3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A13. 1983. 53 pages. - 3-A14. Use of flumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS-TWRI Book 3, Chapter A14. 1983. 46 pages. ### WATER RESOURCES DATA - VIRGINIA, 1998 ### PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS -- Continued - 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS-TWRI Book 3, Chapter A15. 1984. 48 pages. - 3-A16. Measurement of discharge using tracers, by F.A. Kilpatrick and E.D. Cobb: USGS-TWRI Book 3, Chapter A16. 1985. 52 pages. - 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI Book 3, Chapter A17. 1985. 38 pages. - 3-A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS-TWRI Book 3, Chapter A18. 1989. 52 pages. - 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A19. 1990. 31 pages. - 3-A20. Simulation of soluable waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS-TWRI Book 3, Chapter A20. 1993. 38 pages. - 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI Book 3, Chapter A21. 1995. 56 pages. #### Section B. Ground-Water Techniques - 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS-TWRI Book 3, Chapter B1. 1971. 26 pages. - 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G.D. Bennett: USGS-TWRI Book 3, Chapter B2. 1976. 172 pages. - 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages. - 3-B4. Regression modeling of ground-water flow, by R.L. Cooley and R.L. Naff: USGS-TWRI Book 3, Chapter B4. 1990. 232 pages. - 3-B4. Supplement 1. Regression modeling of ground-water flow --Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS-TWRI Book 3, Chapter B4. 1993. 8 pages. - 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS-TWRI Book 3, Chapter B5. 1987. 15 pages. - 3-B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS-TWRI Book 3, Chapter B6. 1987. 28 pages. - 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS-TWRI Book 3, Chapter B7. 1992. 190 pages. #### Section C. Sedimentation and Erosion Techniques - 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI Book 3, Chapter C1. 1970. 55 pages. - 3-C2. Field methods for measurement of fluvial sediment, by Thomas K. Edwards and G. Douglas Glysson: USGS-TWRI Book 3, Chapter C2. 1988. 80 pages. - 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI Book 3, Chapter C3. 1972. 66 pages. ### Book 4. Hydrologic Analysis and Interpretation ### Section A. Statistical Analysis - 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI Book 4, Chapter A1. 1968. 39 pages. - 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI Book 4, Chapter A2. 1968. 15 pages. ### Section B. Surface Water - 4-B1. Low-flow investigations, by H.C.
Riggs: USGS-TWRI Book 4, Chapter B1. 1972. 18 pages. - 4-B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS-TWRI Book 4, Chapter B2. 1973. 20 pages. - 4-B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS-TWRI Book 4, Chapter B3. 1973. 15 pages. - Section D. Interrelated Phases of the Hydrologic Cycle - 4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS-TWRI Book 4, Chapter D1. 1970. 17 pages. ### Book 5. Laboratory Analysis ### Section A. Water Analysis - 5-Al. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman, editors: USGS-TWRI Book 5, Chapter Al. 1989. 545 pages. - 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages. - 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS-TWRI Book 5, Chapter A3. 1987. 80 pages. - 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L.J. Britton and P.E. Greeson, editors: USGS-TWRI Book 5, Chapter A4. 1989. 363 pages. ### PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS -- Continued - 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS-TWRI Book 5, Chapter A5. 1977. 95 pages. - 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS-TWRI Book 5, Chapter A6. 1982. 181 pages. Section C. Sediment Analysis 5-Cl. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS-TWRI Book 5, Chapter Cl. 1969. 58 pages. ### Book 6. Modeling Techniques #### Section A. Ground Water - 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS-TWRI Book 6, Chapter A1. 1988. 586 pages. - 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finitedifference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS-TWRI Book 6, Chapter A2. 1991. 68 pages. - 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS-TWRI Book 6, Chapter A3. 1993. 136 pages. - 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS-TWRI Book 6, Chapter A4. 1992. 108 pages. - 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS-TWRI Book 6, Chapter A5, 1993. 243 pages. - 6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler. 1996. 125 pages. ### Book 7. Automated Data Processing and Computations #### Section C. Computer Programs - 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS-TWRI Book 7, Chapter C1. 1976. 116 pages. - 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages. - 7-C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS-TWRI Book 7, Chapter C3. 1981. 110 pages. ### Book 8. Instrumentation ### Section A. Instruments for Measurement of Water Level - 8-A1. Methods of measuring water levels in deep wells, by M.S. Garber and F.C. Koopman: USGS-TWRI Book 8, Chapter A1. 1968. 23 pages. - 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS-TWRI Book 8, Chapter A2. 1983. 57 pages. Section B. Instruments for Measurement of Discharge 8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS-TWRI Book 8, Chapter B2. 1968. 15 pages. ### Book 9. Handbooks for Water-Resources Investigations ### Section A. National Field Manual for the Collection of Water-Quality Data - 9-A6. National Field Manual for the Collection of Water-Quality Data: Field Measurements, edited by F.D. Wilde and D.B. Radtke: USGS-TWRI Book 9, Chapter A6. 1998. Variously paginated. - 9-A7. National Field Manual for the Collection of Water-Quality Data: Biological Indicators, by D.N. Myers and F.D. Wilde: USGS-TWRI Book 9, Chapter A7. 1997. 49 pages. - 9-A8. National Field Manual for the Collection of Water-Quality Data: Bottom-material samples, by D.B. Radtke: USGS-TWRI Book 9, Chapter A8. 1998. 48 pages. - 9-A9. National Field Manual for the Collection of Water-Quality Data: Safety in Field Activities, by S.L. Lane and R.G. Fay: USGS-TWRI Book 9, Chapter A9. 1998. 60 pages. #### SELECTED U.S. GEOLOGICAL SURVEY REPORTS ON WATER RESOURCES IN VIRGINIA Listed below is a selection of reports on water resources in Virginia which are available through the Virginia District at the U.S. Geological Survey, WRD, 3600 West Broad Street, Room 606, Richmond, Virginia 23230. An index of geophysical logging in Virginia by the U.S. Geological Survey, by M. P. Mulheren, J. D. Larson, and H. T. Hopkins: U.S. Geological Survey Open-File Report 82-432. 1982. 34 pages. Annual maximum stages and discharges of selected streams in Virginia through 1990, by B. J. Prugh, Jr., E. H. Nuckels, and C. G. Humphrey: U.S. Geological Survey Open-File Report 90-587. 1991. 442 pages. Assessment of ground-water contamination from a leaking underground storage tank at a Defense Supply Center near Richmond, Virginia, by W. G. Wright and J. D. Powell: U.S. Geological Survey Water-Resources Investigations Report 90-4091. 1990. 38 pages. Availability and quality of ground water in the Piedmont province of Virginia, by J. D. Powell and J. M. Abe: U.S. Geological Survey Water-Resources Investigations Report 85-4235. 1985. 33 pages. Base-flow characteristics of streams in the Valley and Ridge, the Blue Ridge, and the Piedmont Physiographic Provinces of Virginia, by D.L. Nelms, G.E. Harlow, Jr., and D.C. Hayes: U.S. Geological Survey Water Supply Paper 2457. 1997. 48 pages. Compilation of surface-water and water-quality data-collection sites on selected streams in Virginia, by B. J. Prugh, Jr. and C. G. Humphrey: U.S. Geological Survey Open-File Report 93-462. 1994. 645 pages. Conceptualization and analysis of ground-water flow system in the Coastal Plain of Virginia and adjacent parts of Maryland and North Carolina, by J. F. Harsh and R. J. Laczniak: U.S. Geological Survey Professional Paper 1404-F. 1990. 100 pages. <u>Design, revisions, and considerations for continued use of a ground-water-flow model of the Coastal Plain aquifer system in Virginia</u>, by R. McFarland: U. S. Geological Survey Water-resources Investigations Report 98-4085. 1998. 49 pages. Documentation of a multiple-technique computer program for plotting major-ion composition of natural waters, by L. I. Briel: U.S. Geological Survey Open-File Report 93-74. 1994. Documentation of geographic-information-system coverages and data-input files used for analysis of the geohydrology of the Virginia Coastal Plain, by M. J. Focazio and T. B. Samsel, III: U.S. Geological Survey Water-Resources Investigations Report 93-4015. 1994. 53 pages. Effects of fracturing on well yields in the coalfield areas of Wise and Dickenson Counties, southwestern Virginia, by W. G. Wright: U.S. Geological Survey Water-Resources Investigations Report 85-4061. 1985. 21 pages. Estimating net drawdown resulting from episodic withdrawals at six well fields in the Coastal Plain physiographic province of Virginia, by M. J. Focazio and G. K. Speiran: U.S. Geological Survey Water-Resources Investigations Report 93-4159. 1994. 21 pages. Evaluation of municipal withdrawals from the confined aquifers of southeastern Virginia, by D. L. Richardson, R. J. Laczniak, and P. A. Hamilton: U.S. Geological Survey Open-File Report 88-723. 1988. 50 pages Flood of November 1985 in West Virginia, Pennsylvania, Maryland, and Virginia, by J. B. Lescinsky: U.S. Geological Survey Open-File Report 86-486. 1987. 33 pages. Floods in West Virginia, Virginia, Pennsylvania, and Maryland, November 1985, by D. H. Carpenter: U.S. Geological Survey Water-Resources Investigations Report 88-4213. 1990. 86 pages. Geohydrology and Geochemistry near coastal ground-water-discharge areas of the Eastern Shore, Virginia, by G.K. Speiran: U.S. Geological Survey Water Supply Paper. 1996. 73 pages. Geohydrology and the occurrence of volatile organic compounds in ground water, Culpeper basin of Prince William County, Virginia, by D. L. Nelms and D. L. Richardson: U.S. Geological Survey Water-Resources Investigations Report 90-4032. 1991. 94 pages. Geohydrology of the shallow aquifer system, Naval Weapons Station Yorktown, Yorktown, Virginia, by A.R. Brockman, D.L. Nelms, G.E. Harlow, Jr., and J.J. Gildea: U.S. Geological Survey Water-Resources Investigations Report 97-4188. 61 pages. <u>Ground-water availability along the Blue Ridge Parkway, Virginia</u>, by H. T. Hopkins: U.S. Geological Survey Water-Resources Investigations Report 84-4168. 1985. 154 pages. Ground-water contamination and movement at the Defense General Supply Center, Richmond, Virginia, by J. D. Powell, W. G. Wright, D. L. Nelms, and R. J. Ahlin: U.S. Geological Survey Water-Resources Investigations Report 90-4113. 1991. 36 pages. <u>Ground-water concerns for the Eastern Shore, Virginia</u>, by D. L. Richardson: U.S. Geological Survey Open-File Report 93-93.
1994. 4 pages (Water-Resources Notes). <u>Ground-water discharge from the Coastal Plain of Virginia</u>, by D. L. Richardson: U.S. Geological Survey Water-Resources Investigations Report 93-4191. 1995. Ground-water hydrology and quality in the Valley and Ridge and Blue Ridge physiographic provinces of Clarke County, Virginia, by W. G. Wright: U.S. Geological Survey Water-Resources Investigations Report 90-4134. 1991. 61 pages. <u>Ground-water in Virginia: Use during 1990, availability, and resource information needs</u>, by McFarland, E. R. and Focazio, M. J.: U.S. Geological Survey Open-File Report 94-114. 1 page. Ground-water use and levels in the southern Coastal Plain of Virginia, by J. D. Larson and R. J. Laczniak: U.S. Geological Survey Open-File Report 91-187. 1991. 165 pages. ### WATER RESOURCES DATA - VIRGINIA, 1998 SELECTED U.S. GEOLOGICAL SURVEY REPORTS ON WATER RESOURCES IN VIRGINIA -- Continued Ground-water withdrawals from the confined aquifers in the Coastal Plain of Virginia, 1891-1983, by T. K. Kull and R. J. Laczniak: U.S. Geological Survey Water-Resources Investigations Report 87-4049. 1987. 37 pages. <u>Guide to obtaining U.S. Geological Survey information</u>, by K. Dodd, H. K. Fuller, and P. F. Clarke: U.S. Geological Survey Circular 900. 1985. 35 pages. <u>Hydraulic characteristics of, and ground-water flow in, coal-bearing rocks of southwestern Virginia,</u> by G. E. Harlow, Jr. and G. D. LeCain: U.S. Geological Survey Water Supply Paper 2388. 1994. 36 pages. Hydrogeologic and water-quality data for the Explosive Experimental Area, Naval Surface Warfare Center, <u>Dahlgren Site, Dahlgren, Virginia</u>, by E. C. Hammond and C. F. Bell: U.S. Geological Survey Open-File Report 95-386. 1995. 67 pages. Hydrogeologic and water-quality data for the Main Site, Naval Surface Warfare Center, Dahlgren Laboratory, Dahlgren, Virginia, by C. F. Bell, T. P. Bolles, and G. E. Harlow, Jr.: U.S. Geological Survey Open-File Report 94-301. 1995. 81 pages. Hydrogeologic framework, analysis of ground-water flow, and relations to regional flow in the Fall Zone near Richmond, Virginia, by E.R. McFarland: U.S. Geological Survey Water-Resources Investigations Report 97-4021. 1997. 56 pages. <u>Hydrogeologic framework of the shallow aquifer system of York County, Virginia</u>, by A. R. Brockman and D. L. Richardson: U.S. Geological Survey Water-Resources Investigations Report 92-4111. 1992. 36 pages. <u>Hydrogeology and analysis of the ground-water-flow system in the Coastal Plain of southeastern Virginia</u>, by P. A. Hamilton and J. D. Larson: U.S. Geological Survey Water-Resources Investigations Report 87-4240. 1988. 175 pages. <u>Hydrogeology and analysis of the ground-water-flow system of the Eastern Shore, Virginia</u>, by D. L. Richardson: U.S. Geological Survey Water-Supply Paper 2401. 1994. 108 pages. Hydrogeology and water quality of the shallow aquifer system at the Explosive Experimental Area, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia, by C.F. Bell: U.S. Geological Survey Water Resources Investigations Report 96-4209. 1996. 37 pages. Hydrogeology and water quality of the shallow ground-water system in Eastern York County, Virginia, by D. L. Richardson and A. R. Brockman: U.S. Geological Survey Water-Resources Investigations Report 92-4090. 1992. 41 pages. Hydrogeology of, and quality and recharge ages of ground water in, Prince William County, Virginia 1990-91, by D.L. Nelms and A. R. Brockman: U.S. Geological Survey Water-Resources Investigations Report 97-4009. 1997. 58 pages. <u>Hydrologic characteristics and water budget for Swift Creek Reservoir</u>, by S.C. Skrobialowski and M.J. Focazio: U.S. Geological Survey Water-Resources Investigations Report 97-229. 41 pages. <u>Hydrologic conditions and trends in Shenandoah National Park, Virginia, 1983-84</u>, by D. D. Lynch: U.S. Geological Survey Water-Resources Investigations Report 87-4131. 1987. 115 pages. Hydrology and effects of mining in the upper Russell Fork basin, Buchanan and Dickenson Counties, Virginia, by J. D. Larson and J. D. Powell: U.S. Geological Survey Water-Resources Investigations Report 85-4238. 1986. 63 pages. <u>Hydrology of Area 16, Eastern Coal Province, Virginia and Tennessee</u>, by P. W. Hufschmidt and others: U.S. Geological Survey Water-Resources Investigations Report 81-204. 1981. 67 pages. Land use in, and water quality of, the Pea Hill Arm of Lake Gaston, Virginia and North Carolina, 1988-90, by M. D. Woodside: U.S. Geological Survey Water-Resources Investigations Report 94-4140. 54 pages. <u>Low-flow characteristics of streams in Virginia</u>, by D. C. Hayes: U.S. Geological Survey Water-Supply Paper 2374. 1990. 69 pages. <u>Low flow of streams in Fairfax County, Virginia</u>, by E. H. Mohler, Jr., and G. F. Hagan: U.S. Geological Survey Open-File Report 81-63. 1981. 30 pages. Measuring streams in Virginia, by R. M. Moberg, E. D. Powell, and K. C. Rice: U.S. Geological Survey Open-File Report 95-713. 1995. Pamphlet. Methods for estimating the magnitude and frequency of peak discharges of rural, unregulated streams in <u>Virginia</u>, by J. A. Bisese: U.S. Geological Survey Water-Resources Investigations Report 94-4148. 70 pages. National water summary, 1988-89, floods and droughts in Virginia, by E. H. Nuckels and B. J. Prugh, Jr.: U.S. Geological Survey Water-Supply Paper 2375. 1991. p. 543-550. Natural processes for managing nitrate in ground water discharge to Chesapeake Bay and other surface waters—more than forested buffers, by G.K. Speiran, M.D. Woodside, and P. A. Hamilton: U.S. Geological Survey Fact Sheet 178-97. Nutrient and suspended solids loads, yields, and trends in the non-tidal part of five major river basins in Virginia, 1985-96, by H. M. Johnson and D. L. Belval: U.S. Geological Survey Water-Resources Investigations Report 98-4025. 1998. 36 pages. Plan of study for the regional aquifer-system analyses of the Appalachian Valley and Ridge, Piedmont, and Blue Ridge physiographic provinces of the eastern and southeastern United States with a description of study-area geology and hydrogeology, by L. A. Swain, E. F. Hollyday, C. C. Daniel, III, and O. S. Zapecza. 1991. 44 pages. Potentiometric surface of the Brightseat-upper Potomac aquifer in Virginia, 1994, by E. C. Hammond, E. R. McFarland, and M. J. Focazio: U.S. Geological Survey Open-File Report 94-370. 1995. 1 page. ### WATER RESOURCES DATA - VIRGINIA, 1998 SELECTED U.S. GEOLOGICAL SURVEY REPORTS ON WATER RESOURCES IN VIRGINIA--Continued <u>Potentiometric surface of the lower Potomac aquifer in Virginia, 1994</u>, by E. C. Hammond, E. R. McFarland, and M. J. Focazio: U.S. Geological Survey Open-File Report 94-373. 1995. 1 page. <u>Potentiometric surface of the middle Potomac aquifer in Virginia, 1994</u>, by E. C. Hammond, E. R. McFarland, and M. J. Focazio: U.S. Geological Survey Open-File Report 94-372. 1995. 1 page. Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed and water-quality data from a survey of springs, by M.J. Focazio, L. N. Plummer, J. K. Bohlke, E. Busenberg, L. J. Bachman, and D. S. Powars: U.S. Geological Survey Water-Resources Investigations Report 97-4225. 1998. 75 pages. Preliminary investigation of soil and ground-water contamination at the U.S. Army Petroleum Training Facility, Fort Lee, Virginia, September-October 1989, by W. G. Wright and J. D. Powell: U.S. Geological Survey Open-File Report 90-387. 1990. 28 pages. <u>Quality of ground water in southern Buchanan County, Virginia</u>, by S. M. Rogers and J. D. Powell: U.S. Geological Survey Water-Resources Investigations 82-4022. 1983. 36 pages. Quality of ground water in the Coastal Plain physiographic province of Virginia, by M. J. Focazio, G. K. Speiran, and M. E. Rowan: U.S. Geological Survey Water-Resources Investigations Report 92-4175. 1994. 20 pages. Relation between ground-water quality and mineralogy in the coal-producing Norton Formation of Buchanan County, Virginia, by J. D. Powell and J. D. Larson: U.S. Geological Survey Water-Supply Paper 2274. 1985. 30 pages. Relation of stream quality to streamflow, and estimated loads of selected water-quality constituents in the James and Rappahannock Rivers near the Fall Line of Virginia, July 1988 through 1990, by D. L. Belval, M. D. Woodside, and J. P. Campbell: U.S. Geological Survey Water-Resources Investigations Report 94-4042. 1995. 85 pages. Scour at bridge sites in Delaware, Maryland, and Virginia, by D.C. Hayes: U.S. Geological Survey Water Resources Investigations Report 96-4089. 1996. 35 pages.20 Selected characteristics of stormflow and base flow affected by land use and cover in the Chickahominy River Basin, Virginia, 1989-91, by M. J. Focazio and R. E. Cooper: U.S. Geological Survey Water-Resources Investigations Report 94-4225. 1995. 37 pages. <u>Selected heavy metals and other constituents in soil and stormwater runoff at the Interstate 95 Interchange near Atlee, Virginia, April 1993-May 1997</u>, by G. K. Speiran: USGS WRI 98-4115. 1998. 39 pages. <u>Selected hydrologic data for the Powell River basin in Wise County, Virginia</u>, by J. D. Larson: U.S. Geological Survey Open-File Report 85-186. 1985. 22 pages. <u>Selected U.S. Geological Survey publications on the water resources of Virginia, 1910-94,</u> by J. A. McFarland: supersedes U.S. Geological Survey Open-File Report 92-69. 1995. 15 pages. <u>Sensitivity of stream basins in Shenandoah National Park to acid deposition</u>, by D. D. Lynch and N. B. Dise: U.S. Geological Survey Water-Resources Investigations Report 85-4115. 1985. 61 pages. <u>Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia</u>, by D. C. Hayes: U.S. Geological Survey Water-Resources Investigations Report 93-4017. 1994. 23 pages. <u>Technique for estimating the magnitude and frequency of Virginia floods</u>, by E. M. Miller: U.S. Geological Survey Water-Resources
Investigations Report 78-5. 1978. 83 pages. Trends in nutrients and suspended solids at the Fall Line of five tributaries to the Chesapeake Bay, July 1988 through June 1995, by C.F. Bell, D.L. Belval, J.P. Campbell: U.S. Geological Survey Water Resources Investigations Report 96-4191. 1996. 37 pages. <u>Use during 1990, availability, and resource-information needs</u>, by E. R. McFarland and M. J. Focazio: U.S. Geological Survey Open-File Report 94-114. 1995. 2 pages. <u>Use of fathometers and electrical-conductivity probes to monitor riverbed scour at bridge piers</u>, by D. C. Hayes and F. E. Drummond: U.S. Geological Survey Water-Resources Investigations Report 94-4164. 1995. 17 pages. <u>Virginia ground-water quality</u>, by J. D. Powell and P. A. Hamilton: U.S. Geological Survey Open-File Report 87-759. 1987. 7 pages. Water-level hydrographs for observation wells in Virginia, by S. T. Farrington, N. R. Carrington, and W. V. Daniels: U.S. Geological Survey Open-File Report 83-134. 1984. 167 pages. Water-quality and evaluation of raw-water-routing scenarios, Chickahominy, Diascund Creek, and Little Creek Reservoirs, southeastern Virginia, 1983-86, by D. D. Lynch: U.S. Geological Survey Water-Resources Investigations Report 92-4034. 1992. 104 pages. Water-quality assessment of the Albemarle-Pamlico Basin, North Carolina and Virginia-Chemical analyses of organic compounds and inorganic constituents in streambed sediment, 1992-93, by M.D. Woodside and B.R. Simerl: U.S. Geological Survey Open-File Report 96-103. 1996. 25 pages. Water-quality assessment of the Delmarva Peninsula, Delaware, Maryland, and Virginia--Effects of agricultural activities on, and distribution of, nitrate and other inorganic constituents in the surficial aquifer, by P. A. Hamilton, J. M. Denver, P. J. Phillips, and R. J. Shedlock: U.S. Geological Survey Open-File Report 93-40. 1994. 87 pages. Water-quality characteristics of five tributaries to the Chesapeake Bay at the Fall Line, Virginia, July 1988 through June 1993, by D.L. Belval, J.P. Campbell, S.W. Phillips, and C.F. Bell: U.S. Geological Survey Water Resources Investigations Report 95-4258. 1995. 71 pages. ### WATER RESOURCES DATA - VIRGINIA, 1998 SELECTED U.S. GEOLOGICAL SURVEY REPORTS ON WATER RESOURCES IN VIRGINIA--Continued Water-quality data and estimated loads of selected constituents in five tributaries to the Chesapeake Bay at the Fall Line, Virginia, July 1993 through June 1995, by D.L. Belval and J.P. Campbell: U.S. Geological Survey Open-File Report 96-220. 1996. 79 pages. Water-Quality in the Appalachian Valley and Ridge, the Blue Ridge, and the Piedmont Physiographic Provinces, Eastern United States, by L.I. Briel: U.S. Geological Survey Professional Paper 1422-D. [in press]. Water-resources activities of the U.S. Geological Survey Mid-Atlantic Programs 1987-91, by J. A. McFarland, L. S. Weiss, A. J. Chen, D. R. Lowry, K. A. Bouder, W. R. Caughron, and G. J. Hyatt: U.S. Geological Survey Open-File Report 91-505. 1991. 154 pages. <u>Water use in Virginia: Surface-water and ground-water withdrawals during 1992</u>, by E. C. Hammond and M. J. Focazio: U.S. Geological Survey Fact Sheet 94-057. 1995. 2 pages. Well-construction, water-level, and ground-water-quality data for Prince William County, Virginia, 1992, by D. L. Nelms and A. R. Brockman: U.S. Geological Survey Open-File Report 93-443. 1994. 73 pages. Figure 4.--Location of surface-water-discharge and surface-water-quality data-collection station (Left side of map) Figure 4.--Location of surface-water-discharge and surface-water-quality data-collection stations (Right side of map) Figure 5.--Location of surface-water partial-record stations (Left side of map) Figure 5.--Location of surface-water partial-record stations (Right side of map) THIS IS A BLANK PAGE ## SURFACE-WATER-DISCHARGE AND SURFACE-WATER-OUALITY RECORDS #### Remarks Codes The following remark codes may appear with the water-quality data in this section: | PRINT OUTPUT | REMARK | |--------------|---| | E | Estimated value. | | > | Actual value is known to be greater than the value shown. | | < | Actual value is known to be less than the value shown. | | K | Results based on colony count outside the acceptance range (non-ideal colony count). | | L | Biological organism count less than 0.5 percent (organism may be observed rather than counted). | | D | Biological organism count equal to or greater than 15 percent (dominant). | | & | Biological organism estimated as dominant. | | V | Analyte was detected in both the enviromental sample and the associated blanks. | ## Dissolved Trace-Element Concentrations NOTE.-- Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (ug/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the ug/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. # Change in National Trends Network Procedures NOTE.-- Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP/NTN Coordination Office, Colorado State University, Fort Collins, CO 80523 (Telephone: 303-491-5643). ## WATER RESOURCES DATA - VIRGINIA, 1998 #### DISCONTINUED SURFACE-WATER-DISCHARGE OR STAGE-ONLY STATIONS The following continuous-record surface-water-discharge or stage-only stations (gaging stations) in Virginia have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as crest-stage partial-record stations. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report. [Letters after station name designate type of data collected: (d) discharge, (e) elevation] | Station name | Station
number | Drainage
area
(mi2) | Period
of
record
(water
years) | |--|-------------------|---------------------------|--| | NASSAWADOX | CREEK BASIN | | | | uy Creek (head of Holly Grove Cove)
near Nassawadox, VA (d) | 01484800 | 1.72 | 1963-96 | | POTOMAC R | IVER BASIN | | | | pequon Creek near Berryville, VA (d) | 01615000 | 57.4 | 1943-97 | | brams Creek at Winchester, VA (d) | 01615500 | 5.6 | 1946-49 | | brams Creek near Winchester, VA (d) | 01616000 | 16.5 | 1949-60
1979-94 | | ry River at Rawley Springs, VA (d) | 01621000 | 72.6 | 1946-48 | | ooks Creek at Mt. Crawford, VA (d) | 01621500 | 42 | 1905-06 | | astle Spring near Churchville, VA (d) | 01622500 | - | 1949-56 | | ell Creek at St. Pauls Chapel, near Staunton, VA (d) | 01623000 | .61 | 1948-55 | | ell Creek near Staunton, VA (d) | 01623500 | 3.8 | 1948-55 | | ell Creek at Franks Mill, near Staunton, VA (d) | 01624000 | 9.6 | 1948-56 | | iddle River near Verona, VA (d) | 01624300 | 178 | 1967-86 | | ewis Creek near Staunton, VA (d) | 01624500 | 18 | 1905-06 | | hristians Creek near Fishersville, VA (d) | 01624800 | 70.1 | 1967-97 | | North River at Port Republic, VA (d) | 01625500 | 804 | 1895-99 | | ack Creek near Lyndhurst, VA (d) | 01625900 | 41.2 | 1974-77 | | outh River at Waynesboro, VA (d) | 01626500 | 133 | 1905-06
1928-52 | | outh River near Dooms, VA (d) | 01626850 | 149 | 1974-95 | | outh River at Port Republic, VA (d) | 01628000 | 248 | 1895-99 | | Nhite Oak Run near Grottoes, VA (d) | 01628060 | 1.94 | 1979-96 | | lk Run at Elkton, VA (d) | 01629000 | 17 | 1901-06 | | agers Spring near Luray, VA (d) | 01629990 | - | 1949-56 | | awksbill Creek near Luray, VA (d) | 01630000 | 52 | 1905-06 | | lains Mill Spring near New Market, VA (d) | 01632500 | - | 1949-56 | | tony Creek at Columbia Furnace, VA (d) | 01633500 | 79.4 | 1947-56 | | arlboro Spring at Marlboro, VA (d) | 01635000 | - | 1949-56 | | orth Fork Shenandoah River near Riverton, VA (d) | 01636000 | 1,040 | 1899-1906 | | appy Creek at Front Royal, VA (d) | 01636210 | 14.0 | 1948-77 | | ig Spring near Leesburg, VA (d) | 01643610 | .03 | 1968-69
1980-81 | | Goose Creek near Middleburg, VA (d) | 01643700 | 123 | 1965-67
1969-95 | 1969-95 | Station name | Station
number | Drainage
area
(mi ²) | Period
of
record
(water
years) | |---|-------------------|--|--| | POTOMAC RIVER BAS | SINContinue | ed | | | Stave Run at Reston, VA (d) | 01644290 | .05 | 1966-71,
1973 | | Stave Run near Reston, VA (d) | 01644291 | .08 | 1971-82 | | Smilax Branch at Reston, VA (d) | 01644295 | .32 | 1967-78 | | Snakeden Branch at Reston, VA (d) | 01645784 | .79 | 1973-78 | | Fourmile Run at Alexandria, VA (d) | 01652500* | 14.4
13.8 | 1951-69,
1974-75,
1979-82 | | Long Branch near Annandale, VA (d) | 01654500 | 3.71 |
1947-57 | | Accotink Creek near Accotink Station, VA (d) | 01655000 | 37.0 | 1949-57 | | Cedar Run near Warrenton, VA (d) | 01655500 | 12.3 | 1950-87 | | Broad Run at Buckland, VA (d) | 01656500 | 50.5 | 1950-79,
1981-87 | | Broad Run near Bristow, VA (d) | 01656650 | 89.6 | 1975-87 | | Occoquan River near Manassas, VA (d) | 01656700 | 343 | 1968-81 | | Bull Run near Catharpin, VA (d) | 01656725 | 25.8 | 1969-87 | | Cub Run near Bull Run, VA (d) | 01656960 | 49.9 | 1973-87 | | Bull Run near Manassas, VA (d) | 01657000 | 147 | 1950-81 | | Bull Run near Manassas Park, VA (d) | 01657020 | 148 | 1984-87 | | Bull Run near Clifton, VA (d) | 01657415 | 185 | 1972-84 | | Occoquan River (Creek) near Occoquan, VA (d) | 01657500 | 570 | 1913-16,
1921-23,
1937-56 | | Hooes Run near Occoquan, VA (d) | 01657655 | 3.97 | 1975-82 | | Neabsco Creek at Dale City, VA (d) | 01657850 | 6.11 | 1994-96 | | Neabsco Creek Tributary at Telegraph Road near
Dale City, VA (d) | 01657885 | .91 | 1995-96 | | Powells Creek near Dale City, VA (d) | 01657895 | 7.93 | 1994-96 | | Quantico Creek near Dumfries, VA (d) | 01658480 | 6.90 | 1983-85 | | South Fork Quantico Creek near Joplin, VA (d) | 01658550 | 9.62 | 1983-85 | | South Fork Quantico Creek near Dumfries, VA (d) | 01658650 | 16.6 | 1983-85 | | North Branch Chopawamsic Creek near
Independent Hill, VA (d) | 01659000 | 5.79 | 1951-57,
1990 | | Middle Fork Chopawamsic Creek near Garrisonville, VA (d) | 01659500 | 4.51 | 1951-57,
1960-67 | | South Branch Chopawamsic Creek near Garrisonville, VA (d) | 01660000 | 2.56 | 1951-57 | | Cannon Creek near Garrisonville, VA (d) | 01660380 | 10.2 | 1994-96 | | Aquia Creek near Garrisonville, VA (d) | 01660400 | 34.9 | 1971-97 | | GREAT WICOMICO | RIVER BASIN | | | | Bush Mill Stream near Heathsville, VA (d) | 01661800* | 6.82 | 1964-87 | $[\]mbox{\ensuremath{\star}}$ Currently operated as a crest-stage partial-record station. Discontinued surface-water-discharge or stage-only stations--Continued Period of record Drainage Station (water area (mi²)Station name number years) RAPPAHANNOCK RIVER BASIN Carter Run near Marshall, VA (d) 01661900 19.5 1977-82 Rappahannock River near Warrenton, VA (d) 01662000 195 1943-86 Rush River at Washington, VA (d) 01662500 14.7 1953-77 Thornton River near Laurel Mills, VA (d) 01663000 142 1943-56 Hazel River at Rixeyville, VA (d) 01663500 287 1942-92 Rappahannock River at Kellys Ford, VA (d) 01664500 1925-52 641 1949-97 Mountain Run near Culpeper, VA (d) 01665000 15 9 Rapidan River near Ruckersville, VA (d) 01665500 114 1942-95 Robinson River at Locust Dale, VA (d) 01666000 148 1942 01667000 1924-31 Rapidan River at Rapidan, VA (d) 446 Mountain Run near Burr Hill, VA (d) 01667870 28.8 1990-92 Hoskins Creek near Tappahannock, VA (d) 01668800 15.5 1965-86 PIANKATANK RIVER BASIN Dragon Swamp near Church View, VA (d) 01669500 84.9 1943-81 YORK RIVER BASIN Beaverdam Swamp near Ark, VA (d) 01670000 6 63 1950-89 Pamunkey Creek at Lahore, VA (d) 01670180* 40.5 1989-92 Contrary Creek near Mineral, VA (d) 01670300* 5.53 1976-86 01670400 1978-95 North Anna River near Partlow, VA (d) 344 North Anna River near Hewlett, VA (d) 01670500 424 1926-28 North Anna River near Doswell, VA (d) 01671000 441 1926-86 01671500 4.37 1949-79 Bunch Creek near Boswells Tavern, VA (d) South Anna River at Vontay, VA (d) 01672000 332 1927-30 South Anna River near Ashland, VA (d) 01672500 394 1930-97 Totopotomoy Creek near Atlee, VA (d) 01673500 5.89 1949-77 1979-95 Ware Creek near Toano, VA (d) 01677000 6.29 JAMES RIVER BASIN 02010000 1950-56 Bolar Spring at Bolar, VA (d) 1946-56 Muddy Run Spring near Warm Springs, VA (d) 02010500 Warm Spring at Warm Springs, VA (d) 02011000 1928-44 Back Creek on Rt. 600, near Mountain Grove, VA (d) 02011480 85.8 1974-84 Falling Spring Creek near Falling Spring, VA (d) 11.5 1948-52 02012000 Jackson River at Falling Spring, VA (d) 02012500* 411 1925-84 Jackson River at Covington, VA (d) 02012900 440 1907-08 ^{*} Currently operated as a crest-stage partial-record station. | Station name | Station
number | Drainage
area
(mi ²) | Period
of
record
(water
years) | |--|-------------------|--|--| | JAMES RIVER BASI | INContinued | i | | | Smith Creek above old dam, near Clifton Forge, VA (d) | 02014500 | 12.4 | 1947-56 | | Smith Creek near Clifton Forge, VA (d) | 02015000 | 12.5 | 1944-47 | | Stuart Spring near McDowell, VA (d) | 02015500 | - | 1950-56 | | Meadow Creek at New Castle, VA (d) | 02017000 | 13.8 | 1929-52 | | Catawba Creek near Fincastle, VA (d) | 02019000 | 104 | 1928-37 | | Karnes Spring near Buchanan, VA (d) | 02020000 | - | 1950-56 | | Calfpasture River (head of Maury River) above
Mill Creek, at Goshen, VA (d) | 02020500 | 144 | 1938-96 | | Calfpasture River at Goshen, VA (d) | 02021000 | 190 | 1925-39 | | Big Spring at Kerrs Creek, VA (d) | 02022000 | - | 1950-56 | | Maury River near Lexington, VA (d) | 02023000 | 487 | 1925-60 | | South River near Riverside, VA (d) | 02023500 | 111 | 1950-62 | | Buffalo Creek near Glasgow, VA (d) | 02024300 | 123 | 1963-64 | | Maury River at Glasgow, VA (d) | 02024500 | 831 | 1895-1906 | | Pedlar River near Pedlar Mills, VA (d) | 02025000 | 91 | 1942-56 | | ye River at Roseland, VA (d) | 02026500 | 68 | 1927-38 | | Buffalo river near Tye River, VA (d) | 02027800 | 147 | 1960-95 | | Ye (Buffalo) River near Norwood, VA (d) | 02028000 | 360 | 1940-60 | | Mardware River near Scottsville, VA (d) | 02029500 | 104 | 1925-39 | | Slate River near Arvonia (d) | 02030500 | 226 | 1926-95 | | Mechums River near White Hall (Ivy), VA (d) | 02031000 | 95.4 | 1942-51 | | North Fork Moormans River near White Hall, VA (d) | 02031500 | 11.4 | 1952-63,
1982-84 | | Moormans River near White Hall, VA (d) | 02032000 | 18 | 1943-46 | | Moormans River near Free Union, VA (d) | 02032250 | 74.6 | 1979-97 | | Buck Mountain Creek near Free Union, VA (d) | 02032400 | 37 | 1979-97 | | South Fork Rivanna River near Earlysville, VA (d) | 02032500 | 216 | 1951-66 | | South Fork Rivanna River near Charlottesville, VA (d) | 02032515 | 260 | 1979-97 | | North Fork Rivanna River near Proffit, VA (d) | 02032680 | 176 | 1970-92 | | Rivanna River near Charlottesville, VA (d) | 02033000 | 473 | 1925 | | Rivanna River below Moores Creek,
near Charlottesville, VA (d) | 02033500 | 507 | 1925-34 | | Villis River at Lakeside Village (Flanagan Mills), VA (d) | 02034500* | 262 | 1927-86 | | Big) Lickinghole Creek near Goochland, VA (d) | 02035500 | 70 | 1944-46 | | Beaverdam Creek at State Farm, VA (d) | 02036000 | 42 | 1944-47, | | alling Creek near Chesterfield, Va. (d) | 02038000* | 32.8 | 1957-64,
1955-94 | | Falling Creek near Drewrys Bluff, VA (d) | 02038500 | 54 | 1942-56,
1957-64 | | Vaughans Creek near Hixburg, VA (d) | 02038880 | 23.2 | 1980-81 | | | | | | $^{^{\}star}$ Currently operated as a crest-stage partial-record station. Discontinued surface-water-discharge or stage-only stations--Continued Period of record Drainage Station (water area (mi²)years) Station name number JAMES RIVER BASIN--Continued Fishpond Creek near Hixburg, VA (d) 02038830 14 1980-81 02040500* 1946-48 Flat Creek near Amelia, VA (d) 73 02041500 1927-66 Appomattox River near Petersburg, VA (d) 1,335 Swift Creek near Chester, VA (d) 02042000 143 1943-49 Chickahominy River near Atlee, VA (d) 02042287 62.2 1990-97 GREAT DISMAL SWAMP BASIN Cypress Swamp at Cypress Chapel, VA (d) 02043500 23.8 1953-71, 1978-96 Washington Ditch near Cypress Chapel, VA (d) 02043550 41 1979-81 CHOWAN RIVER BASIN 1946-86 Nottoway River near Burkeville, VA (d) 02044000 38.7 Nottoway River near McKenney, VA (d) 02045000 362 1946-50 02045200 15.0 1966-67 Waqua Creek near Alberta, VA (d) 1949-56 Anderson Branch at Sussex, VA (d) 02046500 5.35 Assamoosick Swamp near Sebrell, VA (d) 02047100 86.4 1982-88 Blackwater River at Zuni, VA (d) 02048000 456 1943-88 02048500 1943-49 Seacock Creek at Unity, VA (d) 102 Blackwater River near Burdette, VA (d) 02049000 576 1942-44 North Meherrin River near Keysville, VA (d) 02050500 9.2 1949-61 Great Creek near Cochran, VA (d) 02051600 30.7 1958-86 Fountains Creek near Brink, VA (d) 65.2 1953-95 02052500 Fontaine (Fountains) Creek near Emporia, VA (d) 02053000 1944-53 ROANOKE RIVER BASIN | | ROANORE RIVER BASIN | | | |--|---------------------|-------|---------| | Big Springs at Elliston, VA (d) | 02054000 | - | 1948-56 | | Tinker Creek at Roanoke, VA (d) | 02055500 | 70 | 1907-08 | | Back Creek near Roanoke, VA (d) | 02056500 | 43 | 1907-08 | | Blackwater River near Union Hall, VA (d) | 02057000 | 208 | 1925-64 | | Roanoke River near Toshes, VA (d) | 02057500 | 1,020 | 1925-63 | | Snow Creek at Sago, VA (d) | 02058000 | 60 | 1935-44 | | Pigg River near Toshes, VA (d) | 02058500 | 394 | 1930-63 | | Roanoke River near Gretna, VA (d) | 02059000 | 1,430 | 1925-30 | | Goose Creek at Huddleston, VA (d) | 02060000 | 218 | 1929-32 | | Big Otter River near Bedford, VA (d) | 02061000 | 116 | 1944-60 | | Big Otter River near Altavista, VA (d) | 02062000 | 372 | 1929-37 | | Caldwells Creek near Appomattox, VA (d) | 02063000 | 5.13 | 1954-60 | ^{*} Currently operated as a crest-stage partial-record station. | Station name | Station
number | Drainage
area
(mi²) | Period
of
record
(water
years) | |---|-------------------|---------------------------|--| | ROANOKE RIVER BAS | SINContinu | ed | | | Falling River at Spring Mills, VA (d) | 02063500 | 52.2 | 1954-60 | | Little Falling River at Hat Creek, VA (d) | 02064500 | 43 | 1929-36 | | Falling River near Brookneal, VA (d) | 02065000 | 228 | 1936-41 | | Roanoke River at Clarkton, VA (d) | 02065200 | 2,691 | 1963-76 | | Roanoke Creek
at Saxe, VA (d) | 02066500 | 135 | 1946-72 | | Roanoke River near Clover, VA (d) | 02067000 | 3,230 | 1929-52 | | Roanoke River above Dan River, at Clarksville, VA (d) | 02067500 | - | 1895-98 | | Leatherwood Creek near Martinsville (Old Liberty), VA (d) | 02073500 | 68 | 1926-34 | | Dan River at Danville, VA (d) | 02075000 | 2,050 | 1934-95 | | Dan River at South Boston, VA (d) | 02076000* | 2,730 | 1900-07,
1923-52 | | Georges Creek near Gretna, VA (d) | 02076500 | 9.24 | 1949-97 | | Hyco River near Omega, VA (d) | 02078000 | 413 | 1934-50 | | Dan River at Clarksville, VA (d) | 02078500 | - | 1896-98 | | Roanoke River at Clarksville, VA (d) | 02079000 | 7,320 | 1935-52 | | Roanoke River at Buggs Island, VA (d) | 02079500* | 7,780 | 1947-62 | | Allen Creek near Boydton, VA (d) | 02079640 | 53.4 | 1961-96 | | KANAWHA RIV | ER BASIN | | | | New River near Baywood, VA (d) | 03163000 | 1,000 | 1928-30 | | New River near Grayson, VA (d) | 03164500 | 1,160 | 1908-12 | | New River at Ivanhoe, VA (d) | 03165500 | 1,340 | 1927,
1930-78 | | Cripple Creek near Ivanhoe, VA (d) | 03166000 | 148 | 1930-34 | | Neff-Litz Spring near Rural Retreat, VA (d) | 03166500 | - | 1947-56 | | Glade Creek at Grahams Forge, VA (d) | 03166800 | 7.15 | 1976-93 | | Big Reed Island Creek near Allisonia, VA (d) | 03167500 | 278 | 1908-16,
1939-95 | | Peak Creek at Pulaski, VA (d) | 03168500 | 58.3
60.9 | 1927-33,
1951-57 | | Little River near Copper Valley, VA (d) | 03169500 | 239 | 1908-16 | | New River at Eggleston, VA (d) | 03171500 | 2,941 | 1915-76 | | Wabash Spring near Poplar Hill, VA (d) | 03172000 | - | 1950-51 | | Walker Creek at Staffordsville, VA (d) | 03172500 | 277 | 1908-16 | | Francis Spring near Bane, VA (d) | 03173500 | - | 1952-56 | | Wolf Creek near Shawver Mill (Burkes Garden), VA (d) | 03174500 | 36 | 1927-28 | | West Fork Cove Creek near Bluefield, VA (d) | 03175000 | 5.5 | 1929-32 | | | | | | $^{^{\}star}$ Currently operated as a crest-stage partial-record station. # WATER RESOURCES DATA - VIRGINIA, 1998 | Station name | Station
number | Drainage
area
(mi²) | Period
of
record
(water
years) | |---|-------------------|---------------------------|--| | KANAWHA RIVER BA | SINContinu | ed | | | Cox Branch above Tazewell Reservoir, near Gratton, VA (d) | 03175100 | 2.06 | 1988-92 | | Bluestone River at Bluefield, VA (d) | 03177700 | 39.8 | 1965-80 | | Bluestone River at Falls Mills, VA (d) | 03177710 | 44.2 | 1980-97 | | BIG SANDY R. | IVER BASIN | | | | Levisa Fork near Grundy, VA (d) | 03207500 | 235 | 1942-74,
1986-87 | | Grissom Creek near Council, VA (d) | 03208034 | 2.82 | 1981-83 | | Barton Fork near Council, VA (d) | 03208036 | 1.23 | 1981-83 | | Russell Fork at Council, VA (d) | 03208040* | 10.2 | 1981-83 | | Russell Fork near Birchleaf, VA (d) | 03208100 | 87.4 | 1981-83 | | North Fork Pound River at Pound, VA (d) | 03208700* | 18.5 | 1962-87 | | Pound River above Indian Creek, at Pound, VA (d) | 03208800* | 36.7 | 1966-78 | | Pound River below Bold Camp Creek, at Pound, VA (d) | 03208850* | 61.2 | 1966-78 | | Pound River near Georges Fork, VA (d) | 03208900* | 82.5 | 1964-82 | | Russell Fork at Bartlick, VA (d) | 03209200* | 526 | 1963-82 | | Kersaw Branch near Hurley, VA (d) | 03213577 | .60 | 1981-82 | | Knox Creek at Kelsa, VA (d) | 03213590* | 84.3 | 1980-81 | | Steve Keesling Spring at Sugar Grove, VA (d) | 03471000 | - | 1928,
1948-56 | | TENNESSEE R | IVER BASIN | | | | South Fork Holston River near Chilhowie, VA (d) | 03472000 | 89.5 | 1907-10 | | Beaverdam Creek at Damascus, VA (d) | 03472500 | 56.0 | 1947-59 | | Middle Fork Holston River at Groseclose, VA (d) | 03473500 | 7.39 | 1948-57,
1988-89 | | Middle Fork Holston River at Chilhowie, VA (d) | 03474500 | 155 | 1907-10,
1921-32 | | Cedarville Spring at Cedarville, VA (d) | 03475500 | - | 1950-53 | | Beaver Creek near Wallace, VA (d) | 03477500 | 13.7 | 1946-57 | | Percy Preston Spring near Wallace, VA (d) | 03478000 | - | 1950-56 | | Lick Creek near Chatham Hill, VA (d) | 03487800* | 25.5 | 1966-68 | | North Fork Holston River near Plasterco, VA (d) | 03488100 | 259 | 1963-66 | | Brumley Creek near Hansonville, VA (d) | 03488445 | 4.29 | 1979-82 | | Brumley Creek at Brumley Gap, VA (d) | 03488450* | 21.1 | 1979-82 | | North Fork Holston River at Holston, VA (d) | 03488500 | 402 | 1951-59 | | North Fork Holston River near Mendota, VA (d) | 03489500 | 493 | 1921-32 | | Cove Creek near Hilton, VA (d) | 03489850 | 17.6 | 1966-68 | $[\]mbox{\ensuremath{\star}}$ Currently operated as a crest-stage partial-record station. # WATER RESOURCES DATA - VIRGINIA, 1998 | Station name | Station
number | Drainage
area
(mi²) | Period
of
record
(water
years) | |---|-------------------|---------------------------|--| | TENNESSEE RIVER | BASINContin | ued | | | Big Moccasin Creek at Collinwood,
near Hansonville, VA (d) | 03489870 | 41.9 | 1966-68 | | Big Moccasin Creek near Gate City, VA (d) | 03489900 | 79.6 | 1953-59,
1966-68 | | North Fork Holston River near Gate City, VA (d) | 03490000* | 672 | 1932-82 | | Caylor Springs at Cedar Bluff, VA (d) | 03520500 | - | 1953 | | Clinch River at Cedar Bluff, VA (d) | 03521000 | 125 | 1944-46 | | Clinch River at Richlands, VA (d) | 03521500* | 137 | 1946-89 | | Little River at Wardell, VA (d) | 03522000 | 103 | 1949-52 | | Will Brooks Spring at Wardell, VA (d) | 03522500 | - | 1950-52 | | Big) Cedar Creek near Lebanon, VA (d) | 03523000 | 51.5 | 1953-59 | | Chompson Creek near Coulwood, VA (d) | 03523500 | 14.0 | 1942-49 | | Guest River at Coeburn, VA (d) | 03524500* | 87.3 | 1949-59
1979-81 | | Stony Creek at Ka, VA (d) | 03524900* | 30.9 | 1980-81 | | Stony Creek at Fort Blackmore, VA (d) | 03525000 | 41.4 | 1949-52 | | Clinch River at Clinchport, VA (d) | 03525500 | 986 | 1907-10 | | Quillen Springs near Gate City, VA (d) | 03526500 | - | 1954-56 | | Clinch River at Speers Ferry, VA (d) | 03527000 | 1,126 | 1920-76
1979-81 | | North Fork Clinch River at Duffield, VA (d) | 03527500 | 23.1 | 1953-59 | | Powell River at Big Stone Gap, VA (d) | 03529500 | 112 | 1945-59
1979-81 | | South Fork Powell River at Big Stone Gap, VA (d) | 03530000 | 40 | 1945-47
1951-77 | | orth Fork Powell River at Pennington Gap, VA (d) | 03530500 | 71.4 | 1944-51,
1978-81,
1993-95 | | Powell River near Pennington Gap, VA (d) | 03531000 | 290 | 1921-32 | ^{*} Currently operated as a crest-stage partial-record station. ## DISCONTINUED SURFACE-WATER-QUALITY STATIONS The following surface-water-quality stations in Virginia have been discontinued. Water-quality data (daily or periodic samples with collection frequency not less than quarterly) were collected and published for the period of record, expressed in water years, shown for each station. For each station entry, a period of record is provided for each type of record listed. Those stations with an asterisk (*) after the station number are currently operated as partial-record water-quality sampling stations. [Type of record: C (chemical), T (water temperature), SC (specific conductance), SED (sediment)] | Discontinued surface-water-quality stations Drainage Type Period of | | | | | |--|-------------------|-------------------------|-------------------|---| | Station name | Station
number | area (mi ²) | of
record | record
(water years) | | | | | | _ | | POTO | MAC RIVER B | ASIN | | | | forth River near Burketown, VA | 01622000 | 379 | C, T, SC | 1994 | | Middle River near Grottoes, VA | 01625000 | 375 | C, T, SC | 1994 | | outh River at Harriston, VA | 01627500 | 212 | SC
C, T, SC | 1949
1994 | | outh Fork Shenandoah River near Luray, VA | 01629500 | 1,377 | SC
C, T, SC | 1949
1994 | | outh Fork Shenandoah River at Front Royal, VA | 01631000 | 1,642 | T, SC | 1953-56, | | | | | SED
C | 1968-77,1980
1953-56
1949,1953-56 | | | | | | 1949,1953-56
1968-86
1994 | | Forth Fork Shenandoah River near Strasburg, VA | 01634000 | 768 | C, T, SC
T, SC | 1994 | | ofth Fork Shehahdoan River hear Strasburg, VA | 01034000 | 700 | SED | 1969-71
1956 | | | | | C | 1930,1949,
1952,1956, | | | | | C, T, SC | 1932,1930,
1970-86
1994 | | atoctin Creek at Taylorstown, VA | 01638480 | 89.6 | C, 1, 5C | 1993-95 | | Goose Creek near Leesburg, VA | 01644000 | 332 | T, SC | 1969-71 | | nobe creek hear beessurg, vii | 01011000 | 332 | C, T, SC | 1994 | | tave Run near Reston, VA | 01644291 | .08 | SED | 1971-74 | | milax Branch at Reston, VA | 01644295 | .32 | SED | 1971-75 | | nakeden Branch at Reston, VA | 01645784 | .79 | SED | 1973-78 | | ccotink Creek near Annandale, VA | 01654000 | 23.5 | С | 1993-95 | | edar Run near Aden, VA | 01656100* | 155 | SED | 1974 | | Bull Run near Catharpin, VA | 01656725 | 25.8 | SED | 1974 | | ub Run near Bull Run, VA | 01656960 | 49.9 | SED | 1972-74 | | ull Run near Clifton, VA | 01657415 | 185 | SED | 1973-74 | | Meabsco Creek Tributary at Telegraph Road
near Dale City, VA | 01657885 | .91 | C, S | 1995-96 | | quantico Creek near Dumfries, VA | 01658480 | 6.90 | C | 1983-85 | | South Fork Quantico Creek near
Independent Hill, VA | 01658500* | 7.64 | С | 1951,1953,
1955-56,1969
1973-75,
1983-85 | | outh Fork Quantico Creek at Camp 5,
near Joplin, VA | 01658550 | 9.62 | С | 1983-85 | | outh Fork Quantico Creek near Dumfries, VA | 01658650 | 16.6 | C | 1983-85 | | outh Fork Quantico Creek near Triangle, VA | 01658620 | 15.7 | T, SC | 1973 | 1948 Discontinued surface-water-quality stations--Continued Drainage Type Period of Station area of record Station name number (mi²)record (water years) RAPPAHANNOCK RIVER BASIN Carter
Run near Marshall, VA 01661900 19.5 SED 1977-78 Hazel River at Rixeyville, VA 01663500 287 1951-55 SC 1953-55 SED 1952-55 Rappahannock River at Remington, VA 01664000 620 SC, T 1951-56. 1965-86 SED 1951-93 Rapidan River near Culpeper, VA 01667500 472 1946,1951-56 1953-56 SC 1951-56 SED Mountain Run near Burr Hill, VA 01667870 28.8 C, T, SC 1990-92 Rappahannock River near Fredericksburg, VA 01668000* 1,596 T, SC 1956,1968-74 Rappahannock River at VEPCO Dam, T, SC 1971-72 01668020 at Fredericksburg, VA YORK RIVER BASIN North Anna River below Lake Anna, 01670600 T, SC 1972-73 near Hewlett, VA Pamunkey Creek at Lahore, VA 01670180 40.5 C, T, SC 1989-92 Bunch Creek near Boswells Tavern, VA 01671500 4.37 1954-56 Т 01673000* 1946,1968-76 1968-76 Pamunkey River near Hanover, VA 1,081 1946 Mattaponi River near Bowling Green, VA 01674000 257 т Mattaponi River near Beulahville, VA 01674500* 601 Т 1946 01677000 1979-81, Ware Creek near Toano, VA 6.29 1985-95 JAMES RIVER BASIN 02011460 60.1 1984-95 Back Creek near Sunrise, VA Т Back Creek at Sunrise, VA 02011470 76.1 Т 1984-92, 1993-95 Little Back Creek near Sunrise, VA 02011490 4.91 Т 1984-92, 1993-95 Jackson River at Falling Spring, VA 02012500 411 T, SC 1969-86 1930,1948, 1968-86 02019500 2,075 т 1948,1951-56, 1968-86 James River at Buchanan, VA SC 1953-56, 1968-86 SED 1930,1948, 1951-56, 1968-86 James River at Bent Creek, VA 02026000 3.683 Т TYPE OF RECORD: C (chemical), T (water temperature), SC (specific conductance), SED (sediment) \star Presently active periodic sampling station. Discontinued surface-water-quality stations--Continued | Station name | Station
number | Drainage
area
(mi ²) | Type
of
record | Period of
record
(water years) | |---|-------------------|--|----------------------|--------------------------------------| | JAMES RIVE | R BASINC | ontinued | | - | | James River at Scottsville, VA | 02029000 | 4,584 | T, SC
SED | 1951-56,1987
1951-56 | | Tames River at Cartersville, VA | 02035000* | 6,257 | T, SC
SED | 1968-76,
1979,1981
1981 | | Tames River and Kanawha Canal, near Richmond, VA | 02037000 | - | C, T, SC | 1972-73 | | ames River near Richmond, VA | 02037500 | 6,758 | T, SC | 1948-51,
1953-56 | | ishpond Creek near Hixsburg, VA | 02038830 | 14.0 | SC | 1981 | | Noliday Creek near Andersonville, VA | 02038850 | 8.53 | C, M, S | 1968-96 | | Waughans Creek near Hixsburg, VA | 02038880 | 23.2 | SC | 1981 | | Chickahominy River tributary at Atlee Exit,
near Greenwood, VA | 0204228301 | - | C, T, SC, | 1994 | | Chickahominy River near Atlee, VA | 02042287 | 62.2 | C, SED | 1989-91 | | pham Brook near Richmond, VA | 02042428 | 38.6 | C, SED | 1989-91 | | hickahominy River at Rt. 156,
near Seven Pines, VA | 02042440 | 149.3 | C
SED | 1984,1987-91
1988-91 | | hickahominy River near Providence Forge, VA | 02042500* | 248 | C, T, SC
SED | 1969-70,
1972-91
1990-91 | | hickahominy River above Walkers Dam,
at Walkers, VA | 02042720 | 301 | C, T, SC
SED | 1983-91
1990-91 | | Diascund Creek at Rt. 628, near New Kent, VA | 02042726 | 9.25 | C, T, SC
SED | 1986-91
1991 | | Diascund Creek Reservoir off Timber Swamp, near Walkers, VA | 02042734 | - | C, T, SC | 1983-91 | | Beaverdam Creek at Rt. 632, near Barhamsville, VA | 02042736 | 4.82 | C, T, SC
SED | 1986-91
1991 | | Jahrani Swamp at Rt. 632, near Barhamsville, VA | 02042742 | 4.02 | C, T, SC | 1986-91 | | diascund Creek Reservoir off pump station,
near Walkers, VA | 02042746 | - | C, T, SC | 1983-91 | | ittle Creek Reservoir Infall near Norge, VA | 0204275415 | - | C, T, SC | 1983-85 | | ittle Creek Reservoir (North) near Norge, VA | 0204275420 | - | C, T, SC | 1983-85 | | uittle Creek Reservoir (North Central)
near Norge, VA | 0204275430 | - | C, T, SC | 1983-91 | | ittle Creek Reservoir (Northeast) near Norge, VA | 0204275440 | - | C, T, SC | 1983-85 | | ittle Creek Reservoir (South Central)
near Norge, VA | 0204275470 | - | C, T, SC | 1983-91 | | ittle Creek Reservoir (West) near Norge, VA | 0204275490 | - | C, T, SC | 1983-91 | | CHOWA | AN RIVER BA | SIN | | | | ottoway River near Burkeville, VA | 02044000 | 38.7 | Т | 1947 | | Nottoway River near Sebrell, VA | 02047000 | 1,421 | T
C, T, S | 1947
1978-96 | TYPE OF RECORD: C (chemical), T (water temperature), SC (specific conductance), SED (sediment) \star Presently active periodic sampling station. Discontinued surface-water-quality stations--Continued | Discontinued surface-water-quality stationsContinued | | | | | | |--|--------------|------------------|--------------|-------------------------------------|--| | | Station | Drainage
area | Type
of | Period of record | | | Station name | number | (mi^2) | record | (water years) | | | | | | | | | | CHOWAN RIV | /ER BASIN(| Continued | | | | | Blackwater River at Zuni, VA | 02048000 | 456 | Т | 1947 | | | Blackwater River near Franklin, VA | 02049500 | 617 | C, M, S | 1947,
1952,
1975-96 | | | North Meherrin River near Lunenburg, VA | 02051000 | 55.6 | T | 1947 | | | Meherrin River at Emporia, VA | 02052000 | 747 | T, SC
C | 1968-80
1968-93 | | | ROANG | OKE RIVER BA | ASIN | | | | | Roanoke River at Lafayette, VA | 02054500 | 257 | T, SC | 1951 | | | Roanoke River at Altavista, VA | 02060500 | 1,789 | Т | 1951,1953-56, | | | | | | SC | 1968-86
1953-56, | | | | | | SED
C | 1968-86
1953-56
1951,1953-56, | | | | | | C | 1968-86 | | | Roanoke River at Randolph, VA | 02066000 | 2,977 | T, SC | 1951-56,
1968-62 | | | | | | SED
C | 1954-81
1930,1951-86 | | | Smith River above Route 615, near Woolwine, VA | 02071510 | - | C, T, SC | 1994-95 | | | Smith River at Rt 8 near Woolwine, VA | 02071520 | - | C, T, SC | 1994 | | | Smith River near Philpott, VA | 02072000 | 216 | C, T, SC | 1994-95 | | | Smith River near Irisburg, VA | 02073600 | - | C, T, SC | 1994-95 | | | Dan River at Sewage Treatment Plant, near
Danville, VA | 02075045 | 2,105 | C, T, SC | 1993-94 | | | Dan River at Sewage Treatment Plant effluent,
near Danville, VA | 02075046 | - | C, T, SC | 1993-94 | | | Dan River at Paces, VA | 02075500 | 2,550 | T, SC
SED | 1954-56
1954-81 | | | | | | С | 1954-93 | | | Dan River at South Boston, VA | 02076000 | 2,730 | T
SC | 1952
1951-52 | | | Roanoke River at Clarksville, VA | 02079000 | 7,320 | С | 1987-91 | | | Lake Gaston near Elams, NC | 02079785 | - | T, SC
SED | 1988
1988 | | | Lake Gaston (Little River Channel)
near Henrico, VA | 0207987950 | - | C, T, SC | 1987-92 | | | Pea Hill Creek at Route 665, near Gasburg, VA | 02079880 | - | C, T, SC | 1987-92 | | | Pea Hill Creek above Rt. 667, near Gasburg, VA | 0207988050 | - | C, T, SC | 1989-90 | | | Pea Hill Creek tributary No. 1, near Gasburg, VA | 02079881 | - | C, T, SC | 1989-90 | | | Pea Hill Creek tributary No. 2,
near Valentines, VA | 0207988130 | - | C, T, SC | 1989-90 | | | Pea Hill Creek tributary No. 3,
near Valentines, VA | 0207988160 | - | C, T, SC | 1989-90 | | | Pea Hill Creek tributary No. 4,
near Valentines, VA | 02079883 | - | C, T, SC | 1989-90 | | TYPE OF RECORD: C (chemical), T (water temperature), SC (specific conductance), SED (sediment) \star Presently active periodic sampling station. Discontinued surface-water-quality stations--Continued Drainage Type Period of Station of record area Station name number (mi²)record (water years) ROANOKE RIVER BASIN--Continued Pea Hill Creek tributary No. 4 tributary, 0207988430 C, T, SC 1989-90 near Valentines, VA Cold Spring Branch near Gasburg, VA 0207988440 C, T, SC 1989-90 Pea Hill Creek above North Carolina 0207988450 C, T, SC 1987-92 State line, near Gasburg, VA 0207988490 1989-90 Lake Gaston (Pea Hill Creek) near Henrico, NC C, T, SC Lake Gaston tributary near Tillans Chapel, 0207988510 C. T. SC 1989-90 near Elams, NC 02079888550 C, T, SC Pea Hill Creek tributary No. 5, near Henrico, NC 1989-90 Pea Hill Creek near Bowens Corner, 02079882 C, T, SC 1988 near Valentines, VA KANAWHA RIVER BASIN 03164000 New River near Galax, VA 1,131 T, SC 1950,1968-83 1931,1950, 1952,1968-86 03171000 2.748 1950,1956 New River at Radford, VA T, SC New River at Eggleston, VA 03171500 2,941 T, SC 1953-55 New River at Glen Lyn, VA 03176500* SC 1968-88 3,768 1964-88 C,T,SC,SED 1931,1950, 1952,1955-56, 1965-95 BIG SANDY RIVER BASIN Levisa Fork near Grundy, VA 03207500 235 T, SC SED 1950 1986 T, SC SED Levisa Fork at Big Rock, VA 03207800 297 1970-81 1970-81 03208034 T,SC,C,SED Grissom Creek near Council, VA 2.82 1982-83 Barton Fork near Council, VA 03208036 10.2 T,SC,C,SED 1981-83 Russell Fork at Council, VA 03208040 T, SC 1981-83 1.23 1982-83 Russell Fork near Birchleaf, VA 03208100 87.4 1982-83 T, SC, C TENNESSEE RIVER BASIN South Fork Holston River near Damascus, VA 03473000 301 Т 1950,1968-73 SC 1950 1950,1952, С 1968-86 Middle Fork Holston River at Chilhowie, VA 03474500 1962 Brumley Creek near Hansonville, VA 03488445 4.29 1980-81 Т Brumley Creek at Brumley Gap, VA 03488450 21.1 т 1979-81 03488500 402 T, SC 1952-56 North Fork Holston River at Holston, VA TYPE OF RECORD: C (chemical), T (water temperature), SC (specific conductance), SED (sediment) \star Presently active periodic sampling station. Discontinued surface-water-quality stations--Continued | | Station | Drainage
area | Type
of | Period of record | | |---|------------|--------------------|----------------|---|--| | Station name | number | (mi ²) | record | (water years) | | | TENNESSEE R | IVER BASIN | Continued | | | | | North Fork Holston River near Gate City, VA | 03490000 | 672 | T
SC
SED | 1950-51,
1968-78
1950-51
1935-38,
1963-65 | | | linch River at Speers Ferry, VA | 03527000 |
1,126 | T
SC
SED | 1950,1965-67
1950
1935-38,
1963-65 | | | Powell River at Big Stone Gap, VA | 03529500 | 112 | T, SC | 1950 | | | owell River near Jonesville, VA | 03531500 | 319 | Т | 1964-67 | | TYPE OF RECORD: C (chemical), T (water temperature), SC (specific conductance), SED (sediment) \star Presently active periodic sampling station. #### 01646580 POTOMAC RIVER AT CHAIN BRIDGE AT WASHINGTON, DC DRAINAGE AREA. -- 11,570 mi². PERIOD OF RECORD.--Water years 1973 to current year. Prior to October 1977, published as "at Great Falls." PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: June 1978 to September 1981. pH: June 1978 to September 1981. WATER TEMPERATURE: June 1978 to September 1981. DISSOLVED OXYGEN: June 1978 to September 1981. SUSPENDED SEDIMENT DISCHARGE: October 1978 to September 1981. INSTRUMENTATION. -- Water-quality monitor June 1978 to September 1981. REMARKS--Extreme high flows are sampled from the George Mason Memorial Bridge (14th Street) located 6 mi downstream from Chain Bridge. On May 3 and Nov. 17, 1994 samples were collected and analyzed using ultraclean methodologies. trace metals for these dates are available from the University of Delaware. Data on organics for these dates are available from George Mason University. #### EXTREMES FOR PERIOD OF DAILY RECORD-- SPECIFIC CONDUCTANCE (water years 1979, 1981): Maximum, 598 microsiemens, Sept. 12, 1981; minimum, 116 microsiemens, Jan. 25, 1979. pH (water years 1979, 1981): Maximum, 9.3 units, Mar. 29, 1981; minimum, 6.7 units, June 2, 1981. WATER TEMPERATURE (water years 1979, 1981): Maximum, 31.0°C, July 23-24, 1978; minimum, 0.0°C on many days during winter periods. DISSOLVED OXYGEN (water years 1979, 1981): Maximum, 16.4 mg/L, on many days in 1979; minimum, 5.6 mg/L, June 2, 1981. SEDIMENT CONCENTRATION: Maximum daily mean, 812 mg/L, Sept. 6, 1979; minimum daily mean, 1 mg/L on many days during winter periods. SEDIMENT LOAD: Maximum daily, 281,000 tons, Feb. 27, 1979; minimum daily, 3.2 tons, Jan. 5, 1981. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER | SPE-
CIFIC
CON-
DUCT-
ANCE | PH
WATER
WHOLE
FIELD
(STAND-
ARD | TEMPER-
ATURE
AIR | TEMPER-
ATURE
WATER | BARO-
METRIC
PRES-
SURE
(MM
OF | OXYGEN,
DIS-
SOLVED | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR- | HARD-
NESS
TOTAL
(MG/L
AS | CALCIUM
DIS-
SOLVED
(MG/L | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L | |------------------|--------|--|--|---|-------------------------|---------------------------|---|---------------------------|--|---------------------------------------|------------------------------------|--| | DIII | 111111 | SECOND
(00061) | (US/CM)
(00095) | UNITS)
(00400) | (DEG C)
(00020) | (DEG C)
(00010) | HG)
(00025) | (MG/L)
(00300) | ATION)
(00301) | CACO3)
(00900) | AS CA)
(00915) | AS MG)
(00925) | | OCT | | | | | | | | | | | | | | 28
NOV | 1115 | 1940 | 369 | 7.7 | 10.5 | 11.0 | 763 | 10.4 | 94 | 150 | 40 | 12 | | 24
DEC | 0930 | 10300 | 285 | 8.3 | 9.0 | 6.5 | 765 | 12.4 | 100 | 110 | 33 | 7.5 | | 17
JAN | 0945 | 6100 | | 7.9 | 4.0 | 5.0 | 758 | | | 130 | 38 | 8.8 | | 22
MAR | 1000 | 19100 | 244 | 7.1 | 2.0 | 4.0 | 769 | 13.2 | 100 | 100 | 30 | 6.7 | | 05 | 1030 | 39100 | 200 | 7.2 | 9.0 | 7.5 | 762 | 12.8 | 107 | 83 | 24 | 5.3 | | 31 | 1045 | 22700 | 244 | 7.7 | 26.5 | 16.5 | 760 | 9.8 | 101 | 110 | 32 | 7.0 | | APR
15 | 1130 | 24300 | 202 | 7.9 | 20.5 | 14.0 | 760 | 10.0 | 97 | 89 | 26 | 6.0 | | MAY | 1130 | 24300 | 202 | 1.5 | 20.5 | 14.0 | 700 | 10.0 | 21 | 09 | 20 | 0.0 | | 14
JUN | 1045 | 45300 | 191 | 7.8 | 17.0 | 15.5 | 767 | 10.0 | 100 | 84 | 25 | 5.4 | | 02 | 0845 | 7310 | | | | | | | | | | | | 11 | 1315 | 5540 | 339 | 8.1 | 18.0 | 19.5 | 766 | 9.0 | 98 | 150 | 42 | 11 | | JUL
15
AUG | 1500 | 3830 | 316 | 8.4 | 26.5 | 28.5 | | 7.3 | | | | | | 26
SEP | 1330 | 2040 | 365 | 8.1 | 31.5 | 29.5 | 760 | 7.9 | 104 | 150 | 40 | 12 | | 23 | 1600 | 1510 | 347 | 8.0 | 18.5 | 25.0 | 766 | 7.1 | 86 | 140 | 36 | 12 | # 01646580 POTOMAC RIVER AT CHAIN BRIDGE AT WASHINGTON, DC--Continued | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS NO3)
(71851) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | |--|--|--|---|---|--|--|---|---|---|--|---|---| | OCT
28
NOV | 15 | 2.9 | 108 | 132 | 0 | 40 | 20 | .20 | .91 | 207 | | <.010 | | 24 | 7.9 | 2.6 | 84 | 102 | 0 | 30 | 12 | <.10 | 7.1 | 169 | 7.8 | .036 | | DEC
17 | 9.1 | 2.1 | 96 | 117 | 0 | 40 | 13 | <.10 | 1.8 | 190 | | <.010 | | JAN
22
MAR | 6.6 | 2.0 | 74 | 90 | 0 | 25 | 11 | <.10 | 7.2 | 143 | 8.0 | .016 | | 05 | 4.4 | 1.6 | 59 | 72 | 0 | 18 | 7.0 | <.10 | 6.2 | 128 | | <.010 | | 31
APR | 4.9 | 1.7 | | | | 21 | 8.1 | <.10 | 5.8 | 145 | | <.010 | | 15
MAY | 4.8 | 1.6 | 63 | 77 | 0 | 19 | 6.6 | <.10 | 5.4 | 122 | 4.4 | .014 | | 14
JUN | 4.6 | 1.9 | 64 | 78 | 0 | 16 | 5.8 | <.10 | 7.4 | 117 | 4.9 | .017 | | 02
11 | 9.3 | 2.4 | 112 | 137 | 0 | 32 | 13 | .13 | 2.8 | 200 | 6.5 | .020 | | JUL | 9.3 | 2.4 | | 137 | | 32 | 13 | .13 | 2.0 | 200 | 0.5 | .020 | | 15
AUG | | | 100 | 117 | 2 | | | | | | 4.9 | .017 | | 26
SEP | 13 | 3.2 | 117 | 135 | 4 | 34 | 17 | .15 | 5.5 | 216 | 4.6 | .017 | | 23 | 15 | 3.0 | | | | 38 | 20 | .17 | 4.3 | 209 | 3.6 | .015 | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | PHORATE WATER FLITRD 0.7 U GF, REC (UG/L) (82664) | | OCT
28 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | DIS-
SOLVED
(UG/L
AS FE) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | | OCT
28
NOV
24 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | DIS-
SOLVED
(UG/L
AS FE)
(01046) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | | OCT
28
NOV
24
DEC
17 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,AM-
MONIA
+
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | DIS-
SOLVED
(UG/L
AS FE)
(01046) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | | OCT 28 NOV 24 DEC | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .681 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | DIS-
SOLVED
(UG/L
AS FE)
(01046) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
8.5 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.0040 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.0020 | | OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .681 1.79 1.48 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.24
.18 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .12 | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.038
.027 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.013
.017 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.015
.029 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
31
31 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
8.5
8.1 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.0040
<.0040 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.0020 | | OCT
28
NOV
24
DEC
17
JAN
22
MAR
05
31
APR | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .681 1.79 1.48 1.82 1.35 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .028 | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .24 .18 .16 .22 .23 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .12 .12 .10 .15 | GEN,
TOTAL
(MG/L
AS N)
(00600)
.92
2.0
1.6
2.0 | PHORUS TOTAL (MG/L AS P) (00665) .038 .027 .020 .038 .043 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .013 .017 .015 .013 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.015
.029
.013
.030 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
31
31
37
14
<10 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
8.5
8.1
5.7
5.4 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.0040
<.0040

<.0040 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.0020
<.0020

<.0020 | | OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .681 1.79 1.48 1.82 1.35 1.46 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 .028 .025 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .24 .18 .16 .22 .23 .17 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .12 .12 .10 .15 <.10 | GEN,
TOTAL
(MG/L
AS N)
(00600)
.92
2.0
1.6
2.0
1.6 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.038
.027
.020
.038
.043
.041 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .013 .017 .015 .013 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.015
.029
.013
.030 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
31
31
37
14
<10 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
8.5
8.1
5.7
5.4
4.7
<4.0 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.0040
<.0040

<.0040
<.0040 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82664)
<.0020
<.0020

<.0020
<.0020 | | OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 JUN 02 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.681
1.79
1.48
1.82
1.35
1.46 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .028 .025 .064 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .24 .18 .16 .22 .23 .17 .23 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .12 .12 .10 .15 <.10 .15 | GEN,
TOTAL
(MG/L
AS N)
(00600)
.92
2.0
1.6
2.0
1.6
1.6 | PHORUS TOTAL (MG/L AS P) (00665) .038 .027 .020 .038 .043 .041 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .013 .017 .015 .013 .025 .024 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.015
.029
.013
.030
.027
.017 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
31
31
37
14
<10
10 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
8.5
8.1
5.7
5.4
4.7
<4.0 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.0040
<.0040

<.0040
<.0040
<.0040 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664)
<.0020
<.0020

<.0020
<.0020
<.0020 | | OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 JUN 02 11 JUL 15 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .681 1.79 1.48 1.82 1.35 1.46 1.01 1.13 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .028 .025 .064 .072 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .24 .18 .16 .22 .23 .17 .23 .51 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .12 .12 .10 .15 <.10 .15 <.10 .12 | GEN,
TOTAL
(MG/L
AS N)
(00600)
.92
2.0
1.6
2.0
1.6
1.6 | PHORUS TOTAL (MG/L AS P) (00665) .038 .027 .020 .038 .043 .041 .045 .093 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .013 .017 .015 .013 .025 .024 .019 .027 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.015
.029
.013
.030
.027
.017
.013 | DIS-
SOLVED
(UG/L
AS FE)
(01046) 31 31 37 14 <10 10 42 27 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
8.5
8.1
5.7
5.4
4.7
<4.0
<4.0 | FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 | WATER FILTRD 0.7 U GF, REC (UG/L) (82664) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 | | OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 JUN 02 11 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .681 1.79 1.48 1.82 1.35 1.46 1.01 1.13 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .028 .025 .064 .072062 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .24 .18 .16 .22 .23 .17 .23 .51 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .12 .12 .10 .15 <.10 .12 .25 | GEN, TOTAL (MG/L AS N) (00600) .92 2.0 1.6 2.0 1.6 1.6 1.2 1.6 | PHORUS TOTAL (MG/L AS P) (00665) .038 .027 .020 .038 .041 .045 .093 <.010 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .013 .017 .015 .013 .025 .024 .019 .027 <.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.015
.029
.013
.030
.027
.017
.013 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
31
31
37
14
<10
10
42
27

15 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
8.5
8.1
5.7
5.4
4.7
<4.0
<4.0 | FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 | WATER FILTRD 0.7 U GF, REC (UG/L) (82664) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 | # 01646580 POTOMAC RIVER AT CHAIN BRIDGE AT WASHINGTON, DC--Continued | DATE | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | |--|---|---|---|---|--|--|--|---|---
--|---|--| | OCT
28
NOV | <.0070 | <.0020 | <.0030 | <.0020 | <.002 | .040 | <.0020 | <.0020 | E.0108 | <.0030 | <.0040 | <.0040 | | 24 | <.0070 | <.0020 | <.0030 | <.0020 | <.002 | .035 | <.0020 | <.0020 | E.0039 | <.0030 | <.0040 | <.0040 | | DEC
17
JAN | <.0070 | <.0020 | <.0030 | <.0020 | <.002 | .041 | <.0020 | <.0020 | <.0030 | <.0030 | <.0040 | <.0040 | | 22 | | | | | | | | | | | | | | MAR
05
31
APR | <.0070
<.0070 | <.0020
<.0020 | <.0030
<.0030 | <.0020
<.0020 | <.002
<.002 | .018 | <.0020
<.0020 | <.0020
<.0020 | <.0030
<.0030 | <.0030
<.0030 | <.0040
<.0040 | <.0040
<.0040 | | 15 | <.0070 | <.0020 | <.0030 | <.0020 | <.002 | .026 | <.0020 | <.0020 | <.0030 | <.0030 | <.0040 | .0081 | | MAY
14
JUN | <.0120 | <.0020 | <.0030 | .0157 | E.003 | .546 | <.0020 | <.0020 | E.0077 | <.0030 | <.0040 | .0263 | | 02 | <.0070 | <.0020 | <.0030 | <.0020 | <.002 | .049 | <.0020 | <.0020 | <.0030 | <.0030 | <.0040 | <.0040 | | JUL | <.0070 | <.0020 | <.0030 | <.0020 | <.002 | .230 | <.0020 | <.0020 | <.0030 | <.0030 | <.0040 | .0263 | | 15
AUG | <.0070 | <.0020 | <.0030 | <.0020 | <.002 | .219 | <.0020 | <.0020 | <.0030 | <.0030 | <.0040 | .0439 | | 26
SEP | <.0070 | <.0020 | <.0030 | <.0020 | <.002 | .075 | <.0020 | <.0020 | <.0030 | <.0030 | <.0040 | <.0040 | | 23 | <.0070 | <.0020 | <.0030 | <.0020 | <.002 | .066 | <.0020 | <.0020 | E.0162 | <.0030 | <.0040 | <.0040 | | | | | | | | | | | | | | | | DATE | DCPA
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | | OCT
28 | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | DDE
DISSOLV
(UG/L) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L) | AZINON,
DIS-
SOLVED
(UG/L) | ELDRIN
DIS-
SOLVED
(UG/L) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | WATER
DISS
REC
(UG/L) | DIS-
SOLVED
(UG/L) | URON WATER FLTRD 0.7 U GF, REC (UG/L) | THION,
DIS-
SOLVED
(UG/L) | | OCT
28
NOV
24 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DDE
DISSOLV
(UG/L)
(34653) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | AZINON,
DIS-
SOLVED
(UG/L)
(39572) | ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | WATER
DISS
REC
(UG/L)
(04095) | DIS-
SOLVED
(UG/L)
(39341) | URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | THION,
DIS-
SOLVED
(UG/L)
(39532) | | OCT
28
NOV
24
DEC
17 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DDE
DISSOLV
(UG/L)
(34653) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | AZINON,
DIS-
SOLVED
(UG/L)
(39572) | ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | PROP
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82672) | WATER
DISS
REC
(UG/L)
(04095) | DIS-
SOLVED
(UG/L)
(39341) | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.0020 | THION,
DIS-
SOLVED
(UG/L)
(39532) | | OCT
28
NOV
24
DEC | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.0020 | DDE
DISSOLV
(UG/L)
(34653)
<.0060 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.0213 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
.007 | ELDRIN
DIS-
SOLVED
(UG/L)
(39381)
<.001 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.0170 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668)
<.0020 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.0030 | WATER
DISS
REC
(UG/L)
(04095)
<.0030 | DIS-
SOLVED
(UG/L)
(39341)
<.004 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 | THION,
DIS-
SOLVED
(UG/L)
(39532)
<.005 | | OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.0020
<.0020 | DDE
DISSOLV
(UG/L)
(34653)
<.0060
<.0060 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.0213
E.0514 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
.007
E.004 | ELDRIN
DIS-
SOLVED
(UG/L)
(39381)
<.001
<.001 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668)
<.0020
<.0020 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.0030
<.0030 | WATER DISS REC (UG/L) (04095) <.0030 <.0030 <.0030 | DIS-
SOLVED (UG/L) (39341)
<.004
<.004 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 <.0020 | THION,
DIS-
SOLVED
(UG/L)
(39532)
<.005
<.005 | | OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82682)
<.0020
<.0020

<.0020 | DDE
DISSOLV
(UG/L)
(34653)
<.0060
<.0060

<.0060 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.0213
E.0514
E.0544 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
.007
E.004
<.002 | ELDRIN
DIS-
SOLVED
(UG/L)
(39381)
<.001
<.001

<.001 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668)
<.0020
<.0020

<.0020 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.0030
<.0030

<.0030 | WATER
DISS
REC
(UG/L)
(04095)
<.0030
<.0030

<.0030 | DIS-
SOLVED
(UG/L)
(39341)
<.004
<.004

<.004 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 <.0020 | THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 | | OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.0020
<.0020

<.0020
<.0020 | DDE
DISSOLV
(UG/L)
(34653)
<.0060
<.0060

<.0060
<.0060 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.0213
E.0514
E.0544

E.0272
E.0368 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
.007
E.004
<.002

<.002
<.002 | ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 | FOTON WATER FLITED 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668)
<.0020
<.0020

<.0020
<.0020 | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.0030
<.0030

<.0030
<.0030 | WATER DISS REC (UG/L) (04095) <.0030 <.0030 <.0030 <.0030 <.0030 | DIS-
SOLVED
(UG/L)
(39341)
<.004
<.004

<.004
<.004 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 <.0020 <.0020 <.0020 | THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 | | OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 JUN 02 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82682)
<.0020
<.0020

<.0020
<.0020
<.0020
<.0020
<.0020 | DDE DISSOLV (UG/L) (34653) <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.0213
E.0514
E.0544

E.0272
E.0368
E.0293
E.0348
E.0376 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
.007
E.004
<.002

<.002
<.002
<.002
<.002
<.002 | ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 | FOTON WATER FLITED 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 | WATER FLITRD 0.7 U GF, REC (UG/L) (82668) | PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672)
<.0030
<.0030

<.0030
<.0030
<.0030
<.0030 | WATER DISS REC (UG/L) (04095) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 | DIS-
SOLVED
(UG/L)
(39341)
<.004
<.004

<.004
<.004
<.004
<.004
<.004 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 | THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | | OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 JUN 02 11 JUL | WATER FLIRD 0.7 U GF, REC (UG/L) (82682) | DDE
DISSOLV
(UG/L)
(34653)
<.0060
<.0060

<.0060
<.0060
<.0060
<.0060
<.0060 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.0213
E.0514
E.0514

E.0272
E.0368
E.0293
E.0348
E.0376
E.0376 |
AZINON,
DIS-
SOLVED
(UG/L)
(39572)
.007
E.004
<.002

<.002
<.002
<.002
<.002
<.002 | ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.01770 <.01770 <.01770 <.01770 <.01770 <.01770 <.01770 | WATER FLITRD 0.7 U GF, REC (UG/L) (82668) | PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 | WATER DISS REC (UG/L) (04095) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 | DIS-
SOLVED (UG/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 | THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | | OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 JUN 02 11 JUL 15 AUG | WATER FLIRD 0.7 U GF, REC (UG/L) (82682) | DDE DISSOLV (UG/L) (34653) <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 <.0060 | ATRA-ZINE, WATER, DISS, REC (UG/L) (04040) E.0213 E.0514 E.0544 E.0272 E.0368 E.0293 E.0348 E.0376 E.0682 E.0788 | AZINON, DIS- SOLVED (UG/L) (39572) .007 E.004 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 | FOTON WATER FILTRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 | WATER FLTRD 0.7 U GF, REC (UG/L) (82668) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 | PROP WATER FLITRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 | WATER DISS REC (UG/L) (04095) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 | DIS-
SOLVED (UG/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 | THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | | OCT 28 NOV 24 DEC 17 JAN 22 MAR 05 31 APR 15 MAY 14 JUN 02 11 JUL 15 | WATER FLIRD 0.7 U GF, REC (UG/L) (82682) | DDE
DISSOLV
(UG/L)
(34653)
<.0060
<.0060

<.0060
<.0060
<.0060
<.0060
<.0060 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.0213
E.0514
E.0514

E.0272
E.0368
E.0293
E.0348
E.0376
E.0376 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
.007
E.004
<.002

<.002
<.002
<.002
<.002
<.002 | ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.01770 <.01770 <.01770 <.01770 <.01770 <.01770 <.01770 | WATER FLITRD 0.7 U GF, REC (UG/L) (82668) | PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 | WATER DISS REC (UG/L) (04095) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 | DIS-
SOLVED (UG/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 | THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | E Estimated value # 01646580 POTOMAC RIVER AT CHAIN BRIDGE AT WASHINGTON, DC--Continued | DATE | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | 0.7 t | . I METO- IT LACHLO WATER C DISSOL (UG/L) | WATER V DISSOLV (UG/L) | WATER
FLTRD
0.7 U
V GF, REC
(UG/L) | (UG/L) | E ULATE R WATE D FILT U 0.7 CC GF, RE U (UG/L | E R PARA- RD THION U DIS- EC SOLVE) (UG/I | I, WAT FL O.7 U D GF, RE O (UG/L) | METHR CIS T WAT F 0.7 C GF, RE (UG/L | IN PRO-
METON,
LT WATER,
U DISS,
EC REC
) (UG/L) | | |-------------------|---|--|---|-------------------------------------|--|---|--|---|---|---|---|---| | OCT 28 | <.0010 | <.006 | 0 .013 | <.004 | <.0040 | <.003 | 30 <.004 | 10 <.004 | <.004 | 0 <.005 | 0 E.0116 | <.0030 | | NOV
24 | <.0010 | <.006 | 0 .024 | <.004 | <.0040 | <.003 | <.004 | 10 <.004 | <.004 | 0 <.005 | 0 E.0077 | <.0030 | | DEC
17 | <.0010 | <.006 | 0 .017 | <.004 | <.0040 | <.003 | 30 <.004 | 10 <.004 | <.004 | 0 <.005 | <.0180 | <.0030 | | JAN
22 | | | | | | | | | | | | | | MAR
05 | <.0010 | | | <.004 | <.0040 | | | | | | | | | 31
APR | <.0010 | | | <.004 | <.0040 | | | | | | | | | 15
MAY | <.0010 | <.006 | 0 .016 | <.004 | <.0040 | <.003 | <.004 | 10 <.004 | <.004 | 0 <.005 | 50 E.0072 | <.0030 | | 14
JUN | <.0010 | <.006 | 0 .195 | <.004 | <.0040 | <.003 | <.004 | <.004 | <.004 | 0 <.005 | E.0069 | <.0030 | | 02
11 | <.0010
<.0010 | | | <.004
<.004 | <.0040 | | | | | | | | | JUL
15 | <.0010 | <.006 | | <.004 | <.0040 | | | | | | | | | AUG
26 | <.0010 | <.006 | 0 .016 | <.004 | <.0040 | <.003 | 30 <.004 | 10 <.004 | <.004 | 0 <.005 | .0207 | <.0030 | | SEP
23 | <.0010 | <.006 | 0 .009 | <.004 | <.0040 | <.003 | 30 <.004 | 10 <.004 | <.004 | 0 <.005 | 50 E.0153 | <.0030 | | | | | | | | | | | | | | | | Ι | DATE (| PROP-
CHLOR,
WATER,
DISS,
REC
UG/L)
04024) | (UG/L) | FLTRD
0.7 U
GF, REC
(UG/L) | MAZINE,
WATER,
DISS,
REC (
(UG/L) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | SEDI-
MENT, (
SUS-
PENDED
(MG/L) (| SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | | OCT
28. | | <.0070 | <.0130 | <.0040 | .0140 | <.0100 | <.0130 | <.0020 | <.0010 | <.0020 | 1 | 6.3 | | NOV
24. | | <.0070 | <.0130 | <.0040 | .0135 | <.0100 | <.0130 | <.0020 | <.0010 | <.0020 | 6 | 167 | | DEC
17. | | <.0070 | <.0130 | <.0040 | .0103 | E.0066 | <.0130 | <.0020 | <.0010 | <.0020 | 3 | 49 | | JAN
22. | | | | | | | | | | | 13 | 670 | | MAR
05.
31. | | <.0070
<.0070 | <.0130
<.0130 | <.0040
<.0040 | .0065 | <.0100
E.0064 | <.0130
<.0130 | <.0020
<.0020 | <.0010
<.0010 | <.0020
<.0020 | 21 2
14 | 2220
858 | | APR
15. | | <.0070 | <.0130 | <.0040 | .0128 | <.0100 | <.0130 | <.0020 | <.0010 | <.0020 | 15 | 984 | | MAY
14. | | <.0070 | <.0130 | <.0040 | .247 | E.0057 | <.0130 | <.0020 | <.0010 | <.0020 | 40 4 | 1890 | | JUN
02.
11. | | <.0070
<.0070 | <.0130
<.0130 | <.0040
<.0040 | .0224 | <.0100
E.0067 | <.0130
<.0130 | <.0020
<.0020 | <.0010
<.0010 | <.0020
<.0020 |
10 |
150 | | JUL
15. | | <.0070 | <.0130 | <.0040 | .0691 | E.0090 | <.0130 | <.0020 | <.0010 | <.0020 | 3 | 31 | | AUG
26. | | <.0070 | <.0130 | <.0040 | .0233 | <.0100 | <.0130 | <.0020 | <.0010 | <.0020 | 4 | 22 | | SEP
23. | | <.0070 | <.0130 | <.0040 | .0176 | E.0077 | <.0130 | <.0020 | <.0010 | <.0020 | 6 | 24 | | E Est | imated v | alue | | | | | | | | | | | #### TENNESSEE RIVER BASIN ## 03531500 POWELL RIVER NEAR JONESVILLE, VA LOCATION.--Lat 36°39'43", long 83°05'42", Lee County, Hydrologic Unit 06010206, on right bank 175 ft downstream from highway bridge, 2 mi southeast of Jonesville, 10 mi upstream from Wallen Creek, and at mile 143.1. DRAINAGE AREA. -- 319 mi². PERIOD OF RECORD.--October 1931 to current year. Monthly discharge only for some periods, published in WSP 1306. REVISED RECORDS.--WSP 823: Drainage area. WSP 1033: 1932-44. WSP 1436: 1946(M), 1948(M). GAGE.--Water-stage recorder. Datum of gage is 1,259.08 ft above sea level. REMARKS.--Records good except for period of no gage-height record, Apr. 19-20, which is fair. National Weather Service gage-height telemeter at station. Tennessee Valley Authority gage-height data recorder at station, called at 6-hour intervals by computer at Knoxville, Tennessee. Maximum discharge, 57,000 ft³/s, from rating curve extended above 20,000 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 0.68 ft, Oct. 18, 1961, result of storage behind temporary dam. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 5,000 ft^3/s and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------------------|--------------|-----------------------------------|---------------------|---------|---------|-----------------------------------|---------------------| | Mar. 19
Apr. 17 | 0900
1415 | 5,140
*13,700 | 10.31
*21.55 | Apr. 20 | Unknown | Unknown | Unknown | Minimum discharge, 43 ft³/s,
Sept. 19-21, 29, gage height, 1.19 ft. | | | | | | D2 | AILY MEAN | VALUES | | | | | | |-------|------------|------------|------|--------------|--------------|--------------|--------------|--------------|-------|------------|------------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 73 | 56 | 88 | 122 | 729 | 447 | 523 | 839 | 312 | 397 | 204 | 59 | | 2 | 59 | 58 | 192 | 102 | 594 | 416 | 697 | 942 | 270 | 301 | 159 | 57 | | 3 | 54 | 73 | 145 | 111 | 604 | 383 | 605 | 868 | 244 | 255 | 122 | 56 | | 4 | 51 | 86 | 117 | 123 | 2870 | 353 | 2120 | 1560 | 378 | 232 | 107 | 55 | | 5 | 48 | 73 | 110 | 184 | 2050 | 328 | 2580 | 1530 | 981 | 209 | 97 | 54 | | 6 | 47 | 71 | 98 | 242 | 1310 | 304 | 1590 | 1220 | 1090 | 192 | 91 | 52 | | 7 | 47 | 68 | 86 | 322 | 940 | 294 | 1050 | 1030 | 727 | 172 | 86 | 52 | | 8 | 46 | 66 | 74 | 3000 | 856 | 308 | 810 | 1050 | 523 | 162 | 83 | 59 | | 9 | 47 | 63 | 74 | 2280 | 807 | 599 | 1600 | 1160 | 472 | 180 | 80 | 65 | | 10 | 47 | 66 | 193 | 1240 | 836 | 932 | 2050 | 1790 | 917 | 187 | 93 | 68 | | 11 | 49 | 66 | 509 | 719 | 877 | 700 | 1930 | 2760 | 876 | 156 | 141 | 55 | | 12 | 51 | 60 | 309 | 521 | 1270 | 562 | 1470 | 2060 | 802 | 145 | 109 | 52 | | 13 | 54 | 56 | 202 | 426 | 1200 | 475 | 1050 | 1440 | 853 | 137 | 97 | 50 | | 14 | 53 | 60 | 151 | 367 | 878 | 429 | 866 | 1040 | 869 | 137 | 154 | 48 | | 15 | 54 | 81 | 121 | 333 | 686 | 391 | 758 | 809 | 826 | 178 | 460 | 45 | | 16 | 53 | 95 | 102 | 424 | 590 | 388 | 1470 | 656 | 770 | 141 | 276 | 45 | | 17 | 56 | 73 | 92 | 435 | 608 | 511 | 11000 | 560 | 570 | 131 | 626 | 44 | | 18 | 54 | 61 | 86 | 403 | 1210 | 798 | 4450 | 470 | 445 | 127 | 554 | 44 | | 19 | 53 | 55 | 80 | 393 | 1100 | 4270 | e4400 | 409 | 384 | 120 | 296 | 43 | | 20 | 53 | 50 | 74 | 421 | 944 | 2820 | e7000 | 364 | 376 | 122 | 198 | 43 | | 21 | 51 | 57 | 72 | 383 | 830 | 2960 | 3290 | 347 | 325 | 135 | 149 | 48 | | 22 | 51 | 236 | 103 | 351 | 710 | 1910 | 2280 | 356 | 338 | 120 | 124 | 49 | | 23 | 51 | 277 | 155 | 554 | 694 | 1280 | 1880 | 391 | 372 | 116 | 109 | 49 | | 24 | 51 | 153 | 134 | 1100 | 713 | 924 | 1510 | 712 | 402 | 137 | 97 | 51 | | 25 | 53 | 98 | 202 | 890 | 646 | 740 | 1210 | 450 | 327 | 144 | 91 | 48 | | 26 | 82 | 75 | 206 | 649 | 581 | 645 | 1020 | 468 | 296 | 135 | 81 | 45 | | 27 | 169 | 64 | 183 | 626 | 542 | 558 | 895 | 439 | 255 | 123 | 74 | 44 | | 28 | 156 | 58 | 196 | 1770 | 490 | 505 | 868 | 361 | 226 | 112 | 70 | 44 | | 29 | 93 | 54 | 171 | 1660 | | 458 | 714 | 323 | 209 | 106 | 66 | 43 | | 30 | 71 | 54 | 156 | 1160 | | 416 | 671 | 296 | 309 | 101 | 64 | 73 | | 31 | 61 | | 143 | 941 | | 381 | | 275 | | 103 | 60 | | | TOTAL | 1938 | 2463 | 4624 | 22252 | 26165 | 26485 | 62357 | 26975 | 15744 | 5013 | 5018 | 1540 | | MEAN | 62.5 | 82.1 | 149 | 718 | 934 | 854 | 2079 | 870 | 525 | 162 | 162 | 51.3 | | MAX | 169 | 277 | 509 | 3000 | 2870 | 4270 | 11000 | 2760 | 1090 | 397 | 626 | 73 | | MIN | 46 | 50 | 72 | 102 | 490 | 294 | 523 | 275 | 209 | 101 | 60 | 43 | | CFSM | .20
.23 | .26
.29 | .47 | 2.25
2.59 | 2.93
3.05 | 2.68
3.09 | 6.52
7.27 | 2.73
3.15 | 1.65 | .51
.58 | .51
.59 | .16 | | IN. | . 43 | . 29 | .54 | 2.59 | 3.05 | 3.09 | 1.21 | 3.15 | 1.84 | .58 | .59 | .18 | e Estimated. ## TENNESSEE RIVER BASIN # 03531500 POWELL RIVER NEAR JONESVILLE, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1932 | - | 1998, | BY | WATER | YEAR | (WY) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------| | | | | | | | | | | | | | | | | | | OCT | NOV | DEC | JAN | FEB | 3 | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|------------|---------|----|------|---------|----------|------|---------|-----------|---------| | MEAN | 154 | 317 | 661 | 947 | 1082 | | 1146 | 818 | 578 | 319 | 233 | 201 | 118 | | MAX | 1086 | 1405 | 2026 | 2765 | 2666 | | 3423 | 2542 | 1436 | 1601 | 825 | 1187 | 603 | | (WY) | 1978 | 1974 | 1973 | 1937 | 1994 | | 1963 | 1977 | 1984 | 1989 | 1941 | 1942 | 1982 | | MIN | 22.9 | 29.7 | 46.5 | 57.8 | 124 | | 281 | 169 | 108 | 46.7 | 47.7 | 49.0 | 24.5 | | (WY) | 1955 | 1954 | 1966 | 1940 | 1941 | | 1988 | 1986 | 1941 | 1936 | 1944 | 1953 | 1955 | | | | | | | | | | | | | | | | | SUMMARY | STATIST: | ICS | FOR 3 | 1997 CALEN | IDAR YE | AR | F | OR 1998 | WATER YE | AR | WATER Y | EARS 1932 | - 1998 | | ANNUAL | TOTAL | | | 192629 | | | | 200574 | | | | | | | ANNUAL | MEAN | | | 528 | | | | 550 | | | 545 | | | | HIGHEST | C ANNUAL 1 | MEAN | | | | | | | | | 943 | | 1974 | | LOWEST | ANNUAL MI | EAN | | | | | | | | | 218 | | 1941 | | HIGHEST | C DAILY M | EAN | | 7150 | Mar | 3 | | 11000 | Apr | 17 | 35000 | Apr | 5 1977 | | LOWEST | DAILY ME | AN | | 46 | Oct | 8 | | 43 | aSep | 19 | 18 | Oct | 3 1933 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 47 | Oct | 5 | | 45 | Sep | 14 | 18 | Sep 3 | 11 1954 | | INSTANI | TANEOUS PI | EAK FLOW | | | | | | 13700 | Apr | 17 | 57000 | Apr | 5 1977 | | INSTANI | TANEOUS PI | EAK STAGE | | | | | | 21. | 55 Apr | 17 | b44.32 | - | 5 1977 | | INSTANI | TANEOUS LO | OW FLOW | | | | | | 43 | cSep | 19 | 17 | _ | 1954 | | ANNUAL | RUNOFF (| CFSM) | | 1.65 | 5 | | | 1. | 72 | | 1.7 | L | | | ANNUAL | RUNOFF (| INCHES) | | 22.46 | 5 | | | 23. | 39 | | 23.23 | 3 | | | 10 PERC | CENT EXCE | EDS | | 1260 | | | | 1230 | | | 1230 | | | | 50 PERC | CENT EXCE | EDS | | 261 | | | | 255 | | | 256 | | | | 90 PERC | CENT EXCE | EDS | | 54 | | | | 53 | | | 54 | | | a Also Sept. 20, 29, 1998. b From floodmark. c Also Sept. 20, 21, 29, 1998. d Also Sept. 20, 1954, and as a result of storage behind temporary dam Oct. 18, 1961. ## 01613900 HOGUE CREEK NEAR HAYFIELD, VA LOCATION.--Lat 39°12'52", long 78°17'18", Frederick County, Hydrologic Unit 02070004, on right bank 15 ft upstream from bridge on State Highway 614, 0.8 mi upstream from Gap Run, and 1.3 mi southeast of Hayfield. DRAINAGE AREA. -- 15.0 mi². PERIOD OF RECORD.--August 1960 to December 1986, October 1992 to current year. REVISED RECORDS.--WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 668.60 ft above sea level. REMARKS.--Records good except for period with ice effect, Jan. 1, which is fair. Maximum discharge, 4,090 $\rm ft^3/s$, from rating curve extended above 870 $\rm ft^3/s$. Several measurements of water temperature were made during the year. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 400 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |-------------------|--------------|-----------------------------------|---------------------|---------|------|-----------------------------------|------------------| | Nov. 7
Jan. 28 | 1400
1445 | *1,040
571 | *4.96
3.81 | Mar. 21 | 0230 | 626 | 3.96 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 1.0 ft³/s, Sept. 5, 6, gage height, 0.33 ft. | | | DISCHA | MGE, IN | JUBIC FEET | | LY MEAN V | | OBER 1997 | IO SEPIEI | IDEK 1990 | | | |-------|------|--------|---------|------------|------|-----------|------|-----------|-----------|-----------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1.8 | 12 | 6.9 | e6.9 | 38 | 40 | 17 | 15 | 5.5 | 8.1 | 2.3 | 1.4 | | 2 | 1.6 | 13 | 5.1 | 9.5 | 29 | 34 | 16 | 29 | 4.3 | 6.2 | 2.3 | 1.4 | | 3 | 1.4 | 7.5 | 4.6 | 23 | 25 | 32 | 13 | 28 | 3.9 | 5.1 | 1.9 | 1.4 | | 4 | 1.3 | 5.5 | 4.5 | 36 | 35 | 25 | 25 | 35 | 3.4 | 4.8 | 1.8 | 1.5 | | 5 | 1.3 | 4.2 | 4.2 | 27 | 301 | 21 | 24 | 59 | 3.2 | 4.5 | 1.8 | 1.3 | | 6 | 1.3 | 3.6 | 4.0 | 20 | 169 | 18 | 18 | 80 | 3.1 | 3.8 | 1.7 | 1.3 | | 7 | 1.3 | 329 | 3.9 | 20 | 101 | 16 | 16 | 40 | 2.8 | 3.4 | 1.7 | 1.4 | | 8 | 1.5 | 141 | 3.6 | 229 | 74 | 82 | 15 | 76 | 2.7 | 4.5 | 1.8 | 1.9 | | 9 | 1.7 | 54 | 3.4 | 190 | 64 | 114 | 43 | 64 | 2.8 | 4.1 | 1.8 | 1.6 | | 10 | 1.8 | 25 | 3.9 | 92 | 52 | 70 | 53 | 47 | 6.4 | 3.4 | 3.3 | 1.6 | | 11 | 1.8 | 15 | 4.2 | 49 | 48 | 44 | 35 | 43 | 5.6 | 2.9 | 5.2 | 1.5 | | 12 | 1.8 | 11 | 3.7 | 33 | 65 | 33 | 26 | 99 | 18 | 2.6 | 2.5 | 1.5 | | 13 | 1.9 | 8.8 | 3.4 | 25 | 46 | 26 | 22 | 82 | 49 | 2.6 | 2.1 | 1.4 | | 14 | 1.7 | 20 | 3.3 | 19 | 36 | 23 | 19 | 49 | 26 | 2.6 | 3.0 | 1.4 | | 15 | 1.8 | 21 | 3.1 | 25 | 28 | 19 | 17 | 32 | 55 | 2.4 | 4.2 | 1.4 | | 16 | 1.6 | 15 | 3.1 | 58 | 23 | 16 | 15 | 25 | 91 | 2.6 | 2.9 | 1.4 | | 17 | 1.6 | 10 | 3.1 | 51 | 101 | 15 | 16 | 30 | 28 | 4.0 | 7.1 | 1.5 | | 18 | 1.7 | 8.3 | 2.9 | 44 | 131 | 57 | 15 | 17 | 15 | 2.9 | 4.4 | 1.6 | | 19 | 1.5 | 7.2 | 2.9 | 33 | 78 | 188 | 79 | 13 | 11 | 2.4 | 2.8 | 1.5 | | 20 | 1.4 | 6.1 | 2.8 | 26 | 59 | 129 | 114 | 10 | 9.5 | 2.3 | 2.4 | 1.6 | | 21 | 1.4 | 6.7 | 2.8 | 21 | 44 | 351 | 51 | 8.5 | 7.1 | 2.2 | 2.3 | 1.5 | | 22 | 1.5 | 17 | 3.2 | 17 | 34 | 122 | 34 | 7.3 | 6.0 | 2.0 | 2.4 | 1.9 | | 23 | 1.6 | 15 | 4.2 | 105 | 56 | 71 | 27 | 6.6 | 75 | 2.1 | 2.3 | 1.9 | | 24 | 1.8 | 11 | 4.7 | 106 | 224 | 49 | 21 | 6.6 | 53 | 2.4 | 2.2 | 1.8 | | 25 | 2.2 | 8.8 | 17 | 65 | 109 | 36 | 17 | 11 | 16 | 2.0 | 2.1 | 1.8 | | 26 | 2.5 | 8.0 | 14 | 43 | 64 | 29 | 15 | 7.1 | 10 | 1.8 | 2.0 | 1.8 | | 27 | 3.0 | 6.7 | 12 | 33 | 48 | 24 | 17 | 6.1 | 7.7 | 1.7 | 1.8 | 1.5 | | 28 | 2.4 | 6.0 | 11 | 272 | 43 | 21 | 13 | 5.6 | 19 | 1.7 | 1.7 | 1.6 | | 29 | 2.3 | 5.8 | 9.4 | 160 | | 18 | 11 | 4.8 | 17 | 1.7 | 1.6 | 1.7 | | 30 | 2.2 | 6.3 | 11 | 89 | | 16 | 11 | 4.6 | 10 | 1.7 | 1.6 | 1.7 | | 31 | 2.2 | | 8.6 | 54 | | 14 | | 6.7 | | 3.4 | 1.4 | | | TOTAL | 54.9 | 808.5 | 174.5 | 1981.4 | 2125 | 1753 | 815 | 947.9 | 567.0 | 97.9 | 78.4 | 46.8 | | MEAN | 1.77 | 27.0 | 5.63 | 63.9 | 75.9 | 56.5 | 27.2 | 30.6 | 18.9 | 3.16 | 2.53 | 1.56 | | MAX | 3.0 | 329 | 17 | 272 | 301 | 351 |
114 | 99 | 91 | 8.1 | 7.1 | 1.9 | | MIN | 1.3 | 3.6 | 2.8 | 6.9 | 23 | 14 | 11 | 4.6 | 2.7 | 1.7 | 1.4 | 1.3 | | CFSM | .12 | 1.80 | .38 | 4.26 | 5.06 | 3.77 | 1.81 | 2.04 | 1.26 | .21 | .17 | .10 | | IN. | .14 | 2.01 | .43 | 4.91 | 5.27 | 4.35 | 2.02 | 2.35 | 1.41 | .24 | .19 | .12 | e Estimated. 1.08 14.65 5.5 35 ## POTOMAC RIVER BASIN ## 01613900 HOGUE CREEK NEAR HAYFIELD, VA--Continued .71 9.70 21 5.3 | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------|-----------|-----------|-------|------------|-----------|------|------------|-----------|------|-----------|-------|--------| | MEAN | 7.19 | 13.1 | 16.4 | 20.2 | 27.2 | 39.0 | 26.3 | 17.0 | 12.1 | 5.05 | 5.16 | 5.54 | | MAX | 53.6 | 52.5 | 51.2 | 81.0 | 75.9 | 114 | 89.7 | 47.4 | 94.2 | 30.6 | 54.2 | 65.8 | | (WY) | 1980 | 1986 | 1973 | 1996 | 1998 | 1993 | 1983 | 1978 | 1972 | 1978 | 1978 | 1996 | | MIN | .52 | 1.08 | 1.06 | 1.72 | 4.38 | 5.81 | 6.31 | 2.17 | .98 | .81 | .60 | .78 | | (WY) | 1964 | 1966 | 1966 | 1966 | 1977 | 1981 | 1963 | 1969 | 1969 | 1964 | 1977 | 1963 | | | | | | | | | | | | | | | | SUMMARY | STATIST | ICS | FOR 1 | .997 CALEN | IDAR YEAR | FC | OR 1998 WA | ATER YEAR | | WATER YEA | | | | | | | | | | | | | | | 1993 | - 1998 | | ANNUAL T | COTAL | | | 3909.95 | ; | | 9450.3 | | | | | | | ANNUAL M | 1EAN | | | 10.7 | | | 25.9 | | | 16.2 | | | | HIGHEST | ANNUAL N | MEAN | | | | | | | | 32.2 | | 1996 | | LOWEST A | ANNUAL ME | EAN | | | | | | | | 3.84 | | 1969 | | HIGHEST | DAILY ME | EAN | | 329 | Nov 7 | | 351 | Mar 21 | | 1060 | Sep | 6 1996 | | LOWEST I | DAILY MEA | AN | | .93 | aSep 26 | | 1.3 | bOct 4 | | .06 | Sep 1 | 4 1968 | | ANNUAL S | SEVEN-DAY | Y MINIMUM | | 1.0 | Sep 21 | | 1.4 | Oct 2 | | .31 | Aug | 6 1963 | | INSTANTA | ANEOUS PE | EAK FLOW | | | | | 1040 | Nov 7 | | 4090 | Sep | 6 1996 | | INSTANTA | ANEOUS PE | EAK STAGE | | | | | 4.96 | Nov 7 | | 9.71 | Sep | 6 1996 | | INSTANTA | ANEOUS LO | OW FLOW | | | | | 1.0 | cSep 5 | | d.00 | Sep 1 | 4 1968 | | | | | | | | | | | | | | | 1.73 23.44 8.1 1.6 65 ANNUAL RUNOFF (CFSM) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS ANNUAL RUNOFF (INCHES) a Also Sept. 27, 1997. b Also Oct. 5-7, 1997, and Sept. 5, 6, 1998. c Also Sept. 6, 1998. d No flow part of Sept. 14, 1968, cause unknown. ## 01622000 NORTH RIVER NEAR BURKETOWN, VA LOCATION.--Lat 38°20'25", long 78°54'50", Rockingham County, Hydrologic Unit 02070005, on right bank 0.8 mi downstream from Pleasant Run, 2.8 mi northeast of Burketown, and 8.5 mi upstream from Middle River. DRAINAGE AREA. -- 379 mi². PERIOD OF RECORD.--October 1925 to October 1972, May 1975 to current year. Monthly discharge only for some periods, published in WSP 1302. REVISED RECORDS.--WSP 1171: 1936(M). WSP 1302: 1928-29(M), 1932-34(M), 1937-38(M). WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,103.49 ft above sea level. Prior to Dec. 12, 1938, nonrecording gage at site 3.0 mi downstream at different datum. REMARKS.--Records good except those for period with ice effect, Dec. 31 to Jan. 2, and period of doubtful gage-height record, Jun. 16-25, which are fair. At a point 26.8 mi upstream from station, there is an aqueduct tunnel diversion of about 2.8 ft³/s from Staunton Dam Reservoir by city of Staunton for industrial and municipal use. Diurnal fluctuation at low and medium flow caused by wastewater treatment plant and diversions for industrial, municipal, and irrigation at points upstream. Maximum discharge, 70,400 ft³/s, from rating curve extended above 16,000 ft³/s on basis of slope-area measurements at gage heights 32.4 ft and 36.3 ft and contracted-opening measurements at gage heights 35.85 ft and 36.3 ft. Minimum discharge, 16 ft³/s, result of temporary dam upstream. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1852, that of June 18, 1949. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,500 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1200 | *11,200 | *14.91 | Mar. 9 | 2130 | 3,690 | 7.70 | | Jan. 28 | 1830 | 4,180 | 8.27 | Mar. 19 | 0500 | 4,380 | 8.49 | | Feb. 5 | 1930 | 2,880 | 6.72 | Mar. 21 | 0900 | 7,020 | 11.19 | | Feb. 17 | 2200 | 6,780 | 10.96 | May 9 | 0430 | 2,620 | 6.39 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES SEP Minimum discharge, 66 ft^3/s , Sept. 6. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | |-----|-----|------|-----|------|------|------|------|------|-----|-----|-----| | 1 | 93 | 136 | 185 | e185 | 1280 | 1520 | 701 | 484 | 218 | 181 | 86 | | 2 | 91 | 136 | 169 | e190 | 1090 | 1510 | 687 | 703 | 206 | 174 | 89 | | 3 | 90 | 118 | 165 | 194 | 1010 | 1340 | 642 | 678 | 198 | 204 | 91 | | 4 | 88 | 108 | 166 | 225 | 1410 | 1130 | 814 | 716 | 190 | 176 | 79 | | 5 | 88 | 106 | 159 | 337 | 2600 | 970 | 1010 | 843 | 187 | 167 | 79 | | 6 | 91 | 110 | 153 | 485 | 2330 | 832 | 1020 | 1000 | 188 | 162 | 77 | | 7 | 87 | 724 | 150 | 540 | 1870 | 739 | 921 | 918 | 180 | 154 | 78 | | 8 | 85 | 1200 | 147 | 6020 | 1590 | 1160 | 827 | 1770 | 175 | 167 | 73 | | 9 | 83 | 1140 | 141 | 4360 | 1450 | 2980 | 1060 | 2490 | 173 | 153 | 86 | | 10 | 82 | 883 | 150 | 2790 | 1330 | 3270 | 1600 | 1900 | 184 | 163 | 103 | | 10 | 82 | 883 | 150 | 2790 | 1330 | 3270 | 1600 | 1900 | 184 | 163 | 103 | 83 | |--|---|--|---|--|---|--|---|---|---|--|--|----------------------------------| | 11
12
13
14
15 | 80
81
83
80
83 | 668
513
411
387
345 | 151
142
140
141
139 | 1900
1410
1140
872
780 | 1400
1910
1830
1610
1350 | 2360
1780
1410
1150
929 | 1480
1270
1070
907
787 | 1470
1220
989
830
722 | 177
186
176
172
222 | 146
142
140
133
131 | 106
93
85
91
162 | 82
82
80
84
80 | | 16
17
18
19
20 | 78
79
81
81
83 | 330
312
291
273
254 | 137
136
134
133
132 | 926
942
892
801
717 | 1150
3000
4710
3270
2610 | 779
688
802
3430
3030 | 699
652
582
705
1240 | 646
678
642
557
496 | e260
e370
e265
e260
e350 | 125
131
124
121
120 | 114
270
183
123
116 | 79
86
85
80
81 | | 21
22
23
24
25 | 78
76
74
80
127 | 248
258
235
221
205 | 131
134
132
135
176 | 628
572
1080
1350
1400 | 2200
1850
1750
1690
1410 | 6120
4150
2690
2010
1570 | 1230
1080
933
806
696 | 447
386
343
328
314 | e270
e240
e230
e285
e220 | 112
105
100
97
89 | 110
105
101
101
96 | 79
84
80
77
78 | | 26
27
28
29
30
31 | 109
125
100
100
92
90 | 200
199
189
183
185 | 162
179
202
202
212
e200 | 1190
1030
2430
2280
1860
1550 | 1290
1250
1310
 | 1250
1040
930
876
814
740 | 623
596
532
484
454 | 286
285
270
252
236
229 | 201
189
193
247
196 | 95
102
90
88
87
87 | 92
88
90
84
85
84 | 76
76
81
75
75 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 2738
88.3
127
74
.23
.27 | 10568
352
1200
106
.93
1.04 | 4835
156
212
131
.41
.47 | 41076
1325
6020
185
3.50
4.03 | 51550
1841
4710
1010
4.86
5.06 | 53999
1742
6120
688
4.60
5.30 | 26108
870
1600
454
2.30
2.56 | 23128
746
2490
229
1.97
2.27 | 6608
220
370
172
.58
.65 | 4066
131
204
87
.35
.40 | 3220
104
270
73
.27
.32 | 2439
81.3
146
71
.21 | | _ | | | | | | | | | | | | | e Estimated. # 01622000 NORTH RIVER NEAR BURKETOWN, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1926 | _ | 1973. | 1976 | - 1998 | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|------|--------|----|-------|------|-----|---| 90 | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MA | / JUN | JUL | AUG | SEP | |----------|-----------|-----------|-------|------------|-----------|------|---------|---------|-------|--------|------------|---------| | MEAN | 249 | 285 | 335 | 448 | 532 | 721 | 615 | 495 | 335 | 200 | 241 | 225 | | MAX | 1500 | 2080 | 1087 | 1777 | 1841 | 1932 | 1831 | 1486 | | 809 | 1102 | 3130 | | (WY) | 1943 | 1986 | 1935 | 1996 | 1998 | 1936 | 1987 | 1942 | | | 1949 | 1996 | | MIN | 38.1 | 36.5 | 39.2 | 53.5 | 47.9 | 136 | 107 | 106 | 72.7 | 48.6 | 41.0 | 34.2 | | (WY) | 1931 | 1931 | 1966 | 1966 | 1931 | 1981 | 1981 | 1930 | | | 1964 | 1930 | | | | | | | | | | | | | | | | SUMMARY | STATIST | ICS | FOR 1 | L997 CALEN | IDAR YEAR | F | OR 1998
 WATER Y | EAR | WATER | YEARS 1926 | - 1973 | | | | | | | | | | | | | | - 1998 | | ANNUAL ' | TOTAL | | | 124660 | | | 230335 | | | | | | | ANNUAL I | MEAN | | | 342 | | | 631 | | | 389 | | | | HIGHEST | ANNUAL N | MEAN | | | | | | | | 871 | | 1996 | | LOWEST A | ANNUAL M | EAN | | | | | | | | 168 | | 1956 | | HIGHEST | DAILY M | EAN | | 3870 | Jun 3 | | 6120 | Mar | 21 | e32000 | Sep | 7 1996 | | LOWEST 1 | DAILY MEA | AN | | 74 | Oct 23 | | 71 | aSep | 5 | 22 | Sep | 24 1930 | | ANNUAL S | SEVEN-DAY | Y MINIMUM | | 79 | Oct 17 | | 75 | Sep | 1 | 30 | Dec | 20 1930 | | INSTANT | ANEOUS PI | EAK FLOW | | | | | 11200 | Jan | 8 | 70400 | Sep | 6 1996 | | INSTANT | ANEOUS PI | EAK STAGE | | | | | 14. | 91 Jan | 8 | b36. | 70 Sep | 6 1996 | | INSTANT | ANEOUS LO | OW FLOW | | | | | 66 | Sep | 6 | c16 | Nov | 23 1965 | | ANNUAL I | RUNOFF (| CFSM) | | .90 |) | | 1. | 67 | | 1. | 03 | | | ANNUAL 1 | RUNOFF (| INCHES) | | 12.24 | 1 | | 22. | 61 | | 13. | 93 | | | 10 PERCI | ENT EXCE | EDS | | 660 | | | 1580 | | | 830 | | | | 50 PERCI | ENT EXCE | EDS | | 204 | | | 205 | | | 207 | | | | | | | | | | | | | | | | | 81 64 90 PERCENT EXCEEDS a Also Sept. 6, 1997. b From high-water mark in gage house. c Result of temporary dam upstream. e Estimated. # 01625000 MIDDLE RIVER NEAR GROTTOES, VA LOCATION.--Lat 38°15'42", long 78°51'44", Augusta County, Hydrologic Unit 02070005, on left bank at upstream side of bridge on State Highway 769 at Mount Meridian, 1.8 mi upstream from mouth, and 2.0 mi west of Grottoes. DRAINAGE AREA. -- 375 mi². PERIOD OF RECORD.--April 1927 to current year. Records for February 1925 to September 1926, published in WSP 601 and 621, are unreliable and should not be used. REVISED RECORDS.--WSP 1051: 1928-29, 1930(M), 1932, 1935-37, 1938(M), 1940. WSP 1171: 1933. WSP 1302: 1928-29(M), 1931-34(M). WSP 2103: Drainage area. See also PERIOD OF RECORD. GAGE.--Water-stage recorder. Datum of gage is 1,061.51 ft above sea level. Prior to Sept. 1, 1938, nonrecording gage at same site and datum. REMARKS.--Records good except for period with ice effect, Jan. 1, 2, which is fair. There are discharges of about $11.0~{\rm ft}^3/{\rm s}$ from wastewater treatment plants upstream from station. Most of water discharged from treatment plants was diverted from another drainage basin for industrial and municipal supply. Small diurnal fluctuation at low flow caused by mills upstream from station. Maximum discharge, $44,300~{\rm ft}^3/{\rm s}$, from rating curve extended above $15,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement at gage height $33.09~{\rm ft}$. Minimum discharge, $18~{\rm ft}^3/{\rm s}$, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1877, that of Sept. 7, 1996. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,000 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 2330 | *9,590 | *16.79 | Feb. 18 | 0400 | 9,240 | 16.49 | | Jan. 28 | 2130 | 3,950 | 10.64 | Mar. 19 | 1500 | 3,150 | 9.56 | | Feb. 5 | 0400 | 8,340 | 15.68 | Mar. 21 | 1400 | 5,640 | 12.77 | | Feb. 13 | 0130 | 3,630 | 10.22 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 85 ft³/s, Oct. 8, 9, 12. | | | | | | DAIL | Y MEAN VA | LUES | | | | | | |-------|------|------|------|-------|-------|-----------|-------|-------|-------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 111 | 133 | 162 | e185 | 1390 | 1100 | 677 | 448 | 321 | 304 | 152 | 117 | | 2 | 97 | 272 | 164 | e198 | 1140 | 1040 | 647 | 648 | 305 | 277 | 146 | 116 | | 2 | 94 | 223 | 151 | 226 | 1080 | 999 | 587 | 630 | 295 | 327 | 143 | 114 | | 4 | 94 | 174 | 151 | 297 | 2510 | 847 | 780 | 704 | 282 | 283 | 139 | 114 | | 5 | 91 | 148 | 151 | 375 | 6090 | 775 | 944 | 705 | 281 | 271 | 135 | 112 | | 6 | 91 | 137 | 144 | 399 | 3290 | 713 | 797 | 720 | 279 | 256 | 132 | 111 | | 7 | 88 | 738 | 138 | 410 | 2390 | 664 | 699 | 609 | 271 | 237 | 129 | 112 | | 8 | 87 | 1140 | 135 | 4760 | 1970 | 1130 | 643 | 1190 | 262 | 244 | 132 | 138 | | 9 | 86 | 796 | 133 | 5020 | 1780 | 2330 | 758 | 1920 | 258 | 249 | 155 | 133 | | 10 | 88 | 497 | 141 | 1740 | 1560 | 1990 | 1060 | 1300 | 272 | 228 | 163 | 119 | | 11 | 88 | 362 | 171 | 1120 | 1660 | 1310 | 964 | 956 | 264 | 212 | 156 | 115 | | 12 | 85 | 292 | 159 | 839 | 3070 | 1040 | 799 | 896 | 261 | 204 | 149 | 113 | | 13 | 87 | 250 | 151 | 715 | 2910 | 892 | 699 | 877 | 262 | 200 | 142 | 112 | | 14 | 89 | 264 | 147 | 600 | 2060 | 815 | 635 | 705 | 263 | 196 | 138 | 111 | | 15 | 93 | 283 | 146 | 643 | 1600 | 734 | 595 | 624 | 460 | 191 | 149 | 109 | | 16 | 100 | 248 | 143 | 1220 | 1360 | 672 | 551 | 567 | 459 | 200 | 146 | 108 | | 17 | 97 | 218 | 141 | 962 | 3860 | 629 | 569 | 1220 | 818 | 304 | 182 | 114 | | 18 | 97 | 204 | 139 | 804 | 6640 | 698 | 558 | 879 | 458 | 213 | 233 | 122 | | 19 | 98 | 193 | 136 | 677 | 2990 | 2300 | 741 | 646 | 516 | 194 | 169 | 119 | | 20 | 96 | 184 | 134 | 622 | 2390 | 1980 | 2000 | 550 | 649 | 187 | 146 | 115 | | 21 | 95 | 179 | 131 | 537 | 2010 | 4660 | 1170 | 498 | 451 | 179 | 139 | 116 | | 22 | 91 | 201 | 133 | 487 | 1600 | 2830 | 883 | 452 | 376 | 174 | 136 | 118 | | 23 | 91 | 192 | 145 | 1190 | 1540 | 1810 | 750 | 430 | 353 | 171 | 133 | 114 | | 24 | 94 | 178 | 141 | 1500 | 1940 | 1430 | 683 | 440 | 429 | 182 | 130 | 108 | | 25 | 136 | 166 | 194 | 1410 | 1600 | 1200 | 594 | 433 | 334 | 173 | 127 | 107 | | 26 | 141 | 162 | 209 | 1040 | 1330 | 1060 | 540 | 389 | 301 | 164 | 124 | 109 | | 27 | 181 | 159 | 223 | 855 | 1200 | 963 | 526 | 392 | 282 | 162 | 123 | 108 | | 28 | 137 | 154 | 247 | 2310 | 1100 | 873 | 503 | 470 | 289 | 161 | 119 | 106 | | 29 | 116 | 151 | 232 | 2840 | | 803 | 457 | 389 | 375 | 159 | 120 | 105 | | 30 | 103 | 151 | 238 | 2270 | | 747 | 433 | 352 | 380 | 155 | 119 | 103 | | 31 | 99 | | 229 | 1850 | | 694 | | 332 | | 152 | 118 | | | TOTAL | 3141 | 8449 | 5059 | 38101 | 64060 | 39728 | 22242 | 21371 | 10806 | 6609 | 4424 | 3418 | | MEAN | 101 | 282 | 163 | 1229 | 2288 | 1282 | 741 | 689 | 360 | 213 | 143 | 114 | | MAX | 181 | 1140 | 247 | 5020 | 6640 | 4660 | 2000 | 1920 | 818 | 327 | 233 | 138 | | MIN | 85 | 133 | 131 | 185 | 1080 | 629 | 433 | 332 | 258 | 152 | 118 | 103 | | CFSM | . 27 | .75 | . 44 | 3.28 | 6.10 | 3.42 | 1.98 | 1.84 | .96 | .57 | .38 | .30 | | IN. | .31 | .84 | .50 | 3.78 | 6.35 | 3.94 | 2.21 | 2.12 | 1.07 | .66 | .44 | .34 | e Estimated. ## POTOMAC RIVER BASIN # 01625000 MIDDLE RIVER NEAR GROTTOES, VA--Continued | STATIST | CICS OF MO | ONTHLY MEAN | I DATA FO | R WATER | YEARS 1928 | - 1998, | BY WATER | YEAR (WY) | | | | | |---------|------------|-------------|-----------|-----------|------------|---------|-----------|-----------|------|-----------|---------|--------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 236 | 237 | 306 | 412 | 477 | 592 | 467 | 346 | 258 | 180 | 197 | 201 | | MAX | 1138 | 2019 | 1111 | 1436 | 2288 | 1704 | 1674 | 963 | 993 | 705 | 1017 | 1887 | | (WY) | 1980 | 1986 | 1949 | 1996 | 1998 | 1936 | 1987 | 1989 | 1972 | 1972 | 1940 | 1996 | | MIN | 64.8 | 58.9 | 55.8 | 66.9 | 91.3 | 106 | 95.8 | 89.7 | 77.7 | 47.2 | 55.6 | 64.4 | | (WY) | 1964 | 1931 | 1966 | 1981 | 1931 | 1981 | 1981 | 1969 | 1969 | 1966 | 1977 | 1932 | | SUMMARY | STATIST | ics | FOR 1 | .997 CALE | NDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER YEA | RS 1928 | - 1998 | | ANNUAL | TOTAL | | | 112157 | | | 227408 | | | | | | | ANNUAL | MEAN | | | 307 | | | 623 | | | 325 | | | | HIGHEST | ANNUAL N | 1EAN | | | | | | | | 623 | | 1998 | | LOWEST | ANNUAL M | EAN | | | | | | | | 105 | | 1981 | | HIGHEST | DAILY ME | EAN | | 2350 | Mar 4 | | 6640 | Feb 18 | | 26000 | Nov | 5 1985 | | LOWEST | DAILY MEA | AN | | 85 | Oct 12 | | 85 | Oct 12 | | 28 | Nov 2 | 8 1930 | | ANNUAL | SEVEN-DAY | MINIMUM | | 87 | Oct 7 | | 87 | Oct 7 | | 38 | Sep | 6 1966 | | INSTANT | CANEOUS PI | EAK FLOW | | | | | 9590 | Jan 8 | | 44300 | Sep | 7 1996 | | INSTANT | CANEOUS PI | EAK STAGE | | | | | 16.79 | 9 Jan 8 | | a35.62 | Sep | 7 1996 | | INSTANT | CANEOUS LO | OW FLOW | | | | | 85 | bOct 8 | | c18 | Dec 1 | 6 1988 | | ANNUAL | RUNOFF (| CFSM) | | .8 | 2 | | 1.6 | 6 | | .87 | | | | ANNUAL | RUNOFF (| INCHES) | | 11.1 | .3 | | 22.5 | 6 | | 11.77 | | | | 10 PERC | CENT EXCE | EDS | | 647 | | | 1550 | | | 642 | | | | 50 PERC | CENT EXCE | EDS | | 205 | | | 272 | | | 190 | | | | 90 PERC | CENT EXCE | EDS | | 101 | | | 111 | | | 84 | | | a From high-water mark in gage house. b Also Oct. 9, 12, 1997. c Result of freezeup. ## 01626000 SOUTH RIVER NEAR WAYNESBORO, VA LOCATION.--Lat 38°03'27", long 78°54'30", Waynesboro City, Hydrologic Unit 02070005, on right bank 80 ft downstream from bridge on State Highway 664, 1.3 mi southwest of Waynesboro Post Office, and 2.4 mi downstream from Back Creek. DRAINAGE AREA.--127 mi², of which 41 mi² are above flood-detention structures. PERIOD OF RECORD. -- October 1952 to current year. REVISED RECORDS. -- WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,296.20 ft above sea level. REMARKS.--No estimated daily discharges. Records good. There is discharge of about 1.9 ft³/s from a wastewater treatment plant upstream from station, originating from well fields. Flow from 41 mi² upstream from station slightly regulated by flood-detention reservoirs (sixteen of which were built by Soil Conservation Service between
1954 and 1961). National Weather Service gage-height telemeter and Virginia Department of Emergency Services gage-height radio transmitter at station. Maximum discharge, 17,500 ft³/s, from rating curve extended above 4,200 ft³/s on basis of contracted-opening measurement at gage height 13.95 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in October 1942 reached a stage of 14.3 ft, from floodmarks, discharge, $14,500~{\rm ft}^3/{\rm s}$. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1130 | 3,880 | 8.61 | Mar. 9 | 1400 | 1,760 | 6.27 | | Feb. 4 | 2100 | 2,140 | 6.76 | Mar. 21 | 1130 | 1,220 | 5.48 | | Feb. 13 | 0430 | 1,580 | 6.03 | Apr. 20 | 0900 | 1,380 | 5.73 | | Feb. 17 | 1800 | *5,810 | *10.05 | May 8 | 0700 | 1,050 | 5.21 | Minimum discharge, 30 ft³/s, Oct. 4-6, 8-13, 20-23. | | | DISCHARGE | , IN CU | JBIC FEET F | | O, WATER
7 MEAN VA | | BER 1997 ' | TO SEPTEME | BER 1998 | | | |-------|------|-----------|---------|-------------|-------|-----------------------|-------|------------|------------|----------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 34 | 89 | 87 | 80 | 464 | 888 | 287 | 266 | 172 | 121 | 50 | 41 | | 2 | 32 | 99 | 84 | 81 | 408 | 864 | 280 | 311 | 159 | 113 | 49 | 40 | | 3 | 32 | 70 | 77 | 86 | 392 | 804 | 255 | 297 | 148 | 116 | 48 | 40 | | 4 | 32 | 58 | 79 | 112 | 1030 | 678 | 346 | 331 | 136 | 103 | 48 | 41 | | 5 | 31 | 50 | 78 | 154 | 1970 | 590 | 430 | 343 | 135 | 113 | 46 | 39 | | 6 | 31 | 51 | 74 | 177 | 1560 | 519 | 373 | 345 | 134 | 98 | 46 | 39 | | 7 | 32 | 468 | 71 | 217 | 1020 | 468 | 331 | 353 | 128 | 91 | 45 | 39 | | 8 | 31 | 749 | 69 | 2460 | 758 | 603 | 305 | 951 | 120 | 96 | 47 | 43 | | 9 | 31 | 446 | 68 | 1760 | 623 | 1510 | 357 | 782 | 116 | 98 | 52 | 41 | | 10 | 31 | 280 | 70 | 1040 | 551 | 1320 | 443 | 602 | 122 | 89 | 53 | 39 | | 11 | 31 | 192 | 77 | 722 | 584 | 891 | 414 | 502 | 117 | 81 | 52 | 39 | | 12 | 32 | 153 | 71 | 569 | 1340 | 704 | 364 | 463 | 115 | 76 | 48 | 38 | | 13 | 31 | 131 | 68 | 506 | 1420 | 556 | 332 | 463 | 109 | 73 | 47 | 38 | | 14 | 32 | 147 | 67 | 389 | 999 | 487 | 308 | 413 | 103 | 71 | 47 | 38 | | 15 | 34 | 153 | 65 | 322 | 758 | 431 | 288 | 365 | 203 | 68 | 47 | 38 | | 16 | 35 | 135 | 64 | 390 | 661 | 386 | 269 | 341 | 259 | 83 | 51 | 38 | | 17 | 35 | 122 | 64 | 379 | 3410 | 352 | 311 | 865 | 358 | 80 | 86 | 40 | | 18 | 36 | 113 | 63 | 341 | 3930 | 349 | 330 | 638 | 241 | 66 | 69 | 39 | | 19 | 39 | 105 | 62 | 312 | 2570 | 437 | 573 | 474 | 269 | 64 | 56 | 39 | | 20 | 31 | 99 | 61 | 293 | 2260 | 484 | 1250 | 394 | 300 | 62 | 51 | 38 | | 21 | 31 | 96 | 60 | 265 | 1950 | 1110 | 753 | 341 | 219 | 59 | 48 | 39 | | 22 | 32 | 115 | 61 | 245 | 1500 | 886 | 566 | 297 | 187 | 56 | 47 | 38 | | 23 | 32 | 109 | 65 | 452 | 1390 | 664 | 482 | 274 | 176 | 56 | 46 | 37 | | 24 | 33 | 102 | 64 | 613 | 1370 | 550 | 428 | 270 | 161 | 64 | 45 | 36 | | 25 | 37 | 97 | 87 | 562 | 1160 | 475 | 376 | 257 | 142 | 59 | 44 | 36 | | 26 | 41 | 94 | 98 | 465 | 972 | 423 | 335 | 223 | 130 | 57 | 44 | 36 | | 27 | 49 | 89 | 100 | 411 | 856 | 389 | 317 | 243 | 124 | 56 | 43 | 36 | | 28 | 46 | 84 | 101 | 608 | 837 | 361 | 303 | 295 | 123 | 56 | 43 | 36 | | 29 | 39 | 81 | 97 | 631 | | 340 | 270 | 232 | 168 | 54 | 42 | 36 | | 30 | 37 | 79 | 101 | 587 | | 319 | 252 | 203 | 146 | 52 | 41 | 35 | | 31 | 36 | | 90 | 533 | | 296 | | 186 | | 51 | 41 | | | TOTAL | 1066 | 4656 | 2343 | 15762 | 36743 | 19134 | 11928 | 12320 | 5020 | 2382 | 1522 | 1152 | | MEAN | 34.4 | 155 | 75.6 | 508 | 1312 | 617 | 398 | 397 | 167 | 76.8 | 49.1 | 38.4 | | MAX | 49 | 749 | 101 | 2460 | 3930 | 1510 | 1250 | 951 | 358 | 121 | 86 | 43 | | MIN | 31 | 50 | 60 | 80 | 392 | 296 | 252 | 186 | 103 | 51 | 41 | 35 | | CFSM | .27 | 1.22 | .60 | 4.00 | 10.3 | 4.86 | 3.13 | 3.13 | 1.32 | .61 | .39 | .30 | | IN. | .31 | 1.36 | .69 | 4.62 | 10.76 | 5.60 | 3.49 | 3.61 | 1.47 | .70 | .45 | .34 | # 01626000 SOUTH RIVER NEAR WAYNESBORO, VA--Continued | STATISTICS OF | Y.THTROM ' | MEAN | DATA | FOR | WATER | YEARS | 1953 - | 1998. | BY | WATER | YEAR | (WY) | |---------------|------------|------|------|-----|-------|-------|--------|-------|----|-------|------|------| | | | | | | | | | | | | | | | | OCT | NOV | DEC | JAN | FEB | 3 | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------|------------|-----------|-------|------------|---------|----|------|---------|------------|------|----------|----------|---------| | MEAN | 114 | 134 | 137 | 185 | 214 | Ŀ | 287 | 245 | 170 | 121 | 67.1 | 82.0 | 79.4 | | MAX | 549 | 1214 | 355 | 767 | 1312 | 2 | 748 | 1062 | 485 | 875 | 305 | 700 | 546 | | (WY) | 1973 | 1986 | 1997 | 1996 | 1998 | } | 1993 | 1987 | 1989 | 1972 | 1972 | 1955 | 1996 | | MIN | 25.5 | 25.1 | 24.2 | 23.6 | 64.5 | , | 49.0 | 44.0 | 50.4 | 37.5 | 26.1 | 26.3 | 27.0 | | (WY) | 1966 | 1966 | 1966 | 1966 | 1959 |) | 1981 | 1981 | 1981 | 1964 | 1966 | 1966 | 1970 | | | | | | | | | | | | | | | | | SUMMARY | Y STATIST | ICS | FOR 3 | 1997 CALEI | NDAR YE | AR | F | DR 1998 | WATER YEAR | | WATER YE | ARS 1953 | - 1998 | | ANNUAL | TOTAL | | | 42714 | | | | 114028 | | | | | | | ANNUAL | MEAN | | | 117 | | | | 312 | | | 152 | | | | HIGHEST | r annual i | MEAN | | | | | | | | | 312 | | 1998 | | LOWEST | ANNUAL M | EAN | | | | | | | | | 47.5 | | 1981 | | HIGHEST | r Daily M | EAN | | 749 | Nov | 8 | | 3930 | Feb 18 | | 9670 | Aug 3 | L8 1955 | | LOWEST | DAILY ME | AN | | 31 | Oct | 5 | | 31 | aOct 5 | | 17 | Aug | 8 1966 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 31 | Oct | 5 | | 31 | Oct 5 | | 21 | bFeb | 1 1966 | | INSTANT | TANEOUS P | EAK FLOW | | | | | | 5810 | Feb 17 | | 17500 | Nov | 4 1985 | | INSTANT | CANEOUS P | EAK STAGE | | | | | | 10. | 05 Feb 17 | | 15.30 | Nov | 4 1985 | | INSTANT | CANEOUS LO | OW FLOW | | | | | | 30 | cOct 4 | | d7.0 | Jul 3 | L8 1966 | | ANNUAL | RUNOFF (| CFSM) | | .92 | 2 | | | 2. | 46 | | 1.20 | | | | ANNITAT. | RINOFF (| INCHES) | | 12 5 | ı | | | 33 | 40 | | 16 31 | | | 121 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Oct. 6, 8-11, 13, 20-21, 1997. b Also Feb. 2, 1966. c Also Oct. 5-6, 8-13, 20-23, 1997. d Result of regulation from unknown source upstream from gage. ### 01627500 SOUTH RIVER AT HARRISTON, VA LOCATION.--Lat 38°13'07", long 78°50'13", Augusta County, Hydrologic Unit 02070005, on left bank 200 ft downstream from bridge on State Highway 778, 0.3 mi northwest of Harriston, 0.6 mi downstream from Paine Run, and 7.2 mi upstream from confluence with North River. DRAINAGE AREA. -- 212 mi². PERIOD OF RECORD.--February 1925 to September 1951, October 1968 to current year. REVISED RECORDS.--WSP 1171: 1926(M), 1927-28, 1929-32(M), 1933, 1934(M), 1935, 1937. WSP 1302: 1937(M), 1938(M). WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,129.87 ft above sea level. Prior to Sept. 1, 1938, nonrecording gage at same site and datum. REMARKS. -- Records good except those for period with ice effect, Jan. 1, and periods of doubtful or no gage-height record, Feb. 18, Mar. 18, Mar. 31 to Apr. 18, Apr. 21 to May 7, and May 9-21, which are fair. There are discharges of about $8.4~{\rm ft}^3/{\rm s}$ from industrial and municipal wastewater treatment plants upstream from station, originating from well fields. Maximum discharge, $28,900 \text{ ft}^3/\text{s}$, from rating curve extended above $10,000 \text{ ft}^3/\text{s}$ on basis of slope-area measurement at gage height 15.47 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD. -- Floods in 1870 and 1877 reached a stage of about 18.8 ft, from information by observer in 1925. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,200 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 8 | 0900 | 1,680 | 5.87 | Mar. 9 | 1930 | 2,360 | 6.19 | | Jan. 8 | 1530 | 7,380 | 10.57 | Mar. 21 | 1630 | 1,740 | 5.48 | | Jan. 28 | 1530 | 3,280 | 7.14 | Apr. 20 | 0430 | 2,850 | 6.71 | | Feb. 4 | 2100 | 8,020 | 10.89 | May 8 | 1630 | 2,130 | 5.93 | | Feb. 12 | 2030 | 2,490 | 6.33 | May 17 | 2400 | Unknown | Unknown | | Feb. 17 | 1730 | *10,000 | *11.59 | | | | | Minimum discharge, 62 ft³/s, Oct. 22, 23. | | | DISCHARG | E, IN CU | BIC FEET | | D, WATER
Y MEAN VA | | BER 1997 ' | TO SEPTEME | BER 1998 | | | |-------|------|----------|----------|----------|-------|-----------------------|-------|------------|------------|----------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 76 | 141 | 140 | e135 | 922 | 1210 | e415 | e470 | 240 | 185 | 99 | 82 | | 2 | 72 | 187 | 139 | 137 | 790 | 1220 | e405 | e550 | 224 | 174 | 98 | 81 | | 3 | 70 | 140 | 133 | 138 | 748 | 1160 | e400 | e460 | 213 | 183 | 96 | 78 | | 4 | 69 | 121 | 133 | 156 | 3230 | 994 | e580 | e545 | 202 | 169 | 95 | 80 | | 5 | 69 | 108 | 132 | 198 | 4650 | 870 | e750 | e580 | 198 | 169 | 93 | 80 | |
6 | 68 | 101 | 129 | 235 | 2970 | 763 | e600 | e590 | 197 | 161 | 92 | 79 | | 7 | 67 | 836 | 125 | 252 | 1930 | 683 | e520 | e695 | 192 | 151 | 92 | 80 | | 8 | 68 | 1450 | 122 | 4120 | 1410 | 804 | e480 | 1780 | 184 | 159 | 98 | 110 | | 9 | 68 | 766 | 122 | 3160 | 1150 | 1860 | e600 | e1300 | 178 | 158 | 132 | 83 | | 10 | 67 | 445 | 127 | 1700 | 1000 | 1910 | e750 | e1000 | 184 | 150 | 112 | 79 | | 11 | 67 | 292 | 132 | 1170 | 1170 | 1320 | e650 | e870 | 181 | 141 | 104 | 77 | | 12 | 66 | 229 | 128 | 906 | 2320 | 1050 | e600 | e800 | 181 | 134 | 98 | 77 | | 13 | 69 | 198 | 123 | 793 | 2200 | 842 | e550 | e770 | 175 | 130 | 93 | 76 | | 14 | 65 | 222 | 122 | 660 | 1570 | 725 | e500 | e690 | 170 | 127 | 92 | 74 | | 15 | 69 | 224 | 119 | 566 | 1200 | 637 | e460 | e610 | 271 | 123 | 93 | 75 | | 16 | 67 | 204 | 118 | 687 | 1060 | 567 | e420 | e570 | 313 | 134 | 98 | 74 | | 17 | 68 | 185 | 116 | 669 | 5980 | 515 | e520 | e1400 | 465 | 192 | 174 | 76 | | 18 | 73 | 173 | 116 | 603 | e6200 | e485 | e560 | e1150 | 331 | 135 | 153 | 92 | | 19 | 79 | 166 | 114 | 548 | 3520 | 663 | 1120 | e800 | 339 | 124 | 116 | 79 | | 20 | 70 | 158 | 113 | 512 | 2890 | 693 | 2590 | e600 | 399 | 120 | 103 | 78 | | 21 | 65 | 155 | 113 | 459 | 2490 | 1530 | e1300 | e450 | 299 | 114 | 97 | 78 | | 22 | 65 | 173 | 115 | 422 | 1960 | 1400 | e950 | 394 | 252 | 111 | 95 | 78 | | 23 | 65 | 167 | 117 | 754 | 1810 | 1050 | e800 | 361 | 240 | 108 | 92 | 75 | | 24 | 69 | 159 | 117 | 1020 | 1870 | 853 | e710 | 355 | 244 | 114 | 90 | 74 | | 25 | 82 | 151 | 138 | 974 | 1640 | 726 | e620 | 342 | 207 | 115 | 87 | 74 | | 26 | 84 | 147 | 149 | 813 | 1390 | 640 | e570 | 304 | 192 | 110 | 86 | 74 | | 27 | 97 | 145 | 153 | 710 | 1230 | 582 | e490 | 319 | 183 | 109 | 85 | 75 | | 28 | 87 | 140 | 158 | 2300 | 1170 | 535 | e460 | 387 | 188 | 109 | 85 | 74 | | 29 | 78 | 137 | 152 | 1760 | | 498 | e440 | 325 | 217 | 105 | 86 | 72 | | 30 | 76 | 137 | 158 | 1330 | | 463 | e410 | 276 | 218 | 101 | 84 | 73 | | 31 | 74 | | 149 | 1120 | | e420 | | 256 | | 100 | 83 | | | TOTAL | 2229 | 7857 | 4022 | 29007 | 60470 | 27668 | 20220 | 19999 | 7077 | 4215 | 3101 | 2357 | | MEAN | 71.9 | 262 | 130 | 936 | 2160 | 893 | 674 | 645 | 236 | 136 | 100 | 78.6 | | MAX | 97 | 1450 | 158 | 4120 | 6200 | 1910 | 2590 | 1780 | 465 | 192 | 174 | 110 | | MIN | 65 | 101 | 113 | 135 | 748 | 420 | 400 | 256 | 170 | 100 | 83 | 72 | | CFSM | .34 | 1.24 | .61 | 4.41 | 10.2 | 4.21 | 3.18 | 3.04 | 1.11 | .64 | .47 | .37 | | IN. | .39 | 1.38 | .71 | 5.09 | 10.61 | 4.85 | 3.55 | 3.51 | 1.24 | .74 | .54 | .41 | | | | | | | | | | | | | | | e Estimated. Sep 6 1996 Oct 15 1942 Nov 14 1941 ## POTOMAC RIVER BASIN # 01627500 SOUTH RIVER AT HARRISTON, VA--Continued | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1925 - 1951, 1969 - 1998, BY WATER YEAR (W) | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1925 | - 1951. | 1969 | - 1998 | . BY | WATER | YEAR | (WY | .) | |---|------------|----|---------|------|------|-----|-------|-------|------|---------|------|--------|------|-------|------|-----|----| |---|------------|----|---------|------|------|-----|-------|-------|------|---------|------|--------|------|-------|------|-----|----| | | OCT | NOV | DEC | JAN | FEB | MAI | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|-----------|---------|------|----------|-----------|------|---------|-------|------------------| | MEAN | 227 | 237 | 257 | 323 | 364 | 412 | 400 | 289 | 211 | 134 | 152 | 179 | | MAX | 1048 | 1988 | 802 | 1252 | 2160 | 1407 | 1414 | 819 | 1454 | 520 | 925 | 1047 | | (WY) | 1943 | 1986 | 1949 | 1996 | 1998 | 1936 | 1987 | 1989 | 1972 | 1972 | 1940 | 1996 | | MIN | 46.5 | 54.0 | 53.8 | 64.9 | 57.0 | 102 | 93.1 | 83.2 | 67.8 | 47.3 | 42.1 | 41.0 | | (WY) | 1931 | 1931 | 1932 | 1981 | 1931 | 1981 | 1981 | 1930 | 1930 | 1930 | 1930 | 1930 | | SUMMARY | / STATIST | ICS | FOR I | 1997 CALE | NDAR YE | AR | FOR 1998 | WATER YEA | R | WATER Y | | - 1951
- 1998 | | ANNUAL | TOTAL | | | 70859 | | | 188222 | | | | | | | ANNUAL | MEAN | | | 194 | | | 516 | | | 266 | | | | HIGHEST | C ANNUAL N | MEAN | | | | | | | | 516 | | 1998 | | LOWEST | ANNUAL M | EAN | | | | | | | | 97.5 | | 1981 | | HIGHEST | DAILY M | EAN | | 1450 | Nov | 8 | e6200 | Feb 1 | 8 | 16400 | Nov | 5 1985 | | LOWEST | DAILY MEA | AN | | 64 | aSep | 5 | 65 | bOct 1 | 4 | c25 | Aug 2 | 24 1930 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 65 | Sep | 2 | 67 | Oct | 8 | 38 | Sep 2 | 23 1930 | | ANNUAL MEAN | 194 | | 516 | | 266 | |--------------------------|-------|-------|-------|---------|--------| | HIGHEST ANNUAL MEAN | | | | | 516 | | LOWEST ANNUAL MEAN | | | | | 97.5 | | HIGHEST DAILY MEAN | 1450 | Nov 8 | e6200 | Feb 18 | 16400 | | LOWEST DAILY MEAN | 64 a | Sep 5 | 65 | b0ct 14 | c25 | | ANNUAL SEVEN-DAY MINIMUM | 65 | Sep 2 | 67 | Oct 8 | 38 | | INSTANTANEOUS PEAK FLOW | | | 10000 | Feb 17 | 28900 | | INSTANTANEOUS PEAK STAGE | | | 11.59 | Feb 17 | d17.20 | | INSTANTANEOUS LOW FLOW | | | 62 | fOct 22 | c17 | | ANNUAL RUNOFF (CFSM) | .92 | | 2.43 | | 1.26 | | ANNUAL RUNOFF (INCHES) | 12.43 | | 33.03 | | 17.06 | | 10 PERCENT EXCEEDS | 391 | | 1220 | | 497 | | 50 PERCENT EXCEEDS | 149 | | 185 | | 158 | | 90 PERCENT EXCEEDS | 69 | | 76 | | 70 | | | | | | | | | | | | | | | a b c d e f Also Sept. 6-8, 1997. Also Oct. 21-23, 1997. Probably result of regulation by mill then in existence upstream from station. Peak discharge, 23,100 ft³/s. Estimated. Also Oct. 23, 1997. ### 01628500 SOUTH FORK SHENANDOAH RIVER NEAR LYNNWOOD, VA LOCATION.--Lat 38°19'21", long 78°45'18", Rockingham County, Hydrologic Unit 02070005, on left bank 1.2 mi northeast of Lynnwood and 3.3 mi downstream from confluence of North and South Rivers. DRAINAGE AREA. -- 1,084 mi². PERIOD OF RECORD. -- September 1930 to current year. REVISED RECORDS.--WSP 1171: 1933(M). WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,013.17 ft above sea level. REMARKS.--Records good except for period with ice effect, Dec. 31 to Jan. 1, which is fair. Diurnal fluctuation at low flow prior to 1960 caused by mill at Lynnwood. National Weather Service rain gage and gage-height telemeters and Virginia Department of Emergency Services gage-height radio transmitter at station. Maximum discharge, 107,000 ft³/s, from rating curve extended above 22,000 ft³/s on basis of computations of flow over dam at gage heights 23.60 ft and 27.2 ft. Minimum gage height, 1.63 ft, Sept. 20, 1932. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1870, that of Sept. 7, 1996. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 7,000 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1730 | 27,200 | 17.38 | Mar. 9 | 2200 | 8,790 | 10.13 | | Jan. 28 | 2200 | 11,700 | 11.88 | Mar. 19 | 1500 | 7,650 | 9.36 | | Feb. 5 | 0130 | 20,700 | 15.35 | Mar. 21 | 1430 | 14,200 | 12.93 | | Feb. 13 | 0330 | 8,730 | 10.09 | Apr. 20 | 0600 | 7,400 | 9.19 | | Feb. 18 | 0330 | *27,600 | *17.49 | ÷ ' ' | | • • • | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 228 ft³/s, Oct. 23, 24, gage height, 2.14 ft. | DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | DISCH | ARGE, IN | CORIC LEI | | AILY MEAN | | IOBER 199 | / IO SEPI | EMBEK 199 | 8 | |
--|-------|------|-------|----------|-----------|--------|-----------|-------|-----------|-----------|-----------|-------|------| | 2 270 592 519 559 3280 4120 2150 1900 813 683 367 313 3 4 264 492 490 589 2990 3890 2000 1880 782 739 368 309 4 263 404 491 683 6860 3290 2320 2180 748 701 357 308 5 257 363 493 842 15900 2870 2900 2380 737 655 342 306 6 261 345 475 1060 9640 2540 2760 2560 731 638 337 299 7 256 2380 458 1150 7230 2280 2520 2300 715 597 333 302 8 252 4900 448 15000 5820 3120 2240 4380 691 605 335 392 9 246 3220 442 14600 5060 7220 2550 6420 675 615 391 368 10 243 2080 455 77000 4340 7860 3600 4750 705 588 406 324 11 242 1460 503 4610 4410 5690 3500 3760 693 551 413 314 12 240 1110 474 3340 7980 4300 3060 3090 692 526 389 310 13 240 912 457 2770 7920 3480 2700 2830 689 514 370 306 14 240 901 448 2230 6170 2960 2440 2340 680 499 360 302 15 244 911 445 1960 4770 2530 2240 2040 991 499 360 302 15 244 911 445 1960 4770 2530 2240 2040 991 490 425 300 16 247 827 437 2260 3940 2000 2040 2830 1510 688 500 301 18 252 716 427 2370 2100 2000 2040 2830 1510 688 500 301 18 252 716 427 2370 2100 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 2100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 6570 2330 1990 1050 484 466 313 20 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 22 330 651 428 2980 5510 6280 529 531 313 568 522 3980 5510 6280 5610 6280 2690 1200 929 420 372 300 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 22 330 282 510 637 6380 130 3950 230 1170 842 425 354 289 288 329 531 635 6693 1540 329 1540 320 1700 842 425 354 289 288 329 531 635 6690 5100 6280 2590 1400 1500 771 842 341 299 288 329 531 635 6690 5100 6280 2690 1200 998 420 372 300 240 2830 1500 667 300 340 382 250 330 340 382 250 330 340 350 380 380 380 370 370 380 380 382 510 637 6360 2440 1340 952 875 384 328 290 377 393 552 578 2700 4010 3200 1710 1050 718 412 341 299 288 329 531 635 6690 1600 1700 761 403 334 285 293 310 154 622 8110 2590 1430 1400 473 412 341 299 288 329 531 635 6690 15400 2440 1340 952 875 384 328 280 31 510 637 6360 2440 1340 952 875 384 328 280 31 5266 6994 487 3724 6939 4257 2545 2178 867 526 386 308 3 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 3 264 492 490 589 2990 3890 2000 1280 782 739 368 309 4 263 404 491 683 666 3290 2300 2180 748 701 357 308 5 257 363 493 842 15900 2870 2900 2380 737 655 342 306 6 261 345 475 1060 9640 2540 2760 2560 731 638 337 299 7 256 2380 458 1150 7230 2280 2520 2300 715 597 333 302 8 252 4900 448 15000 5620 3120 2340 430 691 605 335 392 9 246 3220 442 14600 503 4610 750 588 406 324 11 | 1 | 293 | 327 | 531 | e540 | 3940 | 4130 | 2190 | 1350 | 869 | 738 | 374 | 320 | | 3 264 492 490 589 2990 3890 2000 1280 782 739 368 309 4 263 404 491 683 666 3290 2300 2180 748 701 357 308 5 257 363 493 842 15900 2870 2900 2380 737 655 342 306 6 261 345 475 1060 9640 2540 2760 2560 731 638 337 299 7 256 2380 458 1150 7230 2280 2520 2300 715 597 333 302 8 252 4900 448 15000 5620 3120 2340 430 691 605 335 392 9 246 3220 442 14600 503 4610 750 588 406 324 11 | 2 | 270 | 592 | 519 | 559 | 3280 | 4120 | 2150 | 1900 | 813 | 683 | 367 | 313 | | 5 257 363 493 842 15900 2870 2900 2380 737 655 342 306 6 261 345 475 1060 9640 2540 2560 2560 731 638 337 299 7 256 2380 458 1150 7230 2280 2520 300 715 597 333 302 8 252 4900 448 15000 5820 3120 2340 4380 691 605 335 392 9 246 3220 445 7000 4340 7860 3630 4750 705 588 406 324 10 243 2200 4610 4410 5690 3500 3560 693 551 413 314 12 240 1110 474 3340 7900 4300 3500 3560 693 551 413 314 | 3 | 264 | | 490 | 589 | | | | | | 739 | 368 | | | 5 257 363 493 842 15900 2870 2900 2380 737 655 342 306 6 261 345 475 1060 9640 2540 2560 2560 731 638 337 299 7 256 2380 458 1150 7230 2280 2520 300 715 597 333 302 8 252 4900 448 15000 5820 3120 2340 4380 691 605 335 392 9 246 3220 445 7000 4340 7860 3630 4750 705 588 406 324 10 243 2200 4610 4410 5690 3500 3560 693 551 413 314 12 240 1110 474 3340 7900 4300 3500 3560 693 551 413 314 | 4 | | | | | | | | | | | | | | 7 256 2380 458 11500 7230 2280 2520 2300 715 597 333 302 9 246 3220 442 14600 5060 7220 2550 6420 675 615 391 368 10 243 2080 455 7000 4340 7860 3630 4750 705 588 406 324 11 242 1460 503 4610 4410 5690 3500 3560 693 551 413 314 12 240 1110 474 3340 7980 4300 3060 3090 692 526 389 310 13 240 912 457 2770 7920 3480 2710 2830 689 514 370 306 14 240 901 448 1960 4770 2530 2240 2040 951 490 425 <td></td> <td></td> <td></td> <td>493</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | 493 | | | | | | | | | | | 7 256 2380 458 11500 7230 2280 2520 2300 715 597 333 302 9 246 3220 442 14600 5060 7220 2550 6420 675 615 391 368 10 243 2080 455 7000 4340 7860 3630 4750 705 588 406 324 11 242 1460 503 4610 4410 5690 3500 3560 693 551 413 314 12 240 1110 474 3340 7980 4300 3060 3090 692 526 389 310 13 240 912 457 2770 7920 3480 2710 2830 689 514 370 306 14 240 901 448 1960 4770 2530 2240 2040 951 490 425 <td>6</td> <td>261</td> <td>345</td> <td>475</td> <td>1060</td> <td>9640</td> <td>2540</td> <td>2760</td> <td>2560</td> <td>731</td> <td>638</td> <td>337</td> <td>299</td> | 6 | 261 | 345 | 475 | 1060 | 9640 | 2540 | 2760 | 2560 | 731 | 638 | 337 | 299 | | 8 252 4900 448 15000 5820 3120 2340 4380 691 605 335 392 10 243 2080 455 7000 4340 7860 3630 4750 705 588 406 324 11 242 1460 503 4610 4410 5690 3500 3560 693 551 413 314 12 240 1110 474 3340 7980 4300 3060 3090 692 556 389 310 13 240 912 457 2770 7920 3480 2710 2830 689 514 370 360 14 240 901 448 2230 6170 2960 2440 2340 294 499 360 302 15 244 911 445 1960 4770 2530 2240 2040 951 499 360 | | | | 458 | | | | | | | | 333 | | | 9 246 3220 442 14600 5060 7220 2550 6420 675 615 391 368 100 243 2080 455 7000 4340 7860 3630 4750 705 588 406 324 11 242 1460 503 4610 4410 5690 3500 3560 693 551 413 314 12 240 1110 474 3340 7980 4300 3060 3090 692 526 389 310 13 240 912 457 2770 7920 3480 2710 2830 689 514 370 306 14 240 901 448 2230 6170 2960 2440 2340 680 499 360 302 15 244 911 445 1960 4770 2530 2240 2040 951 490 425 300 16 247 827 437 2960 3940 2210 2040 951 490 425 300 16 247 827 437 2960 3940 2210 2040 1810 1060 494 401 296 17 247 767 433 2650 11200 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 21100 2100 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 21100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 6570 2330 1990 1050 484 466 313 20 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 22 237 673 413 1480 6110 9100 3220 1320 929 437 377 309 23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 250 1210 909 420 372 300 24 236 610 427 4000 6290 4830 250 1210 909 420 372 300 24 236 610 427 4000 6290 4830 250 1210 909 420 372 300 24 236 610 427 4000 6290 4830 250 1210 909 420 372 300 24 236 610 427 4000 6290 4830 250 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 484 465 290 255 313 568 522 3980 5310 3950 2030 1170 882 425 354 289 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 290 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 328 2510 637 6360 2440 1340 952 875 389 675 339 325 8600 5160 2290 898 379 325 8600 5160 2290 898 675 379 325 8600 5160 2290 1 898 675 379 325 8600 5160 2290 1 898 675 379 325 8600 5160 2290 1 898 675 379 325 8600 5160 2290 1 898 675 379 325 8600 5160 2290 1 898 675 379 325 8600 5160 2290 1 898 675 379 325 8600 5160 2290 1 898 675 379 325 800 30 30 30 30 300 3000 3000 3000 300 | 8 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | 12 240 1110 474 3340 7980 4300 3060 3090 692 526 389 310 13 240 912 457 2770 7920 3480 2710 2830 689 514 370 306 14 240 901 448 2230 6170 2960 2440 2340 680 499 360 302 15 244 911 445 1960 4770 2530 2240 2040 951 490 425 300 16 247 827 437 2960 3940 2210 2040 1810 1060 494 401 296 17 247 767 433 2650 11200 2000 2040 2830 1510 668
500 301 18 252 716 427 2370 21100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 657 | | | | | | | | | | | | | | | 12 240 1110 474 3340 7980 4300 3060 3090 692 526 389 310 13 240 912 457 2770 7920 3480 2710 2830 689 514 370 306 14 240 901 448 2230 6170 2960 2440 2340 680 499 360 302 15 244 911 445 1960 4770 2530 2240 2040 951 490 425 300 16 247 827 437 2960 3940 2210 2040 1810 1060 494 401 296 17 247 767 433 2650 11200 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 21100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 657 | 11 | 242 | 1.460 | 502 | 4610 | 4410 | 5600 | 3500 | 2560 | 602 | 551 | 412 | 21/ | | 13 240 912 457 2770 7920 3480 2710 2830 689 514 370 306 14 240 901 448 2230 6170 2960 2440 2340 680 499 360 302 16 247 827 437 2960 3940 2210 2040 1810 1060 494 401 296 17 247 767 433 2650 11200 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 21100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 6570 2330 1990 1050 484 466 313 20 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 21 243 624 413 1640 7350 12 | | | | | | | | | | | | | | | 14 240 901 448 2230 6170 2960 2440 2340 680 499 360 302 15 244 911 445 1960 4770 2530 2240 2040 951 490 425 300 16 247 827 437 2960 3940 2210 2000 1810 1600 494 401 296 17 247 767 433 2650 11200 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 21100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 6570 2330 1690 1400 473 412 306 21 243 624 413 1640 7350 12200 4240 1490 1060 451 393 300 22 237 673 413 1446 6110 9 | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | 16 247 827 437 2960 3940 2210 2040 1810 1060 494 401 296 17 247 767 433 2650 11200 2000 2040 2830 1510 668 500 301 18 252 716 427 2370 21100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 6570 2330 1990 1050 484 466 313 20 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 21 243 624 413 1640 7350 12200 4240 1490 1060 451 393 300 22 237 673 413 1480 6110 9100 3220 1320 929 437 37 | | | | | | | | | | | | | | | 17 | 15 | 244 | 911 | 445 | 1960 | 4//0 | 2530 | 2240 | 2040 | 951 | 490 | 425 | 300 | | 18 252 716 427 2370 21100 2100 2000 2640 1090 531 736 329 19 255 678 421 2080 10300 6570 2330 1990 1050 484 466 313 20 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 21 243 624 413 1640 7350 12200 4240 1490 1060 451 393 300 22 237 673 413 1480 66110 9100 3220 1320 929 437 377 309 23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3 | | | | | | | | | | | | | | | 19 255 678 421 2080 10300 6570 2330 1990 1050 484 466 313 20 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 21 243 624 413 1640 7350 12200 4240 1490 1060 451 393 300 22 237 673 413 1480 6110 9100 3220 1320 929 437 377 309 23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3950 2030 1170 842 425 354 289 26 331 555 561 3210 4460 3390 | | | | | | | | | | | | | | | 20 254 647 416 1890 8450 5980 6230 1690 1400 473 412 306 21 243 624 413 1640 7350 12200 4240 1490 1060 451 393 300 22 237 673 413 1480 6110 9100 3220 1320 929 437 377 309 23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3950 2030 1170 842 425 354 289 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 | | | | | | | | | | | | | | | 21 243 624 413 1640 7350 12200 4240 1490 1060 451 393 300 222 237 673 413 1480 6110 9100 3220 1320 929 437 377 309 23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3950 2030 1170 842 425 354 289 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 290 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 31 269 e600 5160 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MBAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .99 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28 | | | | | | | | | | | | | | | 22 237 673 413 1480 6110 9100 3220 1320 929 437 377 309 23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3950 2030 1170 1050 424 365 290 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 290 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 | 20 | 254 | 647 | 416 | 1890 | 8450 | 5980 | 6230 | 1690 | 1400 | 473 | 412 | 306 | | 23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3950 2030 1170 842 425 354 289 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 290 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28 | 21 | 243 | 624 | 413 | 1640 | 7350 | 12200 | 4240 | 1490 | 1060 | 451 | 393 | 300 | | 23 233 651 428 2980 5610 6280 2690 1210 909 420 372 300 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3950 2030 1170 842 425 354 289 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 290 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28 | 22 | 237 | 673 | 413 | 1480 | 6110 | 9100 | 3220 | 1320 | 929 | 437 | 377 | 309 | | 24 236 610 427 4000 6290 4830 2350 1190 1050 424 365 290 25 313 568 522 3980 5310 3950 2030 1170 842 425 354 289 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 290 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 | 23 | 233 | 651 | 428 | 2980 | 5610 | 6280 | 2690 | 1210 | 909 | 420 | 372 | 300 | | 25 313 568 522 3980 5310 3950 2030 1170 842 425 354 289 26 331 555 561 3210 4460 3390 1800 1070 761 403 348 290 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28 | | 236 | 610 | 427 | 4000 | 6290 | | | | 1050 | 424 | 365 | 290 | | 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | | | | 27 393 542 578 2700 4010 3020 1710 1050 718 412 341 289 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 <t< td=""><td>26</td><td>331</td><td>555</td><td>561</td><td>3210</td><td>4460</td><td>3390</td><td>1800</td><td>1070</td><td>761</td><td>403</td><td>348</td><td>290</td></t<> | 26 | 331 | 555 | 561 | 3210 | 4460 | 3390 | 1800 | 1070 | 761 | 403 | 348 | 290 | | 28 329 531 635 6930 3840 2750 1590 1200 721 403 334 285 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28 | | | | | | | | | | | | | | | 29 301 514 622 8110 2590 1430 1060 864 394 335 286 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420
1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28 | | | | | | | | | | | | | | | 30 282 510 637 6360 2440 1340 952 875 384 328 280 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28 | | | | | | | | | | | | | | | 31 269 e600 5160 2290 898 379 325 TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28 | | | | | | | | | | | | | | | TOTAL 8233 29810 15099 115433 194280 131980 76350 67530 26010 16321 11954 9236 MBAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28 | | | | | | | | | | | | | | | MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28 | 31 | 200 | | 2000 | 3100 | | 2250 | | 070 | | 313 | 323 | | | MEAN 266 994 487 3724 6939 4257 2545 2178 867 526 386 308 MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28 | TOTAL | 8233 | 29810 | 15099 | 115433 | 194280 | 131980 | 76350 | 67530 | 26010 | 16321 | 11954 | 9236 | | MAX 393 4900 637 15000 21100 12200 6230 6420 1510 739 736 392 MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28 | | | | | | | | | | | | | | | MIN 233 327 413 540 2990 2000 1340 898 675 379 325 280 CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28 | | | | | | | | | | | | | | | CFSM .25 .92 .45 3.44 6.40 3.93 2.35 2.01 .80 .49 .36 .28 | e Estimated. SED 7 1996 7 1996 POTOMAC RIVER BASIN ## 01628500 SOUTH FORK SHENANDOAH RIVER NEAR LYNNWOOD, VA--Continued MAR ΔPR MAV .TITN TITT. ΔIIG | STATISTICS OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1931 | - | 1998, | BY | WATER | YEAR | (WY) | | |---------------|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------|--| | | | | | | | | | | | | | | | | FEB .TΔM | | 001 | INOV | DEC | UAIN | FED | MAR | APR | MAI | JUN | UUL | AUG | SEP | | |--------|-------------|------|-------|------------|-----------|------|-----------|-----------|------|----------|-----------|--------|--| | MEAN | 733 | 786 | 962 | 1275 | 1477 | 1903 | 1588 | 1214 | 873 | 552 | 622 | 621 | | | MAX | 4172 | 6886 | 3302 | 4904 | 6939 | 5785 | 5454 | 3086 | 3656 | 2013 | 2895 | 5823 | | | (WY) | 1943 | 1986 | 1949 | 1996 | 1998 | 1936 | 1987 | 1989 | 1972 | 1949 | 1940 | 1996 | | | MIN | 122 | 150 | 156 | 154 | 203 | 360 | 317 | 362 | 245 | 162 | 166 | 173 | | | (WY) | 1931 | 1931 | 1966 | 1966 | 1931 | 1981 | 1981 | 1977 | 1956 | 1966 | 1932 | 1964 | | | SUMMAI | RY STATIST | ICS | FOR I | 1997 CALEI | NDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER YI | EARS 1931 | - 1998 | | | ANNUA | L TOTAL | | | 331837 | | | 702236 | | | | | | | | ANNUA | L MEAN | | | 909 | | | 1924 | | | 1048 | | | | | HIGHE | ST ANNUAL | MEAN | | | | | | | | 2020 | | 1996 | | | LOWEST | C ANNUAL M | EAN | | | | | | | | 397 | | 1981 | | | HIGHES | ST DAILY M | EAN | | 7090 | Mar 4 | | 21100 | Feb 18 | | e63500 | Sep | 7 1996 | | | LOWEST | C DAILY ME. | AN | | 233 | Oct 23 | | 233 | Oct 23 | | 100 | Oct 1 | 3 1930 | | Oct 23 Oct 9 ANNUAL SEVEN-DAY MINIMUM 242 Oct 9 242 106 Oct 9 1930 INSTANTANEOUS PEAK FLOW 27600 Feb 18 107000 Sep INSTANTANEOUS PEAK STAGE 17.49 Feb 18 a30.84 Sep INSTANTANEOUS LOW FLOW 228 b0ct 23 c32 Sep 20 1932 ANNUAL RUNOFF (CFSM) .84 1.77 ANNUAL RUNOFF (INCHES) 11.39 24.10 13.14 10 PERCENT EXCEEDS 1880 4860 2140 50 PERCENT EXCEEDS 589 718 608 90 PERCENT EXCEEDS 274 240 300 ОСТ MOM DEC a From high-water mark in gage house. b Also Oct. 24, 1997. c Result of regulation. e Estimated. #### 01629500 SOUTH FORK SHENANDOAH RIVER NEAR LURAY, VA LOCATION.--Lat 38°38'46", long 78°32'06", Page County, Hydrologic Unit 02070005, on right bank between bridges on U.S. Highway 211, 1.2 mi downstream from Big Run, 2.2 mi upstream from Mill Creek, and 4.1 mi west of Luray. DRAINAGE AREA. -- 1,377 mi². PERIOD OF RECORD.--April 1925 to September 1930, October 1938 to September 1951, June 1979 to current year. GAGE.--Water-stage recorder. Datum of gage is 721.76 ft above sea level. April 1925 to September 1930, nonrecording gage at same site and datum. REMARKS .-- Records good except those for period with ice effect, Jan. 1, and periods of doubtful or no gage-height record, Feb. 1-3, May 13, May 30 to June 14, and Aug. 20-26, which are fair. Diurnal fluctuation at low and medium flow caused by powerplant 10 mi upstream from station. Virginia Department of Emergency Services gageheight radio trans- mitter at station. Maximum discharge, 112,000 ft³/s, from rating curve extended above 86,300 ft³/s. Minimum gage height, 2.15 ft, Sept. 27, 1941. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION .-- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Mar. 18, 1936, reached a stage of 23.6 ft, from floodmarks, discharge, 81,600 ft³/s. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $8,000~\text{ft}^3/\text{s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 8 | 1400 | 10,800 | 8.93 | Feb. 18 | 1100 | 35,400 | 16.12 | | Jan. 8 | 2400 | *36,700 | *16.39 | Mar. 10 | 0630 | 11,400 | 9.00 | | Jan. 29 | 0430 | 16,200 | 11.02 | Mar. 21 | 2100 | 17,700 | 11.53 | | Feb. 5 | 1000 | 26,400 | 14.08 | Apr. 20 | 1330 | 10,300 | 8.51 | | Feb. 12 | 1630 | 12,500 | 9.49 | May 9 | 1300 | 8,850 | 7.83 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES Minimum discharge, 290 ft³/s, Oct. 23, 24, 31. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---------------------------------|--|---|--------------------------|--|--------------------------------------|--|----------------------------------|--|---|---------------------------------| | 1 | 542 | 398 | 775 | e770 | e6100 | 5600 | 2390 | 1630 | e1100 | 1000 | 529 | 423 | | 2 | 446 | 621 | 762 | 744 | e5000 | 5650 | 2320 | 2110 | e1050 | 861 | 520 | 416 | | 3 | 407 | 972 | 703 | 777 | e4360 | 5550 | 2140 | 2570 | e1000 | 825 | 513 | 408 | | 4 | 392 | 765 | 660 | 920 | 5590 | 4770 | 2190 | 2610 | e960 | 913 | 510 | 400 | | 5 | 396 | 614 | 649 | 1180 | 22000 | 4110 | 3160 | 3760 | e950 | 829 | 502 | 393 | | 6 | 394 | 545 | 615 | 1480 | 15100 | 3610 | 3210 | 3690 | e930 | 806 | 484 | 392 | | 7 | 381 | 3420 | 601 | 1660 | 11000 | 3170 | 2900 | 3470 | e910 | 779 | 469 | 392 | | 8 | 380 | 9900 | 597 | 16300 | 8620 | 3310 | 2610 | 4550 | e880 | 756 | 467 | 459 | | 9 | 377 | 6400 | 575 | 26200 | 7630 | 7880 | 2640 | 8370 | e860 | 779 | 542 | 489 | | 10 | 367 | 3730 | 575 | 11200 | 6560 | 10800 | 4210 | 7140 | e920 | 766 | 629 | 494 | | 11 | 354 | 2580 | 614 | 7300 | 6400 | 8240 | 4640 | 5250 | e880 | 736 | 616 | 428 | | 12 | 355 | 1980 | 651 | 5230 | 10800 | 6160 | 3950 | 4420 | e860 | 690 | 595 | 413 | | 13 | 362 | 1620 | 596 | 4150 | 11600 | 4950 | 3360 | e4150 | e850 | 670 | 555 | 411 | | 14 | 352 | 1470 | 579 | 3390 | 9320 | 4150 | 2910 | 3480 | e830 | 655 | 531 | 409 | | 15 | 367 | 1540 | 576 | 2780 | 7230 | 3540 | 2590 | 2920 | 859 | 644 | 535 | 389 | | 16 | 362 | 1430 | 573 | 3800 | 5850 | 3030 | 2310 | 2530 | 1280 | 634 | 612 | 398 | | 17 | 365 | 1300 | 552 | 3950 | 12300 | 2680 | 2130 | 2740 | 1330 | 691 | 636 | 391 | | 18 | 372 | 1200 | 543 | 3500 | 31600 | 2710 | 2160 | 3830 | 1620 | 852 | 831 | 392 | | 19 | 381 | 1120 | 523 | 3050 | 16500 | 6590 | 2360 | 2720 | 1140 | 685 | 908 | 425 | | 20 | 381 | 1070 | 518 | 2720 | 12100 | 8360 | 8170 | 2210 | 1470 | 656 | e600 | 419 | | 21 | 371 | 1020 | 511 | 2400 | 10500 | 13500 | 6810 | 1890 | 1410 | 635 | e540 | 413 | | 22 | 354 | 999 | 519 | 2100 | 8740 | 13700 | 4860 | 1670 | 1180 | 606 | e505 | 413 | | 23 | 339 | 1040 | 516 | 3060 | 7510 | 9240 | 3880 | 1500 | 1070 | 596 | e480 | 408 | | 24 | 339 | 993 | 536 | 6150 | 8810 | 6730 | 3290 | 1420 | 1130 | 571 | e470 | 394 | | 25 | 371 | 922 | 575 | 5750 | 7820 | 5360 | 2810 | 1470 | 1140 | 579 | e460 | 379 | | 26
27
28
29
30
31 | 463
521
569
473
426
400 | 880
850
836
772
766 | 723
762
797
861
873
855 | 4870
3990
8050
13500
9790
8160 | 6630
5880
5440
 | 4430
3800
3330
3020
2780
2560 | 2430
2200
2060
1860
1690 |
1360
1240
1300
1340
e1200
e1150 | 944
889
867
932
1110 | 579
561
572
561
546
534 | e450
445
434
433
432
426 | 375
381
384
372
370 | | TOTAL | 12359 | 51753 | 19765 | 168921 | 276990 | 173310 | 94240 | 89690 | 31351 | 21567 | 16659 | 12230 | 5591 2560 4.06 4.68 13700 2893 8370 1150 2.10 2.42 3141 8170 1690 2.28 2.55 1045 1620 830 .76 .85 696 534 .51 .58 1000 408 494 370 .30 .33 537 908 426 .39 .45 9893 31600 4360 7.18 7.48 5449 26200 3.96 4.56 638 873 511 .46 .53 399 569 339 .29 .33 1725 9900 398 1.25 1.40 MEAN MAX MIN IN. CFSM e Estimated. # 01629500 SOUTH FORK SHENANDOAH RIVER NEAR LURAY, VA--Continued | STATIST | CICS OF M | ONTHLY MEAN | DATA | FOR WATER | YEARS 1 | 926 - | 1930, | 1939 - | 1951, 1980 | - 1998, | BY WATER | YEAR (WY) | | | |---------|-----------|-------------|------|------------|----------|-------|-------|---------|------------|---------|----------|------------|-----|------| | | OCT | NOV | DEC | JAN | FEB | | MAR | APR | MAY | JUN | JUL | AUG | | SEP | | MEAN | 1046 | 1166 | 1355 | 1669 | 2092 | : | 2314 | 2197 | 1702 | 1245 | 770 | 874 | | 1007 | | MAX | 6332 | 8783 | 3821 | 6490 | 9893 | | 7143 | 7412 | 4449 | 3418 | 2460 | 3637 | | 8043 | | (WY) | 1943 | 1986 | 1949 | 1996 | 1998 | | 1993 | 1987 | 1989 | 1949 | 1949 | 1940 | | 1996 | | MIN | 271 | 254 | 351 | 260 | 574 | | 548 | 452 | 499 | 438 | 296 | 258 | | 257 | | (WY) | 1942 | 1942 | 1944 | 1981 | 1944 | | 1981 | 1981 | 1930 | 1930 | 1930 | 1930 | | 1930 | | | | | | | | | | | | | | | | | | SUMMARY | STATIST | ICS | FOR | R 1997 CAL | ENDAR YE | AR | F | OR 1998 | WATER YEAR | | WATER | YEARS 1926 | | | | | | | | | | | | | | | | | | 1951 | | | | | | | | | | | | | | 1980 |) – | 1998 | | ANNUAL | TOTAL | | | 463319 | | | | 968835 | | | | | | | | ANNUAL | MEAN | | | 1269 | | | | 2654 | | | 1441 | | | | | HIGHEST | ANNUAL | MEAN | | | | | | | | | 2707 | | | 1996 | | LOWEST | ANNUAL M | EAN | | | | | | | | | 580 | | | 1981 | | HIGHEST | DAILY M | EAN | | 9900 | Nov | 8 | | 31600 | Feb 18 | | 84400 | Sep | 7 | 1996 | | LOWEST | DAILY ME | AN | | 335 | Sep | 6 | | 339 | a0ct 23 | | b135 | cSep | 28 | 1930 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 353 | Sep | 3 | | 360 | Oct 11 | | 195 | Sep | 24 | 1930 | | INSTANT | CANEOUS P | EAK FLOW | | | | | | 36700 | Jan 8 | | 112000 | Sep | 7 | 1996 | | INSTANT | CANEOUS P | EAK STAGE | | | | | | 16. | 39 Jan 8 | | 26.9 | 95 Sep | 7 | 1996 | | INSTANI | CANEOUS L | OW FLOW | | | | | | 290 | dOct 23 | | b70 | Sep | 27 | 1941 | | | RUNOFF (| | | . ! | | | | 1. | 93 | | 1.0 | | | | | | RUNOFF (| | | 12. | 52 | | | 26. | 17 | | 14.2 | 22 | | | | | CENT EXCE | | | 2390 | | | | 7180 | | | 2860 | | | | | | CENT EXCE | | | 880 | | | | 950 | | | 865 | | | | | 90 PERC | CENT EXCE | EDS | | 381 | | | | 398 | | | 367 | | | | a Also Oct. 24, 1997. b Result of regulation. c Also Sept. 16, 1925; data were collected for only part of the 1925 water year. d also Oct. 24, 31, 1997. # 01632082 LINVILLE CREEK AT BROADWAY, VA LOCATION.--Lat 38°36'24", long 78°48'13", Rockingham County, Hydrologic Unit 02070006, on left bank at Linville, 170 ft downstream from bridge on State Highway 1421, and 1.1 mi upstream from mouth. DRAINAGE AREA. -- 45.5 mi². PERIOD OF RECORD. -- August 1985 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,029.90 ft above sea level. REMARKS.--Records good except those for period of doubtful or no gage-height record, Oct. 9 to Dec. 4, and period with ice effect, Jan. 1, which are fair. Maximum discharge, 17,800 ft³/s, from rating curve extended above 1,860 ft³/s on basis of slope-area measurement at gage height 12.58 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location by the Virginia Department of Environmental Quality - Water Division. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 500 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 0800 | *2,200 | *5.71 | Mar. 9 | 0715 | 535 | 3.66 | | Jan. 28 | 1815 | 546 | 3.68 | Mar. 19 | 0045 | 1,460 | 4.96 | | Feb. 5 | 1630 | 737 | 4.01 | Mar. 20 | 2200 | 982 | 4.37 | | Feb. 12 | 0015 | 530 | 3.65 | Mar. 21 | 0645 | 896 | 4.25 | | Feb. 17 | 1730 | 1,220 | 4.68 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES Minimum discharge, 6.4 ft³/s, Oct. 5, 7, 8, gage height, 1.39 ft. | | | | | | DAI | LY MEAN V | ALUES | | | | | | |-------|-------|------|-------|------|------|-----------|-------|------|------|------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 8.3 | e13 | e15 | e15 | 143 | 94 | 72 | 45 | 29 | 23 | 11 | 9.2 | | 2 | 8.0 | e24 | e13 | 17 | 125 | 90 | 66 | 62 | 28 | 21 | 10 | 9.1 | | 3 | 7.4 | e17 | e13 | 20 | 127 | 86 | 62 | 57 | 27 | 20 | 10 | 8.6 | | 4 | 7.0 | e13 | e12 | 27 | 171 | 78 | 74 | 54 | 26 | 19 | 10 | 8.4 | | 5 | 6.7 | e11 | 12 | 32 | 532 | 74 | 63 | 74 | 27 | 19 | 9.9 | 8.0 | | 6 | 6.8 | e10 | 12 | 31 | 370 | 70 | 58 | 73 | 26 | 17 | 9.7 | 8.0 | | 7 | 6.8 | e125 | 11 | 34 | 252 | 66 | 55 | 66 | 24 | 17 | 9.7 | 8.2 | | 8 | 6.8 | e165 | 11 | 640 | 224 | 161 | 54 | 219 | 24 | 19 | 9.7 | 15 | | 9 | e6.9 | e92 | 11 | 238 | 185 | 268 | 91 | 126 | 24 | 18 | 10 | 11 | | 10 | e6.8 | e60 | 12 | 129 | 160 | 145 | 88 | 103 | 26 | 17 | 15 | 10 | | 11 | e6.8 | e39 | 12 | 101 | 183 | 117 | 75 | 92 | 26 | 16 | 12 | 9.7 | | 12 | e6.9 | e32 | 11 | 85 | 265 | 102 | 67 | 93 | 29 | 15 | 10 | 8.7 | | 13 | e7.0 | e30 | 11 | 76 | 172 | 94 | 62 | 83 | 24 | 15 | 15 | 8.4 | | 14 | e7.0 | e33 | 10 | 66 | 143 | 86 | 59 | 74 | 23 | 14 | 28 | 8.0 | | 15 | e7.6 | e36 | 9.9 | 73 | 124 | 78 | 56 | 68 | 29 | 14 | 26 | 8.0 | | 16 | e7.8 | e32 | 9.7 | 94 | 112 | 73 | 53 | 63 | 26 | 14 | 22 | 7.6 | | 17 | e8.2 | e29 | 9.7 | 79 | 530 | 71 | 52 | 61 | 24 | 15 | 29 | 8.1 | | 18 | e8.9 | e26 | 9.4 | 70 | 267 | 187 | 48 | 54 | 23 | 14 | 19 | 7.5 | | 19 | e8.3 | e24 | 9.4 | 64 | 175 | 538 | 77 | 51 | 27 | 13 | 16 | 7.9 | | 20 | e8.0 | e23 | 9.5 | 57 | 155 | 349 | 100 | 48 | 25 | 13 | 14 | 8.0 | | 21 | e7.8 | e21 | 8.9 | 51 | 132 | 483 | 74 | 45 | 22 | 12 | 13 | 7.8 | | 22 | e7.5 | e24 | 9.5 | 48 | 115 | 233 | 65 | 41 | 22 | 12 | 12 | 8.6 | | 23 | e7.4 | e22 | 9.6 | 199 | 136 | 168 | 60 | 40 | 49 | 12 | 11 | 8.4 | | 24 | e8.2 | e20 | 10 | 126 | 191 | 141 | 55 | 39 | 30 | 12 | 11 | 7.5 | | 25 | e10 | e19 | 14 | 104 | 136 | 122 | 50 | 43 | 23 | 12 | 11 | 7.4 | | 26 | e11 | e18 | 14 | 87 | 118 | 109 | 47 | 36 | 21 | 12 | 10 | 7.6 | | 27 | e13 | e17 | 15 | 82 | 108 | 100 | 49 | 36 | 20 | 12 | 10 | 7.4 | | 28 | e12 | e16 | 15 | 279 | 101 | 92 | 45 | 35 | 23 | 11 | 9.9 | 7.7 | | 29 | e10 | e15 | 15 | 297 | | 84 | 41 | 33 | 36 | 11 | 9.9 | 7.2 | | 30 | e9.4 | e14 | 17 | 261 | | 79 | 39 | 31 | 27 | 11 | 9.7 | 7.3 | | 31 | e8.5 | | 16 | 182 | | 75 | | 30 | | 11 | 9.4 | | | TOTAL | 252.8 | 1020 | 367.6 | 3664 | 5452 | 4513 | 1857 | 1975 | 790 | 461 | 412.9 | 254.3 | | MEAN | 8.15 | 34.0 | 11.9 | 118 | 195 | 146 | 61.9 | 63.7 | 26.3 | 14.9 | 13.3 | 8.48 | | MAX | 13 | 165 | 17 | 640 | 532 | 538 | 100 | 219 | 49 | 23 | 29 | 15 | | MIN | 6.7 | 10 | 8.9 | 15 | 101 | 66 | 39 | 30 | 20 | 11 | 9.4 | 7.2 | | CFSM | .18 | .75 | .26 | 2.60 | 4.28 | 3.20 | 1.36 | 1.40 | .58 | .33 | .29 | .19 | | IN. | .21 | .83 | .30 | 3.00 | 4.46 | 3.69 | 1.52 | 1.61 | .65 | .38 | .34 | .21 | e Estimated. # 01632082 LINVILLE CREEK AT BROADWAY, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1985 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|-----|---| | | | | | | | | | | | | | | | | | 58 18 8.0 | | OCT | NOV | DEC | JAN | FEE | 3 | MAR | APR | MAY | JUI | JUL | AUG | SEP | |------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----|-------------------------------------|-------------------------------------|--------------------------------------|----------------------|------------------------|-------------------------------------|-------------------------------------| | MEAN
MAX
(WY)
MIN
(WY) | 25.1
108
1991
6.66
1989 | 32.5
144
1986
7.34
1992 | 35.3
115
1997
7.05
1989 | 66.5
213
1996
9.75
1989 | 56.9
195
1998
10.1
1989 | 5 | 79.2
206
1994
17.1
1989 | 52.8
135
1993
11.5
1995 | 40.2
91.0
1989
12.9
1986 | 49.6
1996
9.68 | 68.5
1995
8 8.28 | 27.2
138
1996
5.79
1986 | 35.2
275
1996
5.21
1986 | | SUMMARY | STATIST: | ICS | FOR 1 | 1997 CALEN | DAR YE | EAR | F | OR 1998 WA | TER YE | AR | WATER Y | EARS 1985 | - 1998 | | ANNUAL | TOTAL | | | 10695.7 | | | | 21019.6 | | | | | | | ANNUAL | MEAN | | | 29.3 | | | | 57.6 | | | 41.3 | | | | HIGHEST | C ANNUAL 1 | MEAN | | | | | | | | | 85.5 | | 1996 | | LOWEST | ANNUAL MI | EAN | | | | | | | | | 22.6 | | 1992 | | HIGHEST | C DAILY M | EAN | | 584 | Mar | 3 | | 640 | Jan | 8 | e4700 | Sep | 6 1996 | | LOWEST | DAILY ME | AN | | 6.7 | Oct | 5 | | 6.7 | Oct | 5 | 3.2 | Sep | 17 1986 | | ANNUAL | SEVEN-DAY | MUMINIM Y | | 6.8 | Oct | 5 | | 6.8 | Oct | 5 | 3.6 | Sep | 12 1986 | | INSTANT | TANEOUS PI | EAK FLOW | | | | | | 2200 | Jan | 8 | 17800 | Sep | 6 1996 | | INSTANT | TANEOUS PI | EAK STAGE | | | | | | 5.71 | Jan | 8 | 13.2 | 3
Sep | 6 1996 | | INSTANT | TANEOUS LO | OW FLOW | | | | | | 6.4 | a0ct | 5 | 2.8 | bSep 1 | 13 1986 | | ANNUAL | RUNOFF (| CFSM) | | .64 | | | | 1.27 | ' | | .9 | 1 | | | ANNUAL | RUNOFF (| INCHES) | | 8.74 | | | | 17.19 | 1 | | 12.3 | 5 | | 138 24 8.2 80 20 7.4 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Oct. 7, 8, 1997. b Also Sept. 14, 17, 1986. e Estimated. # 01632900 SMITH CREEK NEAR NEW MARKET, VA LOCATION.--Lat 38°41'36", long 78°38'35", Shenandoah County, Hydrologic Unit 02070006, on left bank 25 ft upstream from bridge on State Highway 620, 3.6 mi north of New Market, and 4.4 mi upstream from mouth. DRAINAGE AREA. -- 93.2 mi². PERIOD OF RECORD. -- August 1960 to current year. REVISED RECORDS.--WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 881.50 ft above sea level. Prior to Aug. 2, 1963, on right bank a short distance downstream, at datum 0.71 ft higher. REMARKS.--Records good except for period with ice effect, Jan. 1, which is fair. Maximum discharge, $12,400~{\rm ft}^3/{\rm s}$, from rating curve extended above $2,300~{\rm ft}^3/{\rm s}$ on basis of contracted-opening measurement at gage height $16.38~{\rm ft}$. Minimum discharge, $4.5~{\rm ft}^3/{\rm s}$, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 1, 1959, reached a stage of 10.7 ft, discharge not determined, from information by local residents. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 650 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 7 | 1630 | 804 | 5.64 | Feb. 12 | 0730 | 939 | 6.86 | | Jan. 8 | 1630 | *2,660 | *9.78 | Feb. 18 | 0130 | 2,120 | 9.24 | | Jan. 28 | 2000 | 903 | 6.73 | Mar. 19 | 0800 | 1,580 | 8.36 | | Feb. 5 | 0400 | 1,190 | 7.51 | Mar. 21 | 0430 | 852 | 6.52 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 13 ft^3/s , Sept. 17, 18, 24, 25, gage height, 1.28 ft . | | DAILY MEAN VALUES | | | | | | | | | | | | |-------|-------------------|------|------|------|-------|------|------|------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 19 | 27 | 40 | e36 | 298 | 266 | 166 | 112 | 65 | 43 | 25 | 18 | | 2 | 17 | 41 | 37 | 39 | 262 | 251 | 160 | 147 | 63 | 41 | 24 | 20 | | 3 | 17 | 33 | 35 | 51 | 259 | 252 | 149 | 166 | 61 | 40 | 23 | 19 | | 4 | 17 | 27 | 35 | 84 | 399 | 226 | 182 | 155 | 58 | 38 | 22 | 19 | | 5 | 17 | 25 | 35 | 87 | 1000 | 212 | 176 | 258 | 58 | 39 | 22 | 19 | | 6 | 16 | 23 | 34 | 76 | 691 | 202 | 154 | 188 | 60 | 38 | 22 | 19 | | 7 | 15 | 446 | 34 | 72 | 471 | 190 | 146 | 155 | 58 | 36 | 21 | 18 | | 8 | 15 | 538 | 33 | 1510 | 407 | 268 | 144 | 178 | 55 | 38 | 23 | 22 | | 9 | 15 | 193 | 33 | 707 | 374 | 462 | 213 | 173 | 55 | 38 | 24 | 23 | | 10 | 16 | 120 | 34 | 350 | 327 | 324 | 237 | 152 | 61 | 36 | 25 | 20 | | 11 | 15 | 93 | 35 | 253 | 335 | 261 | 195 | 142 | 58 | 34 | 29 | 19 | | 12 | 16 | 78 | 34 | 211 | 689 | 235 | 167 | 155 | 66 | 34 | 23 | 19 | | 13 | 15 | 69 | 32 | 187 | 477 | 219 | 154 | 155 | 57 | 33 | 23 | 18 | | 14 | 15 | 74 | 32 | 165 | 366 | 211 | 148 | 134 | 56 | 31 | 25 | 17 | | 15 | 16 | 79 | 30 | 169 | 306 | 196 | 144 | 124 | 62 | 31 | 27 | 16 | | 16 | 16 | 70 | 30 | 231 | 275 | 184 | 138 | 118 | 64 | 30 | 27 | 15 | | 17 | 16 | 62 | 29 | 213 | 730 | 176 | 136 | 120 | 72 | 32 | 28 | 14 | | 18 | 18 | 57 | 28 | 179 | 1160 | 229 | 128 | 106 | 58 | 31 | 27 | 15 | | 19 | 17 | 53 | 28 | 160 | 515 | 972 | 161 | 98 | 60 | 30 | 24 | 16 | | 20 | 16 | 51 | 27 | 148 | 433 | 400 | 307 | 94 | 64 | 29 | 24 | 17 | | 21 | 16 | 50 | 27 | 136 | 379 | 702 | 186 | 91 | 55 | 28 | 22 | 16 | | 22 | 15 | 54 | 27 | 130 | 322 | 417 | 160 | 85 | 51 | 28 | 21 | 16 | | 23 | 15 | 51 | 29 | 366 | 326 | 320 | 148 | 82 | 51 | 27 | 22 | 17 | | 24 | 16 | 46 | 29 | 343 | 443 | 275 | 139 | 83 | 53 | 27 | 21 | 15 | | 25 | 21 | 43 | 41 | 274 | 396 | 247 | 130 | 91 | 47 | 26 | 20 | 14 | | 26 | 23 | 43 | 41 | 220 | 324 | 228 | 125 | 81 | 45 | 26 | 19 | 15 | | 27 | 27 | 41 | 39 | 199 | 287 | 214 | 125 | 78 | 42 | 26 | 19 | 15 | | 28 | 23 | 40 | 40 | 638 | 269 | 199 | 118 | 77 | 49 | 25 | 19 | 14 | | 29 | 21 | 39 | 39 | 579 | | 186 | 111 | 74 | 55 | 25 | 20 | 14 | | 30 | 19 | 39 | 43 | 477 | | 177 | 108 | 70 | 50 | 25 | 19 | 14 | | 31 | 19 | | 40 | 389 | | 169 | | 68 | | 25 | 19 | | | TOTAL | 539 | 2605 | 1050 | 8679 | 12520 | 8870 | 4755 | 3810 | 1709 | 990 | 709 | 513 | | MEAN | 17.4 | 86.8 | 33.9 | 280 | 447 | 286 | 159 | 123 | 57.0 | 31.9 | 22.9 | 17.1 | | MAX | 27 | 538 | 43 | 1510 | 1160 | 972 | 307 | 258 | 72 | 43 | 29 | 23 | | MIN | 15 | 23 | 27 | 36 | 259 | 169 | 108 | 68 | 42 | 25 | 19 | 14 | | CFSM | .19 | .93 | .36 | 3.00 | 4.80 | 3.07 | 1.70 | 1.32 | .61 | .34 | .25 | .18 | | IN. | .22 | 1.04 | .42 | 3.46 | 5.00 | 3.54 | 1.90 | 1.52 | .68 | .40 | .28 | .20 | e Estimated. ## POTOMAC RIVER BASIN # 01632900 SMITH CREEK NEAR NEW MARKET, VA--Continued | STATISTICS | OF | V.THTI/OM | MEDN | $D\Delta T\Delta$ | FOR | MATER | VEARS | 1960 | _ 1998 | BY WATER | VEVE | (WV) | | |------------|----|-----------|------|-------------------|-----|-------|-------|------|--------|----------|------|------|--| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|------|-------|-----------|-----------|------|-----------|-----------|------|----------|----------|--------| | MEAN | 53.8 | 58.8 | 70.5 | 105 | 119 | 158 | 118 | 86.1 | 59.7 | 36.7 | 36.3 | 38.8 | | MAX | 297 | 324 | 240 | 423 | 447 | 530 | 372 | 238 | 294 | 121 | 139 | 408 | | (WY) | 1973 | 1986 | 1997 | 1996 | 1998 | 1994 | 1987 | 1988 | 1972 | 1972 | 1996 | 1996 | | MIN | 8.56 | 11.0 | 8.86 | 10.1 | 21.1 | 26.4 | 19.4 | 20.0 | 18.1 | 10.0 | 10.8 | 9.36 | | (WY) | 1987 | 1966 | 1966 | 1966 | 1989 | 1981 | 1981 | 1969 | 1977 | 1977 | 1966 | 1986 | | SUMMARY | / STATIST | ICS | FOR I | 1997 CALE | NDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER YE | ARS 1960 | - 1998 | | ANNUAL | TOTAL | | | 25356 | | | 46749 | | | | | | | ANNUAL | MEAN | | | 69.5 | | | 128 | | | 78.3 | | | | HIGHEST | C ANNUAL N | MEAN | | | | | | | | 152 | | 1996 | | LOWEST | ANNUAL MI | EAN | | | | | | | | 27.8 | | 1981 | | HIGHEST | DAILY ME | EAN | | 903 | Mar 4 | | 1510 | Jan 8 | | 5190 | Jan 1 | 9 1996 | | LOWEST | DAILY MEA | AN | | 15 | aOct 7 | | 14 | bSep 17 | | 6.5 | Oct | 7 1986 | | ANNUAL TOTAL | 25356 | | 46749 | | | |--------------------------|---------|---|------------|-------|-----------| | ANNUAL MEAN | 69.5 | | 128 | 78.3 | | | HIGHEST ANNUAL MEAN | | | | 152 | 1 | | LOWEST ANNUAL MEAN | | | | 27.8 | 1 | | HIGHEST DAILY MEAN | 903 Mar | 4 | 1510 Jan 8 | 5190 | Jan 19 1 | | LOWEST DAILY MEAN | 15 aOct | 7 | 14 bSep 17 | 6.5 | Oct 7 1 | | ANNUAL SEVEN-DAY MINIMUM | 15 c0ct | 7 | 14 Sep 24 | 7.5 | dJul 27 1 | | INSTANTANEOUS PEAK FLOW | | | 2660 Jan 8 | 12400 | Sep 6 1 | | INSTANTANEOUS PEAK STAGE | | | 9.78 Jan 8 | 17.62 | Sep 6 1 | | INSTANTANEOUS LOW FLOW | | | 13 fSep 17 | g4.5 | Feb 9 1 | | ANNUAL RUNOFF (CFSM) | .75 | | 1.37 | .84 | | | ANNUAL RUNOFF (INCHES) | 10.12 | | 18.66 | 11.41 | | | 10 PERCENT EXCEEDS | 127 | | 324 | 155 | | | 50 PERCENT EXCEEDS | 44 | | 54 | 44 | | | 90 PERCENT EXCEEDS | 17 | | 17 | 15 | | | | | | | | | a Also Oct. 8, 9, 11, 13, 14, 22, 23, 1997. b Also Sept. 25, 28-30, 1998. c Also Oct. 8, 1997. d Also July 28, 1977. f Also Sept. 18, 24, 25, 1997. g Result of freezeup. # 01633000 NORTH FORK SHENANDOAH RIVER AT MOUNT JACKSON, VA LOCATION.--Lat 38°44'43", long 78°38'21", Shenandoah County, Hydrologic Unit 02070006, on right bank at upstream side of bridge on State Highway 698 at Mount Jackson and 0.4 mi downstream from Mill Creek. DRAINAGE AREA. -- 506 mi². PERIOD OF RECORD. -- October 1943 to current year. REVISED RECORDS.--WSP 1382: 1945, 1948-50(M), 1951-53(P), 1954(M). WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 838.55 ft above sea level. Prior to July 1, 1976, nonrecording gage, and July 1, 1976, to Oct. 23, 1981, water-stage recorder, at site 400 ft upstream at same datum. REMARKS.--Records good except for period with ice effect, Jan. 1, which is fair. Some diversion during low flow for irrigation at points upstream from station. Virginia Department of Emergency Services gage-height radio transmitter at station. Maximum discharge, 103,000 ft³/s, Sept. 6, 1996, from rating curve extended above 19,000 ft³/s on basis of peak runoff for stations at Cootes Store and near Strasburg. Minimum gage height, 1.97 ft, Sept. 3, 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in October 1942 reached a stage of 20.2 ft, from floodmarks, discharge, about $80,000 \text{ ft}^3/\text{s}$, from rating curve extended above $18,000 \text{ ft}^3/\text{s}$ on basis of peak runoff for flood in October, 1942 for stations at Cootes Store and near Strasburg. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 5,000 ft³/s and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) |
---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1400 | *13,300 | *13.54 | Mar. 19 | 0700 | 7,150 | 10.05 | | Feb. 18 | 0130 | 13,300 | 13.53 | Mar. 21 | 1130 | 8,860 | 11.12 | Minimum discharge, 37 ft³/s, Sept. 16, 17, 28-30, gage height, 2.27 ft. | | | 210011 | | 00210 122 | DA | AILY MEAN | VALUES | 100011 199 | . 10 02111 | | | | |--|--|---|---|--|---|--|---|---|---|----------------------------------|---|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 82
72
68
66 | 76
151
178
156
131 | 176
162
153
148
144 | e185
192
219
544
830 | 1400
1180
1110
1620
4400 | 2010
1600
1440
1180
1000 | 699
798
698
925
1380 | 447
651
730
724
953 | 238
223
213
200
198 | 187
165
158
150
149 | 66
63
62
59
57 | 47
47
47
47
47 | | 6
7
8
9
10 | 60
57
54
51
51 | 114
1940
3350
1640
929 | 135
129
124
124
127 | 725
608
7310
4910
2110 | 3360
2310
1860
1740
1540 | 874
782
1150
3870
3170 | 1110
911
792
1110
1940 | 1500
1030
2860
2810
1650 | 198
189
183
178
200 | 141
133
134
138
124 | 55
55
56
61
68 | 45
46
52
63
55 | | 11
12
13
14
15 | 54
53
54
55
56 | 625
467
371
348
395 | 130
129
125
124
120 | 1330
925
739
602
544 | 1620
3010
2820
2020
1500 | 1810
1330
1080
944
827 | 1720
1300
1020
861
771 | 1230
1090
1030
910
799 | 193
214
196
188
222 | 115
110
107
102
98 | 86
71
63
78
99 | 51
49
47
45
43 | | 16
17
18
19
20 | 56
56
59
58
57 | 388
349
310
279
251 | 117
116
115
113
111 | 744
838
775
672
594 | 1230
3420
8590
3910
2990 | 734
669
806
5030
2820 | 690
644
571
655
1990 | 698
802
667
563
492 | 331
318
244
226
250 | 93
94
91
88
87 | 91
105
125
96
83 | 39
38
39
44
45 | | 21
22
23
24
25 | 55
53
52
55
67 | 234
239
242
237
226 | 109
110
113
112
136 | 508
454
1230
1980
1570 | 2440
1990
1890
2470
2280 | 7380
3770
2140
1590
1280 | 1470
1100
901
777
667 | 442
395
363
347
357 | 220
197
193
263
206 | 81
78
76
75
73 | 76
71
69
66
61 | 45
46
45
43
39 | | 26
27
28
29
30
31 | 77
83
78
69
64
63 | 217
203
191
180
177 | 163
187
203
197
220
216 | 1140
921
2120
2310
2060
1830 | 2150
1820
1780
 | 1090
974
899
837
764
698 | 593
568
520
466
438 | 324
306
299
280
262
250 | 181
166
176
208
221 | 73
74
72
71
68
68 | 59
55
53
52
51
50 | 41
42
39
39
37 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1899
61.3
83
51
.12
.14 | 14594
486
3350
76
.96
1.07 | 4388
142
220
109
.28
.32 | 41519
1339
7310
185
2.65
3.05 | 68450
2445
8590
1110
4.83
5.03 | 54548
1760
7380
669
3.48
4.01 | 28085
936
1990
438
1.85
2.06 | 25261
815
2860
250
1.61
1.86 | 6433
214
331
166
.42
.47 | 3273
106
187
68
.21 | 2162
69.7
125
50
.14
.16 | 1352
45.1
63
37
.09 | e Estimated. # 01633000 NORTH FORK SHENANDOAH RIVER AT MOUNT JACKSON, VA--Continued | STATIST | TICS OF 1 | MONTHLY MEAN | DATA | FOR WATER | YEARS 1 | 944 | - 1998, | BY WAT | ER Y | EAR (WY) | | | | | | |---------|--------------------|--------------|------|-----------|----------|-----|---------|----------|------|----------|------|--------|------------|-----|------| | | OCT | NOV | DEC | JAN | FEB | 3 | MAR | APR | | MAY | JUN | JUL | AUG | | SEP | | MEAN | 239 | 295 | 384 | 497 | 595 | | 851 | 645 | | 526 | 308 | 169 | 220 | | 217 | | MAX | 1580 | 2371 | 1272 | 2283 | 2445 | | 2387 | 2193 | | 1418 | 1483 | 834 | 1403 | | 2804 | | (WY) | 1980 | 1986 | 1973 | 1996 | 1998 | | 1994 | 1987 | | 1988 | 1972 | 1949 | 1955 | | 1996 | | MIN | 22.2 | 26.3 | 22.7 | 30.1 | 62.7 | , | 119 | 79.2 | | 84.3 | 53.8 | 26.0 | 19.9 | | 26.2 | | (WY) | 1987 | 1966 | 1966 | 1966 | 1959 | | 1981 | 1981 | | 1969 | 1977 | 1977 | 1964 | | 1954 | | SUMMAR | Y STATIS | FICS | FOR | 1997 CAL | ENDAR YE | AR | F | 'OR 1998 | WAT | ER YEAR | | WATER | YEARS 1944 | . – | 1998 | | ANNUAL | TOTAL | | | 129761 | | | | 251964 | | | | | | | | | ANNUAL | MEAN | | | 356 | | | | 690 | | | | 411 | | | | | HIGHES' | T ANNUAL | MEAN | | | | | | | | | | 935 | | | 1996 | | LOWEST | ANNUAL I | MEAN | | | | | | | | | | 136 | | | 1981 | | HIGHES | r daily i | MEAN | | 5660 | Mar | 4 | | 8590 | | Feb 18 | | 32200 | Sep | 6 | 1996 | | LOWEST | DAILY M | EAN | | 45 | aSep | 5 | | 37 | | Sep 30 | | 8. | 0 Sep | 3 | 1966 | | ANNUAL | SEVEN-DA | MUMINIM YA | | 46 | Sep | 3 | | 40 | | Sep 24 | | 11 | bSep | 2 | 1966 | | INSTAN | TANEOUS I | PEAK FLOW | | | | | | 13300 | | cJan 8 | | 103000 | Sep | 6 | 1996 | | INSTAN | TANEOUS I | PEAK STAGE | | | | | | 13 | .54 | Jan 8 | | 22. | 17 Sep | 6 | 1996 | | INSTAN | TANEOUS 1 | LOW FLOW | | | | | | 37 | | dSep 16 | | f7. | 0 Sep | 3 | 1966 | | ANNUAL | RUNOFF | (CFSM) | | | 70 | | | 1 | .36 | | | | 81 | | | | ANNUAL | RUNOFF | (INCHES) | | 9. | 54 | | | 18 | .52 | | | 11. | 05 | | | | 10 PER | CENT EXC | EEDS | | 705 | | | | 1910 | | | | 876 | | | | | 50 PER | 50 PERCENT EXCEEDS | | | 194 | | | | 214 | | | | 191 | | | | 53 46 56 90 PERCENT EXCEEDS a Also Sept. 6-8, 1997. b Also Sept. 3, 1966. c Also Feb. 18, 1998. d also Sept. 17, 28-30, 1998. f Observed. # 01634500 CEDAR CREEK NEAR WINCHESTER, VA LOCATION.--Lat 39°04'52", long 78°19'47", Frederick County, Hydrologic Unit 02070006, on left bank 0.2 mi upstream from Fawcett Run, 0.3 mi upstream from bridge on State Highway 628, 1.3 mi downstream from Froman Run, and 11.4 mi southwest of Winchester. DRAINAGE AREA. -- 103 mi². PERIOD OF RECORD. -- June 1937 to current year. REVISED RECORDS. -- WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 647.09 ft above sea level. REMARKS.--No estimated daily discharges. Records good. Maximum discharge, 22,000 ft³s, from rating curve extended above 15,000 ft³/s. Minimum discharge, 1.5 ft³/s, result of freezeup. Minimum gage height, 1.04 ft, Feb. 19, 1941, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 17, 1936, reached a stage of about 25 ft, discharge, about 18,000 ${\rm ft}^3/{\rm s}$, from information by local residents. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|------------------|---------|------|-----------------------------------|---------------------| | Nov. 7 | 1600 | *3,800 | *9.60 | Mar. 8 | 1830 | 1,370 | 5.42 | | Jan. 8 | 1230 | 2,480 | 7.43 | Mar. 19 | 0300 | 2,640 | 7.70 | | Jan. 28 | 1630 | 2,470 | 7.41 | Mar. 21 | 0400 | 3,620 | 9.32 | | Feb. 5 | 1200 | 2,420 | 7.33 | Apr. 19 | 2400 | 1,550 | 5.77 | | Feb. 17 | 2100 | 2,400 | 7.29 | May 5 | 2330 | 1,060 | 4.79 | | Feb. 24 | 1000 | 1,310 | 5.31 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES Minimum discharge, 8.5 ft³/s, Sept. 16, 17, 27. 69 26 38 MAX MIN CFSM TN 1460 29 1400 3 96 51 3.43 1990 201 5.05 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------------|---------------------------------|----------------------------------|---|----------------------------------|--|---------------------------------|----------------------------------|--------------------------------|----------------------------|----------------------------|-------------------------------| | 1
2
3
4
5 | 17
14
13
12
13 | 73
94
62
42
35 | 47
41
38
37
37 | 51
63
104
182
167 | 269
224
201
253
1990 | 337
298
322
255
221 | 157
172
134
220
236 | 103
180
178
205
431 | 46
40
39
35
34 | 47
38
34
33
33 | 16
14
13
13 | 10
10
10
10
9.9 | | 6
7
8
9
10 | 11
10
9.7
9.9 | 29
1460
674
278
167 | 35
33
32
31
32 | 139
124
1400
1090
505 | 1020
583
432
384
327 | 194
177
564
746
463 | 188
165
153
384
462 | 465
270
479
457
349 | 35
33
31
30
61 | 30
28
29
33
29 |
12
12
12
14
17 | 9.6
9.9
16
14
12 | | 11
12
13
14
15 | 10
10
11
11
12 | 116
89
72
100
126 | 35
34
31
30
29 | 316
234
195
157
160 | 319
485
416
331
265 | 329
265
225
203
177 | 321
253
214
190
171 | 306
444
415
308
239 | 48
134
213
177
232 | 25
22
22
21
21 | 18
15
13
14
18 | 11
11
9.7
9.6
9.6 | | 16
17
18
19
20 | 15
12
13
14
15 | 92
72
62
56
51 | 28
28
27
27
26 | 310
296
260
211
179 | 223
740
1270
625
445 | 156
140
262
1450
622 | 154
147
142
347
741 | 199
212
148
121
102 | 401
177
109
93
92 | 22
30
20
18
18 | 18
22
23
16
14 | 9.5
9.8
16
14
11 | | 21
22
23
24
25 | 13
14
14
15
21 | 50
92
87
70
59 | 26
26
32
32
64 | 150
132
433
526
358 | 361
298
344
1060
580 | 2330
801
452
337
269 | 337
256
214
183
156 | 89
77
70
68
119 | 67
57
71
159
77 | 17
16
16
17
16 | 13
13
13
12
12 | 11
11
12
11 | | 26
27
28
29
30
31 | 27
38
26
19
18
18 | 56
51
47
46
45 | 69
61
60
54
60
55 | 263
217
1020
857
514
352 | 421
350
340
 | 230
205
183
165
148
134 | 139
145
120
105
98 | 73
62
59
52
47
50 | 60
50
77
71
52 | 15
14
14
14
14 | 12
12
11
11
11 | 12
11
18
12
11 | | TOTAL
MEAN | 465.6
15.0 | 4353
145 | 1197
38.6 | 10965
354 | 14556
520 | 12660
408 | 6704
223 | 6377
206 | 2801
93.4 | 724
23.4 | 437
14.1 | 341.6
11.4 | 2330 134 741 98 479 47 2.00 401 30 23 10 18 9.5 12 47 14 g1.5 .97 13.12 213 43 10 ## POTOMAC RIVER BASIN # 01634500 CEDAR CREEK NEAR WINCHESTER, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1938 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|-----|---| | | | | | | | | | | | | | | | | | .84 11.39 160 53 13 | | OCT | NOV | DEC | JAN | FEB | | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|------------|---------|----|------|------------|----------|------|-----------|---------|--------| | MEAN | 61.3 | 70.0 | 91.9 | 116 | 148 | | 208 | 175 | 130 | 85.0 | 33.1 | 39.5 | 39.5 | | MAX | 777 | 500 | 320 | 545 | 520 | | 708 | 600 | 382 | 664 | 181 | 420 | 523 | | (WY) | 1943 | 1986 | 1973 | 1996 | 1998 | | 1993 | 1983 | 1988 | 1972 | 1978 | 1955 | 1996 | | MIN | 6.01 | 8.64 | 7.95 | 10.2 | 21.5 | | 38.2 | 37.0 | 24.5 | 10.5 | 6.06 | 4.52 | 6.95 | | (WY) | 1964 | 1966 | 1966 | 1966 | 1959 | | 1981 | 1947 | 1969 | 1969 | 1966 | 1957 | 1986 | | | | | | | | | | | | | | | | | SUMMARY | Y STATIST | ICS | FOR : | 1997 CALEN | IDAR YE | AR | F | OR 1998 WA | TER YEAR | | WATER YEA | RS 1938 | - 1998 | | ANNUAL | TOTAL | | | 31540.4 | | | | 61581.2 | | | | | | | ANNUAL | MEAN | | | 86.4 | | | | 169 | | | 99.4 | | | | HIGHEST | r annual i | MEAN | | | | | | | | | 214 | | 1996 | | LOWEST | ANNUAL M | EAN | | | | | | | | | 28.3 | | 1969 | | HIGHEST | r daily M | EAN | | 1460 | Nov | 7 | | 2330 | Mar 21 | | e13900 | Oct 1 | 5 1942 | | LOWEST | DAILY ME | AN | | 9.7 | Oct | 8 | | 9.5 | Sep 16 | | 2.8 | aSep | 7 1964 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 10 | b0ct | 6 | | 9.9 | Sep 1 | | 3.0 | cSep | 2 1966 | | INSTANT | TANEOUS P | EAK FLOW | | | | | | 3800 | Nov 7 | | 22000 | Oct 1 | 5 1942 | | INSTANT | TANEOUS P | EAK STAGE | | | | | | 9.60 | Nov 7 | | d27.00 | Oct 1 | 5 1942 | | INSTANT | TANEOUS L | OW FLOW | | | | | | 8.5 | fSep 16 | | g1.5 | Feb | 2 1992 | | | | | | | | | | | | | | | | 1.64 22.24 425 61 12 ANNUAL RUNOFF (CFSM) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS ANNUAL RUNOFF (INCHES) a Also Sept. 3, 4, 7, 8, 1966. b Also Oct. 7, 1997. c Also Sept. 3, 1966. d From floodmarks. e Estimated. f Also Sept. 17, 27, 1998. g Result of freezeup. # 01635500 PASSAGE CREEK NEAR BUCKTON, VA LOCATION.--Lat 38°57'29", long 78°16'01", Warren County, Hydrologic Unit 02070006, on right bank 350 ft upstream from bridge on State Highway 55, 1.2 mi south of Buckton railroad station, 1.4 mi upstream from mouth, and 4.2 mi west of Riverton. DRAINAGE AREA. -- 87.8 mi². PERIOD OF RECORD.--October 1905 to July 1906 (gage heights only), April 1932 to current year. Prior to October 1966 published as "at Buckton." REVISED RECORDS. -- WSP 2103: Drainage area. GAGE.--Water-stage recorder and concrete control. Datum of gage is 525.14 ft above sea level. October 1905 to July 1906, nonrecording gage at site 1 mi downstream at different datum. Apr. 4, 1932, to Oct. 7, 1937, nonrecording gage at site 350 ft downstream at different datum. REMARKS.--No estimated daily discharges. Records good. Occasional diurnal fluctuation during low flow caused by State Fish Hatchery 2 mi upstream from station. At a point 14.2 mi upstream from station on Little Passage Creek, there has been a diversion in some years from Strasburg Reservoir, capacity, 54.6 acre-ft, by town of Strasburg for municipal water supply. There was no diversion during the year. Maximum discharge, 23,000 ft³/s, from rating curve extended above 5,200 ft³/s. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 7 | 2330 | 2,930 | 8.73 | Mar. 19 | 1130 | 1,450 | 6.78 | | Jan. 8 | 2030 | *3,270 | *9.12 | Mar. 21 | 0630 | 1,370 | 6.65 | | Jan. 28 | 2030 | 2,100 | 7.71 | Apr. 9 | 2130 | 1,060 | 6.13 | | Feb. 5 | 0830 | 2,420 | 8.12 | Apr. 20 | 0500 | 1,160 | 6.31 | | Feb. 17 | 2230 | 1,360 | 6.63 | Jun. 15 | 2230 | 1,910 | 7.45 | Minimum discharge, 3.0 ft³/s, Sept. 5, 6. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|--|---|--|--|--|---|--|--|--| | 1
2
3
4
5 | 19
14
12
11 | 16
71
66
38
28 | 46
41
36
35
35 | 43
57
70
162
156 | 366
293
259
427
2090 | 209
186
190
162
144 | 117
114
98
163
190 | 80
128
133
116
372 | 28
24
22
20
19 | 23
19
16
15 | 5.1
4.9
4.8
4.7
4.5 | 4.6
4.3
3.6
3.7
3.2 | | 6
7
8
9
10 | 9.9
9.5
9.0
8.5
8.4 | 22
1240
1410
399
237 | 33
31
29
28
32 | 125
109
1580
1730
660 | 1140
664
523
474
388 | 130
119
185
375
274 | 136
120
113
390
549 | 380
206
314
309
225 | 19
19
17
17
23 | 14
13
13
14
13 | 4.4
4.3
4.3
4.5
6.9 | 3.1
3.4
5.0
5.3
5.5 | | 11
12
13
14
15 | 8.1
7.5
8.1
9.0
9.0 | 151
113
91
97
114 | 38
36
32
31
29 | 360
257
214
170
169 | 369
664
493
364
284 | 197
168
150
142
128 | 307
229
189
169
152 | 198
249
285
202
160 | 23
22
39
47
431 | 11
9.7
9.1
8.9
8.7 | 17
14
9.2
8.0
9.0 | 5.0
4.5
4.4
4.0
3.8 | | 16
17
18
19
20 | 8.5
8.9
9.6
9.9 | 92
75
66
60
56 | 27
28
27
26
25 | 291
314
251
202
171 | 240
608
874
486
382 | 116
108
162
1020
554 | 139
132
143
219
778 | 134
311
163
121
97 | 421
117
72
59
56 | 8.4
8.2
7.8
7.1
6.8 | 9.0
9.8
10
8.9
7.2 | 3.8
3.8
15
6.2
5.2 | | 21
22
23
24
25 | 9.1
8.5
8.4
8.3 | 54
76
70
60
53 | 25
24
25
27
42 | 143
128
362
465
318 | 328
264
294
586
452 | 1130
588
394
298
236 | 310
221
182
155
133 | 82
70
62
60
83 | 43
36
56
78
46 | 6.6
6.6
6.0
5.6
5.5 | 6.4
5.9
5.6
5.6
5.1 | 5.0
6.0
6.6
5.9 | | 26
27
28
29
30
31 | 15
18
19
13
11 | 51
48
44
42
41 | 53
49
50
46
52
50 | 237
200
1080
1180
751
517 | 342
275
238
 | 202
181
162
146
133
121 | 119
116
100
88
82 | 59
50
47
40
35
31 | 36
29
28
33
29 | 5.5
5.3
5.3
5.2
5.1
5.3 | 4.9
4.7
4.5
4.4
4.1
4.3 | 5.8
6.5
6.1
5.3
5.0 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 333.1
10.7
19
7.5
.12
.14 | 4981
166
1410
16
1.89
2.11 | 1088
35.1
53
24
.40
.46 | 12472
402
1730
43
4.58
5.28 | 14167
506
2090
238
5.76
6.00 | 8310
268
1130
108
3.05
3.52 |
5953
198
778
82
2.26
2.52 | 4802
155
380
31
1.76
2.03 | 1909
63.6
431
17
.72
.81 | 302.7
9.76
23
5.1
.11
.13 | 206.0
6.65
17
4.1
.08 | 155.5
5.18
15
3.1
.06
.07 | 6 1996 Aug 5 1932 Sep ## POTOMAC RIVER BASIN # 01635500 PASSAGE CREEK NEAR BUCKTON, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1933 - | 1998. | BY | WATER | YEAR | (WY) |) | |------------|----|---------|------|------|-----|-------|-------|--------|-------|----|-------|------|------|---| | | | | | | | | | | | | | | | | .92 12.46 8.1 133 46 | | OC.I. | NOV | DEC | JAN | FEB | MAR | APR | MAY | Z JUN | JUL | AUG | SEP | |---------|------------|----------|-------|------------|---------|------|----------|----------|-------|----------|----------|---------| | MEAN | 39.9 | 43.8 | 68.1 | 100 | 121 | 157 | 136 | 95.3 | 51.9 | 18.3 | 25.7 | 27.1 | | MAX | 581 | 276 | 235 | 431 | 506 | 573 | 377 | 339 | 609 | 87.3 | 437 | 432 | | (WY) | 1943 | 1986 | 1973 | 1996 | 1998 | 1994 | 1952 | 1989 | 1972 | 1941 | 1955 | 1996 | | MIN | 2.85 | 4.48 | 4.60 | 6.25 | 5.79 | 20.5 | 20.9 | 14.6 | 6.01 | 1.87 | 1.94 | 2.37 | | (WY) | 1964 | 1966 | 1966 | 1966 | 1934 | 1959 | 1981 | 1963 | 1977 | 1934 | 1963 | 1936 | | | | | | | | | | | | | | | | SUMMARY | Y STATIST | ics | FOR 3 | 1997 CALEN | DAR YEA | ıR | FOR 1998 | WATER YE | CAR | WATER YE | ARS 1933 | - 1998 | | ANNUAL | TOTAL | | | 29414.9 | | | 54679. | 3 | | | | | | ANNUAL | MEAN | | | 80.6 | | | 150 | | | 73.5 | | | | HIGHEST | r annual n | MEAN | | | | | | | | 161 | | 1996 | | LOWEST | ANNUAL M | EAN | | | | | | | | 20.0 | | 1934 | | HIGHEST | C DAILY M | EAN | | 1830 | Jun | 2 | 2090 | Feb | 5 | 9290 | Oct | 15 1942 | | LOWEST | DAILY MEA | AN | | 4.4 | Sep | 7 | 3. | 1 Sep | 6 | .40 |) Jul | 20 1934 | | ANNUAL | SEVEN-DAY | MINIMUM | | 5.1 | Sep | 3 | 3. | 7 Sep | 1 | .50 |) Jul | 15 1934 | | INSTANT | TANEOUS PI | EAK FLOW | | | | | 3270 | Jan | 8 | 23000 | Sep | 6 1996 | 9.12 Jan 8 5 3.0 aSep 1.71 23.17 5.3 381 47 15.89 b.10 11.37 4.4 158 26 .84 INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) ANNUAL RUNOFF (CFSM) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Sept. 6, 1997. b Observed. # 01638480 CATOCTIN CREEK AT TAYLORSTOWN, VA LOCATION.--Lat 39°15'18", long 77°34'36", Loudoun County, Hydrologic Unit 02070008, on left bank at downstream side of bridge on State Highway 663 at Taylorstown and 3.2 mi downstream from Milltown Creek. DRAINAGE AREA. -- 89.6 mi². PERIOD OF RECORD. -- August 1971 to current year. GAGE.--Water-stage recorder. Datum of gage is 247.37 ft above sea level. Prior to Nov. 3, 1983, at site 60 ft upstream at datum 1.78 ft higher. REMARKS.--Records good except those for period with ice efect, Jan. 1 and period of doubtful gage-height record, July 4, 5, which are fair. Maximum discharge, 23,800 ft³/s, from rating curve extended above 7,400 ft³/s on basis of contracted-opening measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,200 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 7 | 2000 | 2,100 | 7.77 | Feb. 24 | 0245 | 1,320 | 6.44 | | Jan. 8 | 1200 | 7,070 | 13.37 | Mar. 19 | 0400 | 2,600 | 8.56 | | Jan. 23 | 1630 | 1,830 | 7.33 | Mar. 21 | 0400 | *7,140 | *13.43 | | Jan. 28 | 1600 | 3,970 | 10.33 | Apr. 9 | 1740 | 1,870 | 7.39 | | Feb. 5 | 0730 | 2,770 | 8.81 | May 8 | 1030 | 1,330 | 6.47 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 0.92 ft³/s, Sept. 17. | | | DISCHAR | JE, IN CO | DIC PEET | | Y MEAN VA | | DER IJJI. | IO DEFIEM | DER 1990 | | | |-------|-------|---------|-----------|----------|-------|-----------|------|-----------|-----------|----------|-------|------| | | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 8.1 | 53 | 49 | e42 | 280 | 224 | 306 | 101 | 54 | 60 | 19 | 2.9 | | 2 | 4.6 | 120 | 42 | 48 | 245 | 209 | 295 | 198 | 50 | 49 | 14 | 2.7 | | 3 | 3.3 | 79 | 35 | 56 | 226 | 382 | 190 | 167 | 51 | 44 | 11 | 2.7 | | 4 | 2.7 | 32 | 34 | 69 | 663 | 232 | 209 | 130 | 48 | 42 | 9.9 | 2.5 | | 5 | 2.1 | 20 | 35 | 69 | 2050 | 194 | 196 | 118 | 45 | e34 | 9.2 | 2.0 | | 6 | 1.9 | 16 | 31 | 63 | 589 | 174 | 160 | 154 | 45 | e28 | 7.6 | 1.6 | | 7 | 1.6 | 518 | 29 | 62 | 385 | 161 | 146 | 116 | 42 | 26 | 6.7 | 1.6 | | 8 | 1.7 | 904 | 27 | 3730 | 309 | 313 | 141 | 648 | 39 | 34 | 6.7 | 1.9 | | 9 | 1.9 | 269 | 27 | 857 | 258 | 737 | 598 | 524 | 38 | 41 | 6.7 | 2.0 | | 10 | 2.6 | 156 | 30 | 436 | 227 | 390 | 413 | 318 | 46 | 33 | 7.9 | 4.0 | | 11 | 2.4 | 105 | 40 | 344 | 209 | 272 | 247 | 277 | 53 | 26 | 11 | 3.5 | | 12 | 2.6 | 79 | 36 | 295 | 262 | 232 | 198 | 361 | 80 | 23 | 11 | 2.8 | | 13 | 2.8 | 64 | 32 | 269 | 194 | 209 | 172 | 346 | 186 | 21 | 8.2 | 2.1 | | 14 | 3.0 | 92 | 30 | 236 | 170 | 198 | 161 | 245 | 297 | 21 | 6.9 | 1.6 | | 15 | 4.0 | 110 | 29 | 286 | 154 | 177 | 152 | 203 | 121 | 20 | 8.3 | 1.3 | | 16 | 5.7 | 75 | 27 | 675 | 144 | 163 | 142 | 178 | 121 | 21 | 11 | 1.2 | | 17 | 4.8 | 61 | 26 | 334 | 295 | 152 | 145 | 159 | 223 | 21 | 12 | 1.1 | | 18 | 4.0 | 52 | 26 | 328 | 584 | 263 | 148 | 137 | 104 | 20 | 15 | 1.2 | | 19 | 4.3 | 47 | 24 | 251 | 310 | 1330 | 196 | 122 | 82 | 17 | 12 | 1.2 | | 20 | 4.3 | 44 | 24 | 215 | 250 | 518 | 438 | 109 | 90 | 16 | 8.1 | 2.9 | | | | | | | | | | | | | | | | 21 | 4.1 | 42 | 24 | 184 | 227 | 4160 | 209 | 101 | 67 | 17 | 6.6 | 2.8 | | 22 | 3.7 | 106 | 24 | 169 | 195 | 650 | 172 | 92 | 60 | 18 | 6.4 | 2.5 | | 23 | 3.8 | 81 | 29 | 831 | 317 | 411 | 156 | 86 | 78 | 17 | 5.9 | 3.1 | | 24 | 3.8 | 61 | 31 | 475 | 984 | 332 | 142 | 86 | 66 | 16 | 5.4 | 3.1 | | 25 | 6.4 | 51 | 86 | 306 | 388 | 281 | 126 | 99 | 58 | 14 | 4.6 | 2.7 | | 26 | 12 | 47 | 75 | 249 | 295 | 244 | 118 | 82 | 47 | 13 | 4.4 | 2.6 | | 27 | 22 | 44 | 56 | 210 | 256 | 218 | 124 | 74 | 42 | 13 | 10 | 2.3 | | 28 | 17 | 40 | 66 | 2420 | 231 | 196 | 108 | 73 | 186 | 12 | 16 | 1.9 | | 29 | 10 | 39 | 57 | 840 | | 178 | 99 | 67 | 111 | 12 | 6.9 | 1.6 | | 30 | 6.7 | 39 | 61 | 433 | | 163 | 95 | 62 | 75 | 11 | 4.2 | 1.3 | | 31 | 5.0 | | 55 | 337 | | 150 | | 58 | | 21 | 3.4 | | | TOTAL | 162.9 | 3446 | 1197 | 15119 | 10697 | 13513 | 6002 | 5491 | 2605 | 761 | 276.0 | 66.7 | | MEAN | 5.25 | 115 | 38.6 | 488 | 382 | 436 | 200 | 177 | 86.8 | 24.5 | 8.90 | 2.22 | | MAX | 22 | 904 | 86 | 3730 | 2050 | 4160 | 598 | 648 | 297 | 60 | 19 | 4.0 | | MIN | 1.6 | 16 | 24 | 42 | 144 | 150 | 95 | 58 | 38 | 11 | 3.4 | 1.1 | | CFSM | .06 | 1.28 | .43 | 5.44 | 4.26 | 4.86 | 2.23 | 1.98 | .97 | | .10 | .02 | | IN. | .07 | 1.43 | .50 | 6.28 | 4.44 | 5.61 | 2.49 | 2.28 | 1.08 | .32 | .11 | .03 | | | | | | | | | | | | | | | e Estimated. Jun 22 1972 dSep 3 1991 ## POTOMAC RIVER BASIN # 01638480 CATOCTIN CREEK AT TAYLORSTOWN, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1971 | - | 1998, | BY | WATER | YEAR | (WY) | | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------|--| |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------|--| | | OG.I. | NOV | DEC | JAN | FEB | | MAR | APR | MAY | JUN | JUL | AUG | | SEP | |---------|------------|-----------|-------|------------|--------|----|------|-------------|----------|------|----------|---------|-----|------| | MEAN | 68.6 | 63.8 | 119 | 143 | 153 | | 196 | 165 | 126 | 94.9 | 49.5 | 33.0 | | 46.8 | | MAX | 414 | 148 | 358 | 488 | 382 | | 580 | 476 | 445 | 706 | 284 | 186 | | 281 | | (WY) | 1977 | 1997 | 1997 | 1998 | 1998 | | 1993 | 1983 | 1989 | 1972 | 1987 | 1984 | | 1979 | | MIN | 2.07 | 5.16 | 10.1 | 10.2 | 40.4 | | 43.7 | 48.6 | 31.4 | 7.53 | 2.80 | 2.02 | | 1.05 | | (WY) | 1987 | 1992 | 1981 | 1981 | 1992 | | 1981 | 1985 | 1977 | 1986 | 1986 | 1991 | | 1986 | | | | | | | | | | | | | | | | | | SUMMARY | STATIST | ics | FOR 1 | 1997 CALEN | DAR YE | AR | F | OR 1998 WAT | TER YEAR | 1 | WATER YE | ARS 197 | 1 - | 1998 | | ANNUAL | TOTAL | | | 23920.9 | | | | 59336.6 | | | | | | | | ANNUAL | MEAN | | | 65.5 | | | | 163 | | | 104 | | | | | HIGHEST | ' ANNUAL I | MEAN | | | | | | | | | 196 | | | 1972 | | LOWEST | ANNUAL MI | EAN | | | | | | | | | 34.6 | | | 1981 | | HIGHEST | DAILY M | EAN | | 904 | Nov | 8 | | 4160 | Mar 21 | | e9530 | Jun | 22 | 1972 | | LOWEST | DAILY ME | AN | | 1.4 | aSep | 2 | | 1.1 | Sep 17 | | .18 | Sep | 3 | 1991 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 1.5 | bSep | 1 | | 1.4 | Sep 13 | | .27 | Sep | 21 | 1986 | | INSTANT | ANEOUS PI | EAK FLOW | | | | | | 7140 | Mar 21 | | 23800 | Jun | 22 | 1972 | | | | | | | | | | | | | | | | | | ANNUAL MEAN | 65.5 | 103 | | T04 | |--------------------------|----------|--------|--------|--------| | HIGHEST ANNUAL MEAN | | | | 196 | | LOWEST ANNUAL MEAN | | | | 34.6 | | HIGHEST DAILY MEAN | 904 Nov | 8 4160 | Mar 21 | e9530 | | LOWEST DAILY MEAN | 1.4 aSep | 2 1.1 | Sep 17 | .18 | | ANNUAL SEVEN-DAY MINIMUM | 1.5 bSep | 1 1.4 | Sep 13 | .27 | | INSTANTANEOUS PEAK FLOW | | 7140 | Mar 21 | 23800 | | INSTANTANEOUS PEAK STAGE | | 13.43 | Mar 21 | c23.83 | | INSTANTANEOUS LOW FLOW | | .92 | Sep 17 | .15 | | ANNUAL RUNOFF (CFSM) | .73 | 1.81 | | 1.16 | | ANNUAL RUNOFF (INCHES) | 9.93 | 24.64 | | 15.80 | | 10 PERCENT EXCEEDS | 146 | 333 | | 214 | | 50 PERCENT EXCEEDS | 39 | 60 | | 50 | | 90 PERCENT EXCEEDS | 2.7 | 3.0 | |
7.9 | | | | | | | a Also Sept. 4, 5, 1997. b Also Sept. 2, 1997. c From floodmarks, site and datum then in use. d Also Sept. 4, 1991. e Estimated. #### 01644000 GOOSE CREEK NEAR LEESBURG, VA LOCATION.--Lat 39°01'10", long 77°34'40", Loudoun County, Hydrologic Unit 02070008, on left bank 400 ft upstream from bridge on State Highway 621 at Evergreen Mills, 1.4 mi downstream from Little River, 6.7 mi south of Leesburg, and 10.9 mi upstream from mouth. DRAINAGE AREA. -- 332 mi². PERIOD OF RECORD.--July 1909 to April 1911, September 1911 to December 1912, January 1930 to current year. REVISED RECORDS.--WSP 851: 1935-37. WSP 951: 1933(M), 1937. WSP 1302: 1934-35(M). WSP 2103: Drainage area. WDR VA-72-1: 1937(M), 1943(M), 1951(M), 1956(M). WDR VA-79-1: 1978. GAGE.--Water-stage recorder. Datum of gage is 248.93 ft above sea level. July 12, 1909, to Dec. 31, 1912, nonrecording gage at site 1,000 ft downstream at different datum. Jan. 21, 1930, to Nov. 28, 1938, nonrecording gage at site 400 ft downstream at datum 4.20 ft lower than present datum. REMARKS.--Records good except for period of doubtful gage-height record, Jan. 6, 7, which is fair. National Weather Service gage-height telemeter at station. Maximum discharge, $78,100 \text{ ft}^3/\text{s}$, from rating curve extended above $11,000 \text{ ft}^3/\text{s}$ on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in May or June 1889 reached a stage of about 29 ft, discharge, about $45,000~{\rm ft}^3/{\rm s}$, site and datum in use 1930-38, from information by local residents. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 4,000 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 7 | 2330 | 6,210 | 9.68 | Feb. 5 | 0930 | 8,390 | 12.26 | | Jan. 9 | 0100 | 8,090 | 11.95 | Feb. 18 | 0300 | 4,960 | 8.04 | | Jan. 23 | 2000 | 4,530 | 7.40 | Mar. 19 | 0900 | 4,750 | 7.73 | | Jan. 29 | 0100 | 10,300 | 14.02 | Mar. 21 | 1330 | *16,500 | *17.43 | Minimum discharge, 3.4 ft³/s, Sept. 14, 16, 17. | | | DISCHARGE, | IN CU | BIC FEET | | D, WATER
Y MEAN VA | | BER 1997 ' | TO SEPTEME | BER 1998 | | | |-------|-------|------------|-------|----------|-------|-----------------------|-------|------------|------------|----------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 37 | 134 | 184 | 158 | 1120 | 879 | 677 | 350 | 195 | 249 | 31 | 8.4 | | 2 | 20 | 512 | 163 | 186 | 940 | 794 | 876 | 697 | 178 | 192 | 28 | 8.0 | | 3 | 13 | 408 | 141 | 198 | 832 | 985 | 578 | 606 | 211 | 161 | 25 | 7.5 | | 4 | 10 | 167 | 138 | 235 | 2270 | 749 | 662 | 543 | 180 | 147 | 23 | 6.8 | | 5 | 9.0 | 113 | 139 | 278 | 7470 | 654 | 690 | 476 | 168 | 144 | 21 | 6.3 | | 6 | 8.1 | 87 | 132 | e240 | 2970 | 595 | 541 | 491 | 163 | 133 | 19 | 5.9 | | 7 | 8.1 | 1930 | 120 | e225 | 1880 | 558 | 490 | 417 | 155 | 121 | 18 | 5.4 | | 8 | 6.8 | 3340 | 114 | 3300 | 1470 | 916 | 471 | 2040 | 143 | 126 | 17 | 8.0 | | 9 | 6.2 | 1180 | 112 | 3740 | 1160 | 2310 | 954 | 1950 | 137 | 142 | 18 | 13 | | 10 | 6.0 | 729 | 123 | 1380 | 988 | 1540 | 1590 | 1210 | 180 | 136 | 21 | 6.8 | | 10 | 0.0 | 129 | 123 | 1300 | 900 | 1340 | 1390 | 1210 | 100 | 130 | 21 | 0.0 | | 11 | 5.9 | 502 | 148 | 955 | 884 | 1090 | 871 | 1020 | 240 | 112 | 29 | 5.3 | | 12 | 6.3 | 392 | 138 | 736 | 1210 | 906 | 711 | 1070 | 445 | 93 | 26 | 4.3 | | 13 | 6.5 | 322 | 126 | 645 | 850 | 791 | 625 | 1050 | 702 | 85 | 28 | 3.7 | | 14 | 6.4 | 412 | 119 | 535 | 728 | 734 | 567 | 793 | 979 | 79 | 23 | 3.5 | | 15 | 8.7 | 453 | 113 | 638 | 661 | 659 | 536 | 684 | 447 | 74 | 22 | 3.7 | | 16 | 15 | 332 | 108 | 1930 | 609 | 591 | 497 | 596 | 1070 | 72 | 48 | 3.4 | | 17 | 10 | 272 | 107 | 1050 | 1400 | 552 | 492 | 535 | 1440 | 72 | 41 | 3.6 | | 18 | 22 | 236 | 105 | 998 | 3260 | 848 | 476 | 463 | 501 | 71 | 49 | 12 | | 19 | 23 | 219 | 102 | 779 | 1870 | 3190 | 500 | 415 | 362 | 63 | 38 | 19 | | 20 | 25 | 204 | 99 | 679 | 1400 | 1800 | 1410 | 378 | 316 | 57 | 27 | 9.6 | | 21 | 23 | 199 | 98 | 581 | 1170 | 11800 | 769 | 348 | 254 | 52 | 22 | 6.3 | | 22 | 19 | 378 | 98 | 526 | 948 | 3500 | 649 | 323 | 230 | 47 | 19 | 5.6 | | 23 | 16 | 317 | 115 | 2170 | 1180 | 2080 | 580 | 304 | 319 | 43 | 18 | 5.0 | | 24 | 17 | 253 | 123 | 2040 | 3100 | 1520 | 520 | 302 | 706 | 45 | 16 | 4.4 | | 25 | 26 | 219 | 241 | 1380 | 1670 | 1210 | 455 | 336 | 301 | 45 | 14 | 4.1 | | 26 | 44 | 205 | 268 | 1060 | 1280 | 1030 | 420 | 300 | 224 | 47 | 12 | 4.5 | | 27 | 65 | 196 | 214 | 879 | 1100 | 910 | 422 | 266 | 188 | 44 | 27 | 5.5 | | 28 | 71 | 177 | 242 | 6260 | 969 | 815 | 385 | 269 | 526 | 37 | 19 | 5.2 | | 29 | 54 | 170 | 218 | 5500 | | 729 | 346 | 244 | 461 | 33 | 12 | 4.8 | | 30 | 40 | 168 | 230 | 2030 | | 673 | 327 | 221 | 311 | 31 | 9.8 | 4.6 | | | 32 | 108 | | 1450 | | 609 | 327 | 207 | 311 | | | | | 31 | 32 | | 218 | 1450 | | 609 | | 207 | | 31 | 9.1 | | | TOTAL | 660.0 | 14226 | 4596 | 42761 | 45389 | 46017 | 19087 | 18904 | 11732 | 2784 | 729.9 | 194.0 | | MEAN | 21.3 | 474 | 148 | 1379 | 1621 | 1484 | 636 | 610 | 391 | 89.8 | 23.5 | 6.47 | | MAX | 71 | 3340 | 268 | 6260 | 7470 | 11800 | 1590 | 2040 | 1440 | 249 | 49 | 19 | | MIN | 5.9 | 87 | 98 | 158 | 609 | 552 | 327 | 207 | 137 | 31 | 9.1 | 3.4 | | CFSM | .06 | 1.43 | .45 | 4.15 | 4.88 | 4.47 | 1.92 | 1.84 | 1.18 | . 27 | .07 | .02 | | IN. | .07 | 1.59 | .51 | 4.79 | 5.09 | 5.16 | 2.14 | 2.12 | 1.31 | .31 | .08 | .02 | e Estimated. # 01644000 GOOSE CREEK NEAR LEESBURG, VA--Continued | STATIST | TICS OF M | ONTHLY MEAN | DATA | FOR WATER | YEARS 1909 | - 1913, | 1930 - | 1998, BY | WATER YEAR | (WY) | | | |---------|-----------|-------------|------|------------|------------|---------|---------|-----------|------------|---------|-----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 197 | 223 | 334 | 421 | 521 | 599 | 519 | 372 | 263 | 141 | 157 | 134 | | MAX | 2265 | 1155 | 1316 | 1499 | 1621 | 1892 | 1766 | 1322 | 2887 | 1207 | 1188 | 1054 | | (WY) | 1943 | 1933 | 1993 | 1996 | 1998 | 1993 | 1983 | 1989 | 1972 | 1956 | 1937 | 1945 | | MIN | 2.12 | 3.83 | 14.8 | 25.8 | 26.3 | 83.6 | 141 | 85.5 | 38.7 | 9.61 | 1.86 | 1.38 | | (WY) | 1931 | 1931 | 1966 | 1966 | 1931 | 1931 | 1981 | 1969 | 1986 | 1966 | 1930 | 1985 | | | | | | | | | | | | | | | | SUMMAR | Y STATIST | ICS | FOR | R 1997 CAL | ENDAR YEAR | F | OR 1998 | WATER YEA | ıR | WATER Y | EARS 1910 | | | | | | | | | | | | | | 1930 | - 1998 | | ANNUAL | ΤΟΤΔΙ. | | | 94421. | 4 | | 207079. | 9 | | | | | | ANNUAL | | | | 259 | = | | 567 | | | 326 | | | | | r annual | MEAN | | 233 | | | 307 | | | 664 | | 1972 | | | ANNUAL M | | | | | | | | | 55.2 | ? | 1931 | | | r Daily M | | | 3650 | Mar 4 | | 11800 | Mar 2 | 1 | e53600 | | 22 1972 | | | DAILY ME | | | 3. | | | 3. | | | .4 | | 27 1941 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 5. | - | | 3. | _ | | .4 | _ | 19 1985 | | | TANEOUS P | | | | 5 | | 16500 | Mar 2 | | 78100 | | 22 1972 | | INSTAN | TANEOUS P | EAK STAGE | | | | | 17. | 43 Mar 2 | :1 | b30.5 | | 22 1972 | | INSTAN | TANEOUS L | OW FLOW | | | | | 3. | 4 cSep 1 | .4 | (d) | ı | (f) | | ANNUAL | RUNOFF (| CFSM) | | | 78 | | 1. | 71 | | . 9 | | | | ANNUAL | RUNOFF (| INCHES) | | 10. | | | 23. | 20 | | 13.3 | 33 | | | 10 PERG | CENT EXCE | EDS | | 553 | | | 1380 | | | 704 | | | | | | | | | | | | | | | | | 235 8.9 161 18 140 9.4 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Sept. 28-30, 1941. b From high-water mark in gage house. c Also Sept. 16, 17, 1998. d Not determined. e Estimated. f Probably occurred Sept. 27-30, 1941. # 01646000 DIFFICULT RUN NEAR GREAT FALLS, VA LOCATION.--Lat 38°58'33", long 77°14'46", Fairfax County, Hydrologic Unit 02070008, on right bank 250 ft downstream from bridge on State Highway 193, 300 ft downstream from Rocky Run, 0.7 mi upstream from mouth, and 1.5 mi southeast of Great Falls. DRAINAGE AREA. -- 57.9 mi². PERIOD OF RECORD.--October 1934 to current year. Monthly discharge only October to December 1934, published in WSP 1302. REVISED RECORDS.--WSP 951: 1936(M), 1937-38, 1939-40(M). WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 151.30 ft above sea level. REMARKS.--Records good except those for periods of doubtful gage-height record, Dec. 16-21, and June 8, 9, which are fair. Maximum discharge, 32,200 ft³/s, from rating curve extended above 1,600 ft³/s on basis of contracted-opening measurement at gage height 13.18 ft and slope-area measurement at gage height 21.40 ft. Minimum gage height, 1.65 ft, Sept. 9, 10, 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 8 | 0100 | 1,540 | 8.16 | Feb. 18 | 0330 | 1,000 | 7.02 | | Jan. 23 | 2030 | 1,320 | 7.71 | Feb. 23 | 2400 | 1,160 | 7.38 | | Jan. 28 | 1900 | 2,060 | 9.08 | Mar. 19 | 0700 | 1,260 | 7.59 | | Feb. 5 | 0430 | 2,180 | 9.29 | Mar. 21 | 0630 | *3,030 | *10.51 |
DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 4.7 ft³/s, Sept. 29, 30. | | | DISCH | ARGE, IN (| COBIC FEE. | | JND, WATER
ILY MEAN | | TOBER 199 | / TO SEPTI | EMBER 199 | 18 | | |-------|------|-------|------------|------------|------|------------------------|------|-----------|------------|-----------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 15 | 126 | 39 | 44 | 73 | 84 | 117 | 108 | 40 | 48 | 26 | 6.1 | | 2 | 13 | 122 | 39 | 43 | 67 | 93 | 360 | 216 | 38 | 35 | 18 | 8.2 | | 3 | 13 | 85 | 30 | 45 | 68 | 387 | 108 | 230 | 50 | 33 | 16 | 7.3 | | 4 | 13 | 39 | 32 | 44 | 676 | 121 | 168 | 195 | 36 | 32 | 15 | 6.3 | | 5 | 13 | 29 | 33 | 41 | 1480 | 94 | 112 | 118 | 36 | 32 | 13 | 6.0 | | 6 | 12 | 26 | 31 | 41 | 224 | 85 | 89 | 215 | 36 | 29 | 12 | 5.5 | | 7 | 12 | 600 | 30 | 52 | 126 | 80 | 84 | 103 | 33 | 28 | 12 | 5.4 | | 8 | 11 | 721 | 30 | 95 | 99 | 184 | 82 | 402 | e31 | 91 | 12 | 28 | | 9 | 12 | 261 | 32 | 63 | 93 | 499 | 373 | 144 | e30 | 51 | 12 | 10 | | 10 | 12 | 92 | 45 | 50 | 86 | 155 | 217 | 107 | 56 | 34 | 175 | 5.9 | | 11 | 11 | 57 | 53 | 44 | 71 | 100 | 112 | 104 | 44 | 29 | 83 | 5.7 | | 12 | 11 | 45 | 36 | 42 | 131 | 89 | 93 | 227 | 231 | 27 | 29 | 5.3 | | 13 | 12 | 42 | 32 | 44 | 75 | 82 | 86 | 155 | 196 | 26 | 19 | 6.4 | | 14 | 12 | 197 | 31 | 40 | 67 | 81 | 84 | 93 | 114 | 25 | 17 | 5.3 | | 15 | 20 | 99 | 31 | 112 | 63 | 76 | 82 | 79 | 185 | 25 | 16 | 5.3 | | 16 | 17 | 54 | e30 | 217 | 61 | 74 | 78 | 71 | 265 | 25 | 15 | 5.0 | | 17 | 16 | 48 | e30 | 73 | 333 | 72 | 135 | 67 | 83 | 24 | 15 | 7.5 | | 18 | 173 | 51 | e29 | 65 | 484 | 227 | 124 | 63 | 54 | 33 | 19 | 45 | | 19 | 35 | 47 | e29 | 55 | 136 | 753 | 131 | 59 | 48 | 23 | 13 | 12 | | 20 | 22 | 42 | e28 | 51 | 102 | 212 | 247 | 57 | 102 | 22 | 12 | 7.7 | | 21 | 18 | 48 | e28 | 47 | 90 | 1510 | 101 | 54 | 49 | 24 | 11 | 7.2 | | 22 | 16 | 122 | 35 | 45 | 78 | 275 | 86 | 51 | 45 | 37 | 11 | 65 | | 23 | 19 | 58 | 72 | 634 | 325 | 151 | 82 | 50 | 50 | 22 | 10 | 19 | | 24 | 19 | 47 | 44 | 290 | 880 | 120 | 78 | 49 | 154 | 23 | 10 | 8.2 | | 25 | 155 | 43 | 139 | 120 | 185 | 106 | 73 | 64 | 53 | 19 | 9.4 | 6.4 | | 26 | 49 | 43 | 60 | 75 | 116 | 100 | 70 | 49 | 42 | 21 | 8.3 | 7.8 | | 27 | 149 | 40 | 57 | 66 | 99 | 96 | 82 | 47 | 38 | 20 | 8.3 | 6.9 | | 28 | 38 | 38 | 77 | 1380 | 91 | 92 | 69 | 47 | 109 | 18 | 8.6 | 7.3 | | 29 | 25 | 36 | 54 | 419 | | 87 | 67 | 44 | 59 | 18 | 7.3 | 5.6 | | 30 | 22 | 33 | 60 | 115 | | 84 | 66 | 42 | 45 | 17 | 6.9 | 7.5 | | 31 | 21 | | 56 | 76 | | 82 | | 40 | | 58 | 6.3 | | | TOTAL | 986 | 3291 | 1352 | 4528 | 6379 | 6251 | 3656 | 3350 | 2352 | 949 | 646.1 | 334.8 | | MEAN | 31.8 | 110 | 43.6 | 146 | 228 | 202 | 122 | 108 | 78.4 | 30.6 | 20.8 | 11.2 | | MAX | 173 | 721 | 139 | 1380 | 1480 | 1510 | 373 | 402 | 265 | 91 | 175 | 65 | | MIN | 11 | 26 | 28 | 40 | 61 | 72 | 66 | 40 | 30 | 17 | 6.3 | 5.0 | | CFSM | .55 | 1.89 | .75 | 2.52 | 3.93 | 3.48 | 2.10 | 1.87 | 1.35 | .53 | .36 | .19 | | IN. | .63 | 2.11 | . 87 | 2.91 | 4.10 | 4.02 | 2.35 | 2.15 | 1.51 | .61 | .42 | .22 | | TIN. | .03 | ۷.11 | .07 | 4.71 | 4.10 | 4.02 | 4.33 | 2.13 | 1.01 | .01 | . 42 | . 44 | e Estimated. ## POTOMAC RIVER BASIN # 01646000 DIFFICULT RUN NEAR GREAT FALLS, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1935 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|-----|---| OC.I. | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|------------|------|-------|------------|----------|------|--------------------|-----------|------|----------|----------|---------| | MEAN | 40.4 | 51.2 | 61.0 | 75.3 | 83.1 | 90.6 | 82.5 | 72.1 | 67.9 | 41.3 | 38.2 | 36.4 | | MAX | 317 | 116 | 165 | 194 | 228 | 227 | 224 | 203 | 1210 | 115 | 143 | 245 | | (WY) | 1980 | 1973 | 1997 | 1996 | 1998 | 1993 | 1973 | 1989 | 1972 | 1975 | 1955 | 1975 | | MIN | 4.69 | 7.75 | 11.4 | 16.5 | 32.4 | 33.2 | 31.5 | 21.8 | 10.0 | 4.52 | 1.88 | 5.57 | | (WY) | 1942 | 1942 | 1966 | 1966 | 1942 | 1981 | 1985 | 1955 | 1986 | 1955 | 1966 | 1986 | | SUMMAR | Y STATIST | ICS | FOR : | 1997 CALEN | DAR YEAR | F | OR 1998 W <i>I</i> | ATER YEAR | | WATER YE | ARS 1935 | - 1998 | | ANNUAL | TOTAL | | | 25582.4 | | | 34074.9 | | | | | | | ANNUAL | MEAN | | | 70.1 | | | 93.4 | | | 61.5 | | | | HIGHES | T ANNUAL I | MEAN | | | | | | | | 184 | | 1972 | | LOWEST | ANNUAL M | EAN | | | | | | | | 28.4 | | 1966 | | HIGHES | T DAILY M | EAN | | 1140 | May 26 | | 1510 | Mar 21 | | e25000 | Jun : | 22 1972 | | LOWEST | DAILY ME | AN | | 8.2 | Aug 16 | | 5.0 | Sep 16 | | .10 | aSep | 7 1966 | | | | | | | | | | | | | | | | HIGHEST ANNUAL MEAN | | | | | 184 | 1972 | |--------------------------|----------|------|-------|---------|--------|-------------| | LOWEST ANNUAL MEAN | | | | | 28.4 | 1966 | | HIGHEST DAILY MEAN | 1140 May | 26 | 1510 | Mar 21 | e25000 | Jun 22 1972 | | LOWEST DAILY MEAN | 8.2 Aug | , 16 | 5.0 | Sep 16 | .10 | aSep 7 1966 | | ANNUAL SEVEN-DAY MINIMUM | 8.9 Aug | f 10 | 5.6 | Sep 10 | .16 | Sep 3 1966 | | INSTANTANEOUS PEAK FLOW | | | 3030 | Mar 21 | 32200 | Jun 22 1972 | | INSTANTANEOUS PEAK STAGE | | | 10.51 | Mar 21 | b21.40 | Jun 22 1972 | | INSTANTANEOUS LOW FLOW | | | 4.7 | cSep 29 | .05 | dSep 9 1966 | | ANNUAL RUNOFF (CFSM) | 1.21 | | 1.61 | | 1.06 | | | ANNUAL RUNOFF (INCHES) | 16.44 | | 21.89 | | 14.44 | | | 10 PERCENT EXCEEDS | 126 | | 189 | | 105 | | | 50 PERCENT EXCEEDS | 51 | | 49 | | 38 | | | 90 PERCENT EXCEEDS | 14 | | 11 | | 13 | | | | | | | | | | a Also Sept. 8, 9, 1966. b From floodmarks. c Also Sept. 30, 1998. d Also Sept. 10, 1966. e Estimated. #### 01654000 ACCOTINK CREEK NEAR ANNANDALE, VA LOCATION.--Lat 38°48'46", long 77°13'43", Fairfax County, Hydrologic Unit 02070010, on left bank 800 ft upstream from bridge on State Highway 620, 0.2 mi upstream from Long Branch, and 2.3 mi southwest of Annandale. DRAINAGE AREA. -- 23.5 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- March 1947 to current year (fragmentary prior to October 1947). REVISED RECORDS. -- WSP 1502: 1952. WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 191.24 ft above sea level (levels by Stone and Webster Engineering Corporation). Prior to May 12, 1949, nonrecording gage at site 800 ft downstream at datum 0.33 ft lower. May 12, 1949, to June 4, 1970, water-stage recorder at site 800 ft downstream at datum 0.33 ft lower. REMARKS.--No estimated daily discharges. Records good. Maximum discharge, 12,000 ft³/s, from rating curve extended above 6,600 ft³/s on basis of contracted-opening and flow-over-road measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,400 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 7 | 2000 | 1,590 | 8.20 | Feb. 17 | 2300 | 1,850 | 8.63 | | Jan. 23 | 1715 | 1,910 | 8.74 | Mar. 19 | 0500 | 1,400 | 7.85 | | Jan. 28 | 1530 | 1,920 | 8.75 | Mar. 21 | 0515 | *2,670 | *9.73 | | Feb. 5 | 0330 | 1,680 | 8.35 | Jun. 15 | 2300 | 2,050 | 8.96 | Minimum discharge, 0.40 ft³/s, Sept. 29, 30. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1.7 70 76 88 10 8.7 15 19 11 2.0 5.2 . 85 2 5 9 109 200 8 3 8 4 1 2 29 8 1 14 83 3 1 81 3 1.2 8 5 5.7 8.9 13 206 2.0 153 12 7.6 2 8 .78 .80 4 1.2 4.8 6.4 8.1 699 31 98 70 7.4 7.4 2.6 7 7 5 1 2 3.9 7.8 7.7 676 23 25 65 7.1 2.4 .70 6 1.1 3.4 5.9 7.7 63 19 2.0 113 10 6.4 2.3 . 62 7.2 7 1.1 607 5.4 36 31 19 18 39 6.3 2.3 1.8 8 .99 181 5.2 41 22 123 17 181 6.8 74 2.2 23 114 2.2 9 .92 6.7 18 293 266 53 10 15 2.2 18 10 1.1 16 28 11 16 38 46 34 34 7.7 59 1.3 10 8.6 23 24 24 13 6.0 12 .88 11 1.1 15 43 12 1.1 7.7 7.1 8.2 63 21 20 145 145 5.5 3.6 .65 13 1.1 9.9 6.2 11 17 19 18 50 119 5.0 2.7 .56 14 1.5 125 8.1 15 19 18 21 4.8 .53 15 3.9 23 5.6 109 13 17 17 20 485 4.7 2.2 .52 16 2.5 10 5.6 13 16 16 18 82 5.0 2.1 . 69 7.7 1.5 17 37 5.6 16 363 16 88 16 21 11 13 18 131 7.2 5.6 18 291 123 29 15 13 12 7.8 1.8 19 4.5 6.8 5.3 37 385 87 4.7 2.2 11 14 11 1.3 20 2.5 11 27 116 62 13 63 4.2 1.7 .78 6.6 5.3 21 25 9.3 784 9.3 1.5 5.2 21 20 13 11 5.5 1.5 22 1.5 9.4 8.9 17 9.5 71 89 17 12 34 89 1.4 23 67 1.4 11 40 650 261 35 16 12 35 1.4 2.6 8.2 9.7 2.4 1.6 67 326 2.8 16 12 153 16 1.4 1.1 25 104 95 42 4.4 7.8 44 24 15 22 14 1.4 1.1 7.7 26 19 26 80 12 2.3 14 11 11 3.9 1.2 1.9 .95 2.7 34 7.0 26 30 2.2 21 21 11 9.1 3.8 1.7 .63 5 8 2.8 6.7 31 985 2.0 20 14 11 89 3.3 1 5 29 3.7 7.0 12 70 ---19 13 10 15 3.2 1.3 . 59 2.8 30 3.2 7.4 29 2.7 ___ 18 13 9.8 15 1.1 7.2 31 3.1 15 18 ___ 18 ___ 9.2 41 1.0 ___ TOTAL 437.71 1428.3 438.5 2352.3 3166 2689 1227 1476.0 1505.5 351.2 148.5 156.44 11.3 MEAN 14.1 47.6 14.1 75.9 113 86.7 40.9 47.6 50.2 4.79 5.21 MAX 131 607 95 985 699 784 266 200 485 74 59 89 .92 7.7 9.2 2.8 3.4 5.2 13 16 13 6.8 1.0 .52 CFSM 2.03 3.23 4.81 3.69 1.74 2.03 2.14 .22 .60 .60 .48 .20 .69 2.26 .69 3.72 5.01 4.26 1.94 2.34 2.38 .56 .24 . 25 Jun 22 1972 Jun 22 1972 fOct 9 1986 ## POTOMAC RIVER BASIN # 01654000 ACCOTINK CREEK NEAR ANNANDALE, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1948 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------
------|-----|---| OC.I. | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | , | |----------|-----------|-----------|-------|-------------|----------|------|------------|----------|------|-----------|----------|---------|---| | MEAN | 18.4 | 24.8 | 29.1 | 33.5 | 36.9 | 42.9 | 35.6 | 33.4 | 25.1 | 20.3 | 21.7 | 20.8 | 3 | | MAX | 76.6 | 70.4 | 73.8 | 87.0 | 113 | 114 | 94.5 | 125 | 212 | 74.5 | 123 | 120 |) | | (WY) | 1980 | 1994 | 1997 | 1996 | 1998 | 1993 | 1983 | 1989 | 1972 | 1969 | 1967 | 1996 | 5 | | MIN | 2.03 | 3.25 | 5.48 | 4.53 | 12.1 | 10.6 | 8.40 | 8.46 | 2.83 | 1.81 | 1.94 | .45 | 5 | | (WY) | 1955 | 1955 | 1966 | 1981 | 1978 | 1981 | 1985 | 1986 | 1986 | 1955 | 1957 | 1954 | Ł | | | | | | | | | | | | | | | | | SUMMARY | STATIST | ICS | FOR 1 | 1997 CALENI | DAR YEAR | F | OR 1998 WA | TER YEAR | | WATER YEA | ARS 1948 | - 1998 | } | | ANNUAL ' | TOTAL | | | 9561.84 | | | 15376.45 | | | | | | | | ANNUAL I | MEAN | | | 26.2 | | | 42.1 | | | 28.5 | | | | | HIGHEST | ANNUAL I | MEAN | | | | | | | | 49.4 | | 1972 | 2 | | LOWEST A | ANNUAL MI | EAN | | | | | | | | 14.3 | | 1954 | ŀ | | HIGHEST | DAILY M | EAN | | 757 | May 26 | | 985 | Jan 28 | | e3300 | Jun : | 22 1972 | 2 | | LOWEST I | DAILY MEA | AN | | .90 | Aug 13 | | .52 | Sep 15 | | .02 | aOct 1 | 10 1986 | ŝ | | ANNUAL S | SEVEN-DA | Y MINIMUM | | 1.0 | bAug 8 | | .73 | Sep 10 | | .11 | Oct : | 14 1988 | 3 | | | | | | | | | | | | | | | | | ANNUAL MEAN | 20.2 | 42.1 | 28.5 | | |--------------------------|------------|-------------|--------|---| | HIGHEST ANNUAL MEAN | | | 49.4 | | | LOWEST ANNUAL MEAN | | | 14.3 | | | HIGHEST DAILY MEAN | 757 May 26 | 985 Jan 28 | e3300 | | | LOWEST DAILY MEAN | .90 Aug 13 | .52 Sep 15 | .02 | è | | ANNUAL SEVEN-DAY MINIMUM | 1.0 bAug 8 | .73 Sep 10 | .11 | | | INSTANTANEOUS PEAK FLOW | | 2670 Mar 21 | 12000 | | | INSTANTANEOUS PEAK STAGE | | 9.73 Mar 21 | c15.96 | | | INSTANTANEOUS LOW FLOW | | .40 dSep 29 | .02 | | | ANNUAL RUNOFF (CFSM) | 1.11 | 1.79 | 1.21 | | | ANNUAL RUNOFF (INCHES) | 15.14 | 24.34 | 16.47 | | | 10 PERCENT EXCEEDS | 54 | 89 | 51 | | | 50 PERCENT EXCEEDS | 12 | 12 | 12 | | | 90 PERCENT EXCEEDS | 1.4 | 1.4 | 3.6 | | | | | | | | a Also Oct. 11, 12, 1986. b Also Aug. 9, 1997. c From high-water mark in gage house. d Also Sept. 30, 1998. e Estimated. f Also Oct. 10-13, 1986, and Oct. 18, 1988. # 01654000 ACCOTINK CREEK NEAR ANNANDALE, VA--Continued (National water-quality assessment station) # WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- April 1993 to August 1995, September 1997 to current year. PH DIS- REMARKS.--These data are a part of the National Water-Quality Assessment (NAWQA) program of the Potomac River Basin. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 BARO- | DATE | TIME | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | |------------------------|-----------------------------------|---|--|--|---|---|--|--|--|---|---|--| | OCT 1997
30 | 1030 | 3.2 | 138 | 7.0 | 22.0 | 8.0 | 763 | 9.8 | 11 | 3.2 | 9.9 | 2.6 | | NOV
24 | 1345 | 8.1 | 169 | 7.8 | 4.0 | 7.0 | 763 | 10.8 | 13 | 4.2 | 11 | 3.3 | | DEC
17 | 1145 | 5.7 | 252 | 7.3 | 12.0 | 2.5 | 755 | 13.1 | 17 | 6.7 | 17 | 2.1 | | JAN 1998
22 | 1200 | 8.9 | 377 | 7.2 | 4.0 | 2.5 | 766 | 12.6 | 18 | 6.6 | 41 | 2.3 | | MAR
05
31
APR | 1300
1330 | 23
18 | 200
246 | 7.1
7.1 | 8.0
26.5 | 6.5
19.5 | 762
760 | 12.1
10.9 | 15
17 | 5.3
7.1 | 15
16 | 1.8
1.8 | | 15
28
MAY | 1500
1215 | 17
13 | 238
238 | 7.9
7.4 | 27.0
22.0 | 17.5
14.0 | 756
768 | 10.5
9.9 | 11 | 6.2 | 8.2 | 6.3 | | 14
JUN | 1400 | 24 | 205 | 7.3 | 26.0 | 17.0 | 763 | 8.6 | 17 | 5.4 | 14 | 2.3 | | 02
11
24 | 1145
1445
0945 | 8.1
11
47 |
170
96 | 7.1
6.5 | 20.0
27.0 | 16.5
23.0 |
762
761 | 8.2
7.0 |
13
 | 4.6 | 11 | 2.2 | | JUL
15
29
AUG | 1830
1300 | 4.8
3.4 | 236
219 | 7.5
7.1 | 23.0
28.5 | 24.0
25.0 |
757 | 8.2
7.5 | | | |
 | | 12
26 | 1500
1715 | 3.2
1.2 | 131
203 | 6.7
7.1 | 27.5
28.5 | 26.0
27.0 | 761
757 | 6.8
7.3 | 9.8 | 3.1 | 7.5 | 2.8 | | SEP
23 | 1415 | 2.3 | 113 | 6.7 | 19.5 | 21.0 | 763 | 7.2 | 8.3 | 2.6 | 6.7 | 3.0 | | DATE | SULF
DIS
SOL
(MG
AS S | - DIS-
VED SOLV
/L (MG/
O4) AS (| E, RIDI
- DIS
VED SOLV
/L (MG,
CL) AS I | E, DIS
S- SOL
VED (MG
/L AS
F) SIO | VED DIS
/L FIE
MG/L
2) HCC | TE BONA TER WAT IT DIS LD FIE LAS MG/L 03 CC | TE LINI TER WAT IT TOT LD FIE AS MG/L 3 CAC | TTY RESIDIS AT 1 IT DEGLED DI LAS SOL | DUE GE
80 NITR
6. C DI
5. SOL
VED (MG
6/L) AS | N, GE ITE NO2+ S- DI VED SOL /L (MG N) AS | N, GE NO3 AMMC S- DI VED SOL //L (MG N) AS | IS-
LVED
E/L
N) | | OCT 1997
30 | 7. | 9 18 | <.: | 10 7. | 5 2 | 26 0 | 2 | 21 8 | 35 <.0 | 10 .4 | 97 <.0 |)15 | | NOV
24 | 9. | 3 22 | < | 10 10 | 4 | 10 0 | 3 | 33 10 | 06 <.0 | 10 .3 | 80 <.0 | 120 | | DEC
17
JAN 1998 | 9. | 4 41 | < | 10 14 | 5 | 0 0 | 4 | 1 15 | 52 <.0 | 10 .8 | 96 <.0 | 120 | | 22
MAR | 11 | 80 | < | 10 13 | 4 | 18 0 | 4 | 10 20 | .0 | 15 1.1 | 8 <.0 | 120 | | 05
31
APR | 12
9. | 32
6 41 | < | | | 10 0
51 0 | | 33 13
12 14 | | 12 1.1
10 .7 | |)20
)22 | | 15
28 | 12_ | _ 15
 | | 16 4.
 | | 15 O | | 37 14
 | | 40 1.0 | | L09
 | | MAY
14
JUN | 10 | 26 | < | | | 19 0 | | 10 12 | | 17 1.0 | |)57 | | 02
11
24 | 8. | 4 21 | | 13 11 | 3 | 19 0 | 3 | 32 11 | | 31 1.0 | 4 .0 |
)92
 | | JUL
15
29 | - | | | | | | | | 0 | 15 .8 | 18 .0 |)63
 | | AUG
12
26 | 6. | 6 15 | .: | 11 6. | 6 2 | 19 0 | 2 | 24 8 | 36 .0 | 13 .5 | 98 .0 |)70
 | | SEP
23 | 7. | 6 13 | .: | 10 4. | 5 - | | | 7 | 70 .0 | 20 .7 | 62 .1 | 102 | < Actual value is known to be less than the value shown. POTOMAC RIVER BASIN # 01654000 ACCOTINK CREEK NEAR ANNANDALE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLIRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | |---|--|--|---|---
---|---|---|---|---|---|--| | OCT 1997
30 | .29 | <.20 | .037 | <.010 | <.010 | 120 | 48 | <.003 | <.002 | <.002 | .004 | | NOV
24 | .31 | .22 | .012 | <.010 | .024 | 370 | 100 | <.003 | <.002 | <.002 | .006 | | DEC 17 | .12 | .10 | .030 | <.010 | <.010 | 200 | 116 | <.003 | <.002 | <.002 | .005 | | JAN 1998
22 | .14 | <.10 | .012 | <.010 | <.010 | 160 | 156 | | | | | | MAR
05 | .18 | .16 | .012 | .012 | .016 | 130 | 106 | | | | | | 31
APR | .15 | .12 | .016 | <.010 | .011 | 190 | 54 | | | | | | 15
28
MAY | 1.7 | 1.1 | .343 | .097 | .072 | 720
 | 157
 | <.003
<.003 | <.002
.0089 | <.002
<.002 | E.004
.032 | | 14
JUN | .37 | .26 | .024 | <.010 | .014 | 190 | 87 | <.003 | <.002 | <.002 | .023 | | 02
11
24 |
.41
 | .34 | .027 | .012 | .017 | 150
 |
59
 | <.003
<.003
<.003 | <.002
<.002
<.002 | <.002
<.002
<.002 | .015
.055
.013 | | JUL
15
29
AUG | .21 | .14 | <.010 | <.010 | .017 | | | <.003
<.003 | <.002
<.002 | <.002
<.002 | .014 | | 12
26
SEP | .43 | .40 | .025 | .019 | <.010 | 27
 | 84 | <.003
<.003 | <.002
<.002 | <.002
<.002 | .005 | | 23 | .57 | .40 | .101 | .028 | .030 | 52 | 53 | <.003 | <.002 | <.002 | <.001 | | | | | | | | | | | | | | | DATE | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | | DATE OCT 1997 30 | BHC
DIS-
SOLVED
(UG/L) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L) | ATE,
WATER,
DISS,
REC
(UG/L) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | PYRIFOS
DIS-
SOLVED
(UG/L) | ZINE,
WATER,
DISS,
REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L) | DDE
DISSOLV
(UG/L) | ELDRIN
DIS-
SOLVED
(UG/L) | | OCT 1997
30
NOV
24 | BHC
DIS-
SOLVED
(UG/L)
(34253) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DDE
DISSOLV
(UG/L)
(34653) | DIS-
SOLVED
(UG/L)
(39381) | | OCT 1997
30
NOV
24
DEC
17 | BHC
DIS-
SOLVED
(UG/L)
(34253) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DDE
DISSOLV
(UG/L)
(34653) | ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | | OCT 1997
30
NOV
24
DEC
17
JAN 1998
22 | BHC DIS-
SOLVED (UG/L) (34253) <.002 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.002 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
E.0277 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .003 < .003 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
.0067 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.004 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
E.0012 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
<.002 | DDE
DISSOLV
(UG/L)
(34653)
<.006 | ELDRIN
DIS-
SOLVED
(UG/L)
(39381)
<.001 | | OCT 1997
30
NOV
24
DEC
17
JAN 1998
22
MAR
05 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.002
<.002
<.002 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002
<.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
E.0277
E.0134
<.003 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .003 < .003 < .003 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
.0067
<.004
.0052 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.004
<.004 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
E.0012
.0101
.0236 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
<.002
<.002
E.0052 | DDE
DISSOLV
(UG/L)
(34653)
<.006
<.006
<.006 | ELDRIN
DIS-
SOLVED
(UG/L)
(39381)
<.001
<.001 | | OCT 1997
30
NOV
24
DEC
17
JAN 1998
22
MAR
05
31 | BHC DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.002
<.002
<.002 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002
<.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
E.0277
E.0134
<.003 | FURAN WATER FLIRED 0.7 U GF, REC (UG/L) (82674) <- 0.003 <003 <003 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
.0067
<.004
.0052 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.004
<.004 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
E.0012
.0101
.0236 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
<.002
<.002
E.0052 | DDE DISSOLV (UG/L) (34653) <.006 <.006 | ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 | | OCT 1997 30 NOV 24 DEC 17 JAN 1998 22 MAR 05 31 APR 15 28 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.002
<.002
<.002 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002
<.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
E.0277
E.0134
<.003 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .003 < .003 < .003 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
.0067
<.004
.0052 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.004
<.004 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
E.0012
.0101
.0236 |
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
<.002
<.002
E.0052 | DDE DISSOLV (UG/L) (34653) <.006 <.006 | ELDRIN
DIS-
SOLVED
(UG/L)
(39381)
<.001
<.001 | | OCT 1997
30
NOV
24
DEC
17
JAN 1998
22
MAR
05
31
APR
15
28
MAY | BHC DIS- DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 <.002 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.002
<.002
<.002 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002
<.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
E.0277
E.0134
<.003 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .003 < .003 < .003 < .003 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
.0067
<.004
.0052

E.0036 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.004
<.004
<.004 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
E.0012
.0101
.0236

E.0010 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
<.002
<.002
E.0052 | DDE
DISSOLV
(UG/L)
(34653)
<.006
<.006
 | ELDRIN
DIS-
SOLVED
(UG/L)
(39381)
<.001
<.001

<.001 | | OCT 1997 30 NOV 24 DEC 17 JAN 1998 22 MAR 05 31 APR 15 28 MAY 14 JUN 02 11 24 | BHC DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 <.002 <.002 <.002 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.002
<.002
<.002

<.002
.0046 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002
<.002

<.002
<.002
<.002 | BARYL
WATER
FLITED
0.7 U
GF, REC
(UG/L)
(82680)
E.0277
E.0134
<.003 | FURAN WATER FLIRED 0.7 U GF, REC (UG/L) (82674) <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
.0067
<.004
.0052

E.0036
.0050 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.004
<.004

<.004
.009 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
E.0012
.0101
.0236

E.0010
E.0016 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
<.002
<.002
E.0052 | DDE
DISSOLV
(UG/L)
(34653)
<.006
<.006

<.006
<.006 | ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 | | OCT 1997 30 NOV 24 DEC 17 JAN 1998 22 MAR 05 31 APR 15 28 MAY 14 JUN 02 11 24 JUL 15 29 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.002
<.002
 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) E.0277 E.0134 <.003 <.003 E.0271 E.0174 <.003 E.132 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
.0067
<.004
.0052

E.0036
.0050
.0211
<.004
.0157 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.004
<.004

<.004
.0093
<.004
<.004
<.004 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
E.0012
.0101
.0236

E.0010
E.0016
E.0019 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
<.002
<.002
E.0052

E.0037
E.0048
E.0042
E.0045
E.0045 | DDE
DISSOLV
(UG/L)
(34653)
<.006
<.006

<.006
<.006
<.006
<.006
<.006 | ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 | | OCT 1997 30 NOV 24 DEC 17 JAN 1998 22 MAR 05 31 APR 15 28 MAY 14 JUN 02 11 24 JUL 15 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002 <.002 <.002 .0046 .0046 <.002 <.002 <.007 <.002 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 | BARYL WATER FLITED 0.7 U GF, REC (UG/L) (82680) E.0277 E.0134 <.003 <.003 E.0271 E.0174 <.003 E.132 E1.18 E.0096 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | PYRIFOS DIS- SOLVED (UG/L) (38933) .0067 <.004 .0052 E.0036 .0050 .0211 <.004 .0157 <.004 <.004 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.004
<.004

<.004
.0093
<.004
<.004
<.004
<.004
<.004 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
E.0012
.0101
.0236
 | ATRA-ZINE, WATER, DISS, REC (UG/L) (04040) <.002 <.002 E.0052 E.0037 E.0048 E.0042 E.0045 E.0124 E.0067 | DDE
DISSOLV
(UG/L)
(34653)
<.006
<.006

<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 | $[\]mbox{<}$ Actual value is known to be less than the value shown. $\mbox{\ensuremath{\texttt{E}}}$ Estimated. POTOMAC RIVER BASIN # 01654000 ACCOTINK CREEK NEAR ANNANDALE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | |------------------------|--|---|--|--|---|--|--|---|--|--|---| | OCT 1997
30 | <.017 | .050 | <.002 | <.003 | <.004 | E.0032 | <.004 | <.002 | <.006 | <.004 | <.001 | | NOV 24 | <.017 | .068 | <.002 | <.003 | <.004 | <.003 | <.004 | <.002 | <.006 | <.004 | <.001 | | DEC
17 | <.017 | .012 | <.002 | <.003 | <.004 | <.003 | <.004 | <.002 | <.006 | <.004 | <.001 | | JAN 1998
22 | | | | | | | | | | | | | MAR
05
31
APR | | | | | | | | | | | | | 15
28 | <.017
<.017 | .029 | <.002
<.002 | <.003
<.003 | <.004
<.004 | <.003 | <.004
<.004 | <.002
<.002 | <.006
<.006 | <.004
<.004 | <.001
<.001 | | MAY
14
JUN | <.017 | .035 | <.002 | <.003 | <.004 | <.003 | <.004 | <.002 | <.006 | <.004 | <.001 | | 02
11
24
JUL | <.017
<.017
<.017 | E.003
.126
.462 | <.002
<.002
<.002 | <.003
<.003
<.003 | <.004
<.004
<.004 | <.003
<.003
<.003 | <.004
<.004
<.004 | <.002
<.002
<.002 | <.006
<.006
<.006 | <.004
<.004
<.004 | <.001
<.001
<.001 | | 15
29
AUG | <.017
<.017 | .024 | <.002
<.002 | <.003
<.003 | <.004
<.004 | <.003
<.003 |
<.004
.059 | <.002
<.002 | <.006
<.006 | <.004
<.004 | <.001
<.001 | | 12
26
SEP | <.017
<.017 | .167
.045 | <.002
<.002 | <.003
<.003 | <.004
<.004 | <.003
<.003 | <.004
<.004 | <.002
<.002 | <.006
<.006 | <.004
<.004 | <.001
<.001 | | 23 | <.017 | .102 | <.002 | <.003 | <.004 | <.003 | <.004 | <.002 | <.006 | <.004 | <.001 | | DATE | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | OCT 1997
30 | <.005 | .005 | <.004 | <.004 | <.004 | <.005 | <.013 | <.003 | <.004 | <.004 | E.0172 | | NOV
24 | <.010 | .006 | <.004 | <.004 | <.004 | <.005 | <.013 | <.003 | <.004 | <.004 | E.0172 | | DEC
17 | <.005 | .004 | <.004 | <.004 | <.004 | <.005 | <.013 | <.003 | <.004 | <.004 | E.0124 | | JAN 1998
22
MAR | | | | | | | | | | | | | 05
31 | | | | | | | | | | | | | APR
15
28 | <.005
.010 | .011 | <.004
<.070 | <.004
<.004 | .0300 | <.005
<.005 | <.013
<.013 | <.003
<.003 | <.004
<.004 | <.004
<.004 | E.0067 | | MAY
14
JUN | <.005 | .044 | <.004 | <.004 | .0374 | <.005 | <.013 | <.003 | <.004 | <.004 | .0181 | | 02
11
24 | <.005
.017
<.005 | .009
.042
.025 | <.004
<.004
<.004 | <.004
<.004
<.004 | <.004
.0498
.0512 | <.005
<.005
<.005 | <.013
<.013
<.013 | <.003
<.003
<.003 | <.004
<.004
<.004 | <.004
<.004
<.004 | E.0123
.0502
.0543 | | JUL
15
29
AUG | <.005
<.005 | .009
.012 | <.004
<.004 | <.004
<.004 | <.004
<.004 | <.005
<.005 | <.013
<.013 | <.003
<.003 | <.004
<.004 | <.004
<.004 | E.0159
.0267 | | 12
26
SEP | <.005
<.005 | .007 | <.004
<.004 | <.004
<.004 | <.004
<.004 | <.005
<.005 | <.013
<.013 | <.003
<.003 | <.004
<.004 | <.004
<.004 | .0628
.0319 | | 23 | <.005 | E.003 | <.004 | <.004 | <.004 | <.005 | <.013 | <.003 | <.004 | <.004 | .0304 | $[\]mbox{<}$ Actual value is known to be less than the value shown. $\mbox{\ensuremath{\texttt{E}}}$ Estimated. POTOMAC RIVER BASIN # 01654000 ACCOTINK CREEK NEAR ANNANDALE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | | | NAPROP- | TER- | TRIAL- | TRI- | THIO- | TER- | TEBU- | | | |----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | PHORATE | PROP- | AMIDE | BACIL | LATE | FLUR- | BENCARB | BUFOS | THIURON | SI- | | | | WATER | CHLOR, | WATER | WATER | WATER | ALIN | WATER | WATER | WATER | MAZINE, | SEDI- | | | FLTRD | WATER, | FLTRD | FLTRD | FLTRD | WAT FLT | FLTRD | FLTRD | FLTRD | WATER, | MENT, | | | 0.7 U | DISS, | 0.7 U DISS, | SUS- | | DATE | GF, REC | REC | GF, REC | PENDED | | | (UG/L) (MG/L) | | | (82664) | (04024) | (82684) | (82665) | (82678) | (82661) | (82681) | (82675) | (82670) | (04035) | (80154) | | OCT 1997 | | | | | | | | | | | | | 30 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | .0078 | 4 | | NOV | 1.002 | V.007 | V.003 | 1.007 | V.001 | 1.002 | 1.002 | V.013 | V.010 | .0070 | - | | 24 | <.002 | <.007 | < .003 | < .007 | <.001 | < .002 | <.002 | <.013 | <.010 | .0122 | 4 | | DEC | 1.002 | | | | | | | | | .0122 | - | | 17 | <.002 | < .007 | < .003 | < .007 | <.001 | < .002 | < .002 | <.013 | E.0041 | .0152 | 1 | | JAN 1998 | | | | | | | | | | | | | 22 | | | | | | | | | | | 1 | | MAR | | | | | | | | | | | | | 05 | | | | | | | | | | | 3 | | 31 | | | | | | | | | | | 2 | | APR | | | | | | | | | | | | | 15 | < .002 | <.007 | < .003 | < .007 | <.001 | E.0021 | < .002 | <.013 | <.010 | .0100 | 8 | | 28 | < .002 | <.007 | < .003 | <.007 | <.001 | .0059 | <.002 | <.013 | <.010 | .0184 | | | MAY | | | | | | | | | | | | | 14 | <.002 | <.007 | < .003 | < .007 | <.001 | .0053 | < .002 | <.013 | <.010 | .0243 | 11 | | JUN | | | | | | | | | | | | | 02 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | .0557 | | | 11 | <.002 | <.007 | <.003 | <.007 | <.001 | < .002 | < .002 | <.013 | <.010 | .0326 | 15 | | 24 | <.002 | <.007 | <.003 | <.007 | <.001 | .0075 | <.002 | <.013 | <.010 | .0158 | | | JUL | | | | | | | | | | | _ | | 15 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | .0236 | 7 | | 29 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | .0168 | | | AUG | 000 | 0.05 | 000 | 005 | 0.01 | 000 | 000 | 010 | 010 | 010 | 1.0 | | 12 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | <.013 | 13 | | 26 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | .0101 | | | SEP | . 000 | . 007 | - 003 | . 007 | - 001 | - 000 | - 000 | . 012 | D 0075 | . 005 | 26 | | 23 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | E.0075 | <.005 | 26 | $[\]mbox{<}$ Actual value is known to be less than the value shown. \mbox{E} Estimated. # 01656000 CEDAR RUN NEAR CATLETT, VA LOCATION.--Lat 38°38'12", long 77°37'31", Fauquier County, Hydrologic Unit 02070010, on right bank 100 ft downstream from bridge on State Highway 806, 0.9 mi downstream from Licking Run, and 1.4 mi southeast of Catlett. DRAINAGE AREA. -- 93.4 mi². PERIOD OF RECORD.--July 1950 to December 1986, January 1986 to September 1989 (annual maximum only), October 1989 to current year. REVISED RECORDS.--WSP 2103: Drainage area. WDR VA-79-1: 1973-77(P). WDR VA-95-1: 1972-94 (M). GAGE.--Water-stage recorder. Datum of gage is 199.15 ft above sea level. July 1950 to December 1986, water-stage recorder at same site and datum. REMARKS.--Records good except those for period with ice effect, Jan. 1, and period with backwater, Aug. 30 to Sept. 18, which are fair. Maximum discharge, 32,500 ft³/s, from rating curve extended above 7,000 ft³/s, on basis of contracted-opening measurement of peak flow. No flow at times in many years. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct 15, 1942, reached a stage of about 22 ft, discharge not determined, from information by local residents. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,800 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 7 | 1700 | 2,800 | 10.22 | Feb. 18 | 0630 | 3,890 | 11.68 | | Jan. 23 | 1730 | 2,540 | 9.83 | Mar. 19 | 0730 | 2,060 | 9.01 | | Jan. 28 | 1900 | 3,970 | 11.78 | Mar. 21 | 0800 | *6,060 | *13.98 | | Feb. 5 | 0430 | 4.340 | 12.21 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum daily discharge, 0.12 ft^3/s , Sept. 15, 16. | | | | | | D | AILY MEAN | VALUES | | | | | | |--|------------------------------------|---|---|--|--|--|--|---|--|-----------------------------------|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.1
2.8
3.2
2.3
2.0 | 126
96
46
25
18 | 34
28
22
22
27 | e52
53
67
71
63 | 162
135
125
1560
3060 | 129
132
234
130
108 | 113
336
138
171
166 | 68
260
341
316
204 | 41
27
21
17
17 | 33
26
16
13 | 3.4
2.8
2.2
1.8
1.6 | e.67
e.78
e.92
e.62
e.40 | | 6
7
8
9
10 | 2.6
2.1
1.3
1.6
2.2 | 13
1560
937
294
151 | 26
22
20
18
24 | 57
91
258
195
127 | 845
518
272
191
158 | 94
86
561
937
367 | 117
95
85
374
412 | 199
139
1290
631
315 | 15
13
11
11
47 | 11
8.2
9.3
14 | 1.9
1.6
1.4
1.5
2.0 | e.32
e.29
e.50
e.20
e.16 | | 11
12
13
14
15 | 2.6
2.7
2.8
2.4
3.3 | 98
74
77
252
205 | 44
37
31
27
23 | 93
75
71
60
142 | 147
238
157
126
109 | 194
147
126
116
101 | 198
140
113
99
96 | 249
518
367
203
149 | 46
51
110
134
294 | 8.1
6.0
4.7
4.1
4.1 | 2.0
2.6
2.1
1.8
1.8 | e.15
e.15
e.14
e.14
e.12 | | 16
17
18
19
20 | 1.9
2.4
63
32
15 | 141
93
64
49
39 | 24
25
25
22
19 | 442
192
165
121
102 | 99
826
2030
552
279 | 89
83
189
1260
526 | 81
107
112
118
368 | 113
94
74
61
52 |
730
232
109
72
57 | 4.1
3.9
4.2
3.3
2.7 | 2.3
2.0
2.3
2.5
1.9 | e.12
e7.1
e30
6.9
2.4 | | 21
22
23
24
25 | 7.8
4.2
3.2
2.2 | 37
107
73
66
47 | 16
17
48
41
224 | 76
66
1310
783
330 | 207
158
497
777
304 | 3710
870
482
250
189 | 160
117
101
88
70 | 46
39
34
34
74 | 42
69
115
205
63 | 2.6
3.0
2.2
31
9.9 | 1.4
1.2
1.2
1.0 | 1.3
.75
.76
1.3 | | 26
27
28
29
30
31 | 19
46
20
10
7.1
4.9 | 40
36
29
28
28 | 132
107
141
99
105
97 | 196
180
2780
1270
455
222 | 195
157
138
 | 159
140
121
108
97
86 | 60
58
50
44
42 | 51
39
37
32
27
24 | 42
32
44
50
40 | 5.3
5.2
3.8
3.5
3.0 | .73
.80
.82
.85
e.70
e.60 | .76
.70
1.0
.74
.90 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 290.7
9.38
63
1.3
.10 | 4849
162
1560
13
1.73
1.93 | 1547
49.9
224
16
.53
.62 | 10165
328
2780
52
3.51
4.05 | 14022
501
3060
99
5.36
5.58 | 11821
381
3710
83
4.08
4.71 | 4229
141
412
42
1.51
1.68 | 6080
196
1290
24
2.10
2.42 | 2757
91.9
730
11
.98
1.10 | 271.0
8.74
33
2.2
.09 | 51.63
1.67
3.4
.60
.02 | 61.59
2.05
30
.12
.02 | e Estimated. # 01656000 CEDAR RUN NEAR CATLETT, VA--Continued | STATISTICS OF MONTHLY | MEAN DATA F | OR WATER YEARS | 1951 - 1987 | . 1990 - 1998 | . BY WATER YEAR (WY) | |-----------------------|-------------|----------------|-------------|---------------|----------------------| | | | | | | | | | OC.I. | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------------------|------|-------|------------|-----------|------|-----------|-----------|------|-------------|-------|------------------| | MEAN | 46.8 | 64.7 | 111 | 149 | 171 | 178 | 125 | 75.1 | 72.1 | 30.4 | 45.5 | 38.8 | | MAX | 450 | 248 | 379 | 467 | 501 | 531 | 544 | 210 | 917 | 323 | 407 | 388 | | (WY) | 1980 | 1973 | 1993 | 1978 | 1998 | 1993 | 1983 | 1971 | 1972 | 1956 | 1955 | 1975 | | MIN | .40 | 3.15 | 3.53 | 4.64 | 28.0 | 22.3 | 19.6 | 9.41 | 2.90 | .74 | .58 | .37 | | (WY) | 1987 | 1966 | 1966 | 1981 | 1954 | 1981 | 1985 | 1956 | 1954 | 1963 | 1966 | 1954 | | SUMMARY | Y STATIST | ICS | FOR : | 1997 CALEI | NDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER YE | | - 1986
- 1998 | | ANNUAL | TOTAL | | | 24124.07 | 7 | | 56144.9 | 2 | | | | | | ANNUAL | MEAN | | | 66.1 | | | 154 | | | 92.1 | | | | | T ANNUAL I
ANNUAL M | | | | | | | | | 171
27.6 | | 1972
1954 | | | C DAILY M | | | 1560 | Nov 7 | | 3710 | Mar 21 | | e18500 | Jun 2 | 22 1972 | | ANNUAL MEAN | 66.1 | 154 | 92.1 | | |--------------------------|-------------|--------------|--------------------|--| | HIGHEST ANNUAL MEAN | | | 171 1972 | | | LOWEST ANNUAL MEAN | | | 27.6 1954 | | | HIGHEST DAILY MEAN | 1560 Nov 7 | 3710 Mar 21 | e18500 Jun 22 1972 | | | LOWEST DAILY MEAN | .70 aJul 22 | e.12 bSep 15 | .00 (c) | | | ANNUAL SEVEN-DAY MINIMUM | 1.1 Aug 9 | e.14 Sep 10 | .00 (d) | | | INSTANTANEOUS PEAK FLOW | | 6060 Mar 21 | 32500 Jun 22 1972 | | | INSTANTANEOUS PEAK STAGE | | 13.98 Mar 21 | f27.66 Jun 22 1972 | | | INSTANTANEOUS LOW FLOW | | (g) (h) | .00 (j) | | | ANNUAL RUNOFF (CFSM) | .71 | 1.65 | .99 | | | ANNUAL RUNOFF (INCHES) | 9.61 | 22.36 | 13.39 | | | 10 PERCENT EXCEEDS | 151 | 322 | 193 | | | 50 PERCENT EXCEEDS | 28 | 47 | 28 | | | 90 PERCENT EXCEEDS | 1.5 | 1.3 | 1.9 | | | | | | | | Not determined. h Probably occurred Sept. 16, 1998. j Many days in 1954, 1957, 1959, 1963-64, 1966, 1983, 1991, and 1993. Also Aug. 12, 1997. Also Sept. 16, 1998. Many days in 1954, 1957, 1959, 1963-64, 1966, 1983, and 1993. Many days in 1954, 1957, 1959, 1963-64, 1966, and 1983. Estimated. a b c d e f From floodmarks. # 01666500 ROBINSON RIVER NEAR LOCUST DALE, VA LOCATION.--Lat 38°19'30", long 78°05'45", Madison County, Hydrologic Unit 02080103, on right bank 100 ft upstream from bridge on State Highway 614, 1.1 mi upstream from Great Run, 1.7 mi upstream from mouth, 2.0 mi southeast of Locust Dale, and 3.4 mi downstream from Crooked Run. DRAINAGE AREA. -- 179 mi². PERIOD OF RECORD.--July 1943 to current year. Prior to October 1965, published as Robertson River near Locust Dale. REVISED RECORDS.--WSP 1171: 1948(M). WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 283.70 ft above sea level. REMARKS.--Records good except those for period with ice effect, Jan. 1, and periods of doubtful gage-height record, Jan. 8 to Feb. 4, Feb. 7-16, Feb. 21 to Mar. 11, Apr. 17-19, and May 3-7, which are fair. Maximum discharge, 25,400 ft³/s, from rating curve extended above 9,100 ft³/s on basis of contracted-opening measurement at gage height 20.17 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 15, 1942, reached a stage of 23.9 ft, from floodmarks, discharge, about $44,000 \text{ ft}^3/\text{s}$. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,700 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 7 | 1630 | 5,840 | 14.36 | Mar. 8 | 1930 | Unknown | a15.94 | | Jan. 8 | 1630 | Unknown | a16.95 | Mar. 9 | 0900 | Unknown | a15.36 | | Jan. 23 | 1430 | Unknown | a11.99 | Mar. 19 | 0500 | 2,300 | 9.07 | | Jan. 28 | 1700 | Unknown | a17.81 | Mar. 21 | 0430 | 6,580 | 14.91 | | Feb. 4 | 2000 | Unknown | a17.64 | May 5 | 0430 | 1,980 | 8.61 | | Feb. 17 | 2230 | *11,600 | *19.03 | May 8 | 1100 | 8,270 | 16.72 | | Feb 24 | 0300 | IInknown | a14 N9 | = | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 AUG 53 48 45 43 SEP 32 31 30 29 Minimum discharge, 17 ft³/s, Sept. 30. | | | | | | DA | ILLY MEAN | VALUES | | | | | |-----|-----|-----|-----|------|-------|-----------|--------|------|-----|-----|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | | | 1 | 93 | 144 | 135 | e140 | e530 | e510 | 376 | 292 | 194 | 125 | | | 2 | 80 | 377 | 126 | 147 | e500 | e540 | 371 | 467 | 183 | 110 | | | 3 | 73 | 301 | 122 | 151 | e450 | e790 | 336 | e375 | 177 | 104 | | | 4 | 69 | 217 | 124 | 169 | e2500 | e650 | 442 | e400 | 168 | 101 | | | 5 | 65 | 177 | 123 | 181 | 5020 | e460 | 413 | e1070 | 172 | 100 | 41 | 27 | |--|---|---|---|--|--|---|--|---|--|---|---|--------------------------------| | 6
7
8
9
10 | 61
57
55
53 | 154
2840
1580
653
433 | 118
115
112
112
118 | 185
230
e2400
e1500
e950 | 2280
e1200
e820
e750
e670 | e435
e420
e720
e1600
e1100 | 361
351
319
579
688 | e730
e570
5570
1330
848 | 168
158
152
150
184 | 93
89
96
116
127 | 40
38
38
77
116 | 25
25
44
40
31 | | 11
12
13
14
15 | 51
49
50
50
51 | 333
276
239
283
273 | 131
123
118
116
111 | e660
e450
e400
e340
e380 | e610
e780
e650
e570
e500 | e730
579
493
440
403 | 526
455
411
385
363 | 683
723
628
521
462 | 171
201
175
175
214 | 108
98
94
91
87 | 89
104
70
67
87 | 29
29
26
24
23 | | 16
17
18
19
20 | 51
55
97
71
61 | 230
209
193
182
172 | 110
110
108
106
104 | e800
e620
e410
e360
e325 | e450
5350
3700
1170
835 | 373
351
441
1270
829 | 338
e374
e335
e411
741 | 420
403
365
340
320 | 214
207
161
146
152 | 86
96
122
90
86 | 71
110
199
96
75 | 22
22
26
27
27 | | 21
22
23
24
25 | 56
54
52
52
86 | 167
192
171
157
148 | 103
106
127
119
216 | e295
e265
e1150
e900
e730 | e710
e670
e790
e1150
e730 | 3770
1070
776
650
565 | 481
420
386
358
329 | 303
280
270
264
328 | 134
127
247
291
154 | 81
76
72
71
68 | 67
62
58
54
50 | 26
26
37
30
25 | | 26
27
28
29
30
31 | 96
178
111
89
80
76 | 145
140
136
134
132 | 190
175
185
169
177
166 | e630
e450
e3700
e2050
e870
e670 | e640
e570
e530

 | 510
471
443
408
391
366 | 311
297
278
263
254 | 258
248
246
225
209
202 | 131
120
121
216
149 | 65
63
71
67
58
54 | 46
43
41
38
37
34 | 27
27
24
20
18 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 2175
70.2
178
49
.39
.45 | 10788
360
2840
132
2.01
2.24 | 4075
131
216
103
.73
.85 |
22508
726
3700
140
4.06
4.68 | 35125
1254
5350
450
7.01
7.30 | 22554
728
3770
351
4.06
4.69 | 11952
398
741
254
2.23
2.48 | 19350
624
5570
202
3.49
4.02 | 5212
174
291
120
.97
1.08 | 2765
89.2
127
54
.50
.57 | 2037
65.7
199
34
.37
.42 | 829
27.6
44
18
.15 | e Estimated. a May have been lower during period of estimated record, backwater from debris. # 01666500 ROBINSON RIVER NEAR LOCUST DALE, VA--Continued | STATIST | TICS OF M | ONTHLY MEAN | DATA | FOR WATER | YEARS 1 | 944 | - 1998, | BY WATER | YEAR (WY) | | | | | | |---------|-----------|-------------|------|-----------|----------|-----|---------|------------|-----------|------|----------|----------|-----|------| | | OCT | NOV | DEC | JAN | FEB | 3 | MAR | APR | MAY | JUN | JUL | AUG | | SEP | | MEAN | 173 | 219 | 235 | 276 | 310 | | 351 | 311 | 254 | 216 | 130 | 140 | | 158 | | MAX | 783 | 1350 | 624 | 752 | 1254 | | 980 | 989 | 625 | 1154 | 522 | 1063 | | 1119 | | (WY) | 1991 | 1986 | 1973 | 1978 | 1998 | | 1993 | 1983 | 1989 | 1995 | 1949 | 1955 | | 1996 | | MIN | 18.5 | 35.1 | 32.0 | 47.5 | 105 | | 105 | 89.3 | 70.9 | 35.7 | 21.3 | 12.2 | | 8.05 | | (WY) | 1964 | 1966 | 1966 | 1966 | 1977 | | 1981 | 1981 | 1977 | 1977 | 1944 | 1963 | | 1954 | | SUMMAR | Y STATIST | ICS | FOR | 1997 CAL | ENDAR YE | AR | F | OR 1998 WA | TER YEAR | | WATER YE | ARS 1944 | 1 - | 1998 | | ANNUAL | TOTAL | | | 72613 | | | | 139370 | | | | | | | | ANNUAL | MEAN | | | 199 | | | | 382 | | | 231 | | | | | HIGHES | T ANNUAL | MEAN | | | | | | | | | 445 | | | 1973 | | LOWEST | ANNUAL M | EAN | | | | | | | | | 95.6 | | | 1981 | | HIGHES | T DAILY M | EAN | | 2840 | Nov | 7 | | 5570 | May 8 | | 14700 | Jun | 22 | 1972 | | LOWEST | DAILY ME | AN | | 21 | aSep | 5 | | 18 | Sep 30 | | 1.8 | bSep | 13 | 1954 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 23 | Sep | 2 | | 24 | Sep 13 | | 3.0 | Sep | 7 | 1966 | | INSTAN | TANEOUS P | EAK FLOW | | | | | | 11600 | Feb 17 | | 25400 | Jun | 27 | 1995 | | INSTAN | TANEOUS P | EAK STAGE | | | | | | c19.03 | Feb 17 | | c23.92 | Sep | 6 | 1996 | | INSTAN | TANEOUS L | OW FLOW | | | | | | 17 | Sep 30 | | 1.2 | dSep | 7 | 1954 | | ANNUAL | RUNOFF (| CFSM) | | 1. | 11 | | | 2.13 | | | 1.29 | | | | | ANNUAL | RUNOFF (| INCHES) | | 15. | 09 | | | 28.96 | | | 17.50 | | | | | 10 PER | CENT EXCE | EDS | | 346 | | | | 745 | | | 434 | | | | | 50 PER | CENT EXCE | EDS | | 154 | | | | 175 | | | 150 | | | | | 90 PER | CENT EXCE | EDS | | 48 | | | | 41 | | | 41 | | | | a Also Sept. 6, 7, 1997. b Also Sept. 27, 1954. c Backwater from debris. d Also Sept. 13, 1954. #### 01667500 RAPIDAN RIVER NEAR CULPEPER, VA LOCATION.--Lat 38°21'01", long 77°58'31", Culpeper County, Hydrologic Unit 02080103, on left bank 0.7 mi upstream from Cedar Run and bridge on U.S. Highway 522, 8.5 mi south of Culpeper, and at mile 29.6. DRAINAGE AREA. -- 472 mi². PERIOD OF RECORD.--October 1930 to current year. Monthly discharge only for some periods, published in WSP 1302. REVISED RECORDS.--WSP 741: 1931. WSP 801: 1934(M), 1936(M). WSP 1081: 1943-46. WSP 1171: 1932(M), 1933-35. WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 241.36 ft above sea level. REMARKS.--Records good except those for period with ice effect, Jan. 1, which is fair. Prior to 1977, diurnal fluctuation at low flow caused by mill at Rapidan, and since July 1986, by powerplant at same site. National Weather Service gage-height telemeter at station. Maximum discharge, $59,300~{\rm ft}^3/{\rm s}$, from rating curve extended above $43,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement at gage height $30.26~{\rm ft}$. Several measure- ments of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $4,500~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 7 | 2115 | 10,200 | 10.96 | Mar. 8 | 2345 | 4,550 | 6.06 | | Jan. 9 | 0115 | 10,000 | 10.84 | Mar. 9 | 1615 | 5,640 | 7.10 | | Jan. 23 | 1845 | 6,400 | 7.79 | Mar. 19 | 0830 | 7,140 | 8.45 | | Jan. 28 | 2345 | 13,700 | 13.65 | Mar. 21 | 1030 | 14,200 | 14.02 | | Feb. 5 | 0445 | 15,300 | 14.82 | May 5 | 1045 | 7,250 | 8.54 | | Feb. 18 | 0600 | *18,700 | *17.15 | Mav 8 | 1815 | 16,600 | 15.73 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 32 ft³/s, Sept. 30. | | DAILY MEAN VALUES | | | | | | | | | | | | | | |----------------------------------|--|---|--|--|--|---|--|---|--|---|----------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 220 | 218 | 364 | e375 | 1490 | 1330 | 944 | 746 | 522 | 343 | 101 | 64 | | | | 2 | 175 | 690 | 337 | 388 | 1270 | 1310 | 996 | 1360 | 488 | 290 | 91 | 60 | | | | 3 | 159 | 747 | 312 | 409 | 1140 | 1560 | 854 | 1210 | 472 | 267 | 83 | 59 | | | | 4 | 150 | 480 | 316 | 450 | 6440 | 1240 | 1110 | 1060 | 443 | 254 | 75 | 58 | | | | 5 | 143 | 391 | 320 | 487 | 12400 | 1150 | 1200 | 4130 | 455 | 251 | 70 | 56 | | | | 6 | 132 | 339 | 297 | 500 | 4240 | 1090 | 943 | 1990 | 449 | 232 | 66 | 51 | | | | 7 | 121 | 5030 | 282 | 672 | 3320 | 1040 | 889 | 1600 | 425 | 218 | 63 | 48 | | | | 8 | 114 | 5630 | 274 | 4480 | 2250 | 1870 | 825 | 12700 | 406 | 224 | 63 | 61 | | | | 9 | 111 | 2210 | 272 | 5660 | 1810 | 4410 | 1280 | 5220 | 394 | 261 | 71 | 96 | | | | 10 | 110 | 1470 | 283 | 2160 | 1530 | 2680 | 1960 | 2410 | 488 | 274 | 189 | 80 | | | | 11 | 105 | 1090 | 335 | 1560 | 1400 | 1920 | 1470 | 2000 | 489 | 227 | 178 | 68 | | | | 12 | 98 | 872 | 311 | 1230 | 2020 | 1620 | 1240 | 1990 | 522 | 197 | 222 | 62 | | | | 13 | 95 | 737 | 294 | 1050 | 1640 | 1430 | 1100 | 1850 | 502 | 190 | 154 | 58 | | | | 14 | 95 | 911 | 280 | 888 | 1470 | 1310 | 1020 | 1500 | 568 | 180 | 117 | 52 | | | | 15 | 97 | 897 | 270 | 966 | 1310 | 1190 | 965 | 1320 | 648 | 173 | 133 | 46 | | | | 16 | 102 | 710 | 262 | 2140 | 1200 | 1090 | 890 | 1200 | 718 | 168 | 134 | 43 | | | | 17 | 108 | 615 | 260 | 1370 | 6550 | 1030 | 1040 | 1140 | 842 | 180 | 146 | 40 | | | | 18 | 239 | 559 | 257 | 1110 | 12800 | 1160 | 948 | 1030 | 532 | 277 | 415 | 40 | | | | 19 | 196 | 516 | 250 | 964 | 3510 | 4170 | 962 | 929 | 450 | 196 | 256 | 54 | | | | 20 | 145 | 482 | 247 | 885 | 2460 | 2240 | 2210 | 865 | 486 | 171 | 163 | 62 | | | | 21 | 122 | 459 | 247 | 794 | 2070 | 11100 | 1410 | 802 | 419 | 158 | 131 | 56 | | | | 22 | 114 | 602 | 246 | 713 | 1770 | 3310 | 1190 | 740 | 379 | 144 | 119 | 52 | | | | 23 | 106 | 534 | 318 | 3160 | 2040 | 2210 | 1090 | 705 | 504 | 134 | 109 | 59 | | | | 24 | 99 | 465 | 304 | 2640 | 2910 | 1840 | 1030 | 703 | 846 | 127 | 102 | 69 | | | | 25 | 152 | 415 | 615 | 1960 | 1860 | 1580 | 921 | 781 | 463 | 126 | 95 | 53 | | | | 26
27
28
29
30
31 | 234
447
305
217
186
173 | 399
384
360
354
346 | 595
489
546
485
500
482 | 1430
1270
8940
6770
2400
1820 | 1600
1460
1370
 | 1400
1280
1190
1100
1040
983 | 876
846
813
743
723 | 692
653
680
616
574
543 | 372
326
309
497
448 | 121
112
120
120
109
106 | 88
82
81
77
74
69 | 51
54
49
44
36 | | | | TOTAL MEAN MAX MIN CFSM IN. | 4870
157
447
95
.33
.38 | 28912
964
5630
218
2.04
2.28 | 10650
344
615
246
.73
.84 | 59641
1924
8940
375
4.08
4.70 | 85330
3048
12800
1140
6.46
6.73 | 61873
1996
11100
983
4.23
4.88 | 32488
1083
2210
723
2.29
2.56 | 53739
1734
12700
543
3.67
4.24 | 14862
495
846
309
1.05
1.17 | 5950
192
343
106
.41
.47 | 3817
123
415
63
.26 | 1681
56.0
96
36
.12
.13 | | | e Estimated. # 01667500 RAPIDAN RIVER NEAR CULPEPER, VA--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 1998, BY WATER YEAR (WY) OCT NOV DEC JAN FEB APR JUN JUL AUG SEP 752 427 474 558 678 853 786 585 493 308 337 361 MEAN 2690 1653 1924 2236 1734 2901 2908 MAX 3163 3048 2615 1206 2323 1993 1986 1949 1998 1998 1998 1995 1955 1996 (WY) 1943 1937 1949 179 MIN 8.10 29.4 62.4 93.6 91.5 210 166 86.2 68.0 22.5 14.0 (WY) 1931 1931 1931 1966 1931 1931 1981 1956 1977 1957 1957 1954 SUMMARY STATISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEARS 1931 - 1998 ANNUAL TOTAL 195629 363813 ANNUAL MEAN 536 997 550 HIGHEST ANNUAL MEAN 1099 1973 LOWEST ANNUAL MEAN 151 1931 HIGHEST DAILY MEAN 6590 Jul 12800 Feb 18 e43500 Jun 28 1995 LOWEST DAILY MEAN 41 Sep 6 36 Sep 30 2.2 Oct 4 1954 ANNUAL SEVEN-DAY MINIMUM Sep 48 Sep 13 4.5 Oct 2 1954 INSTANTANEOUS PEAK FLOW 18700 Feb 18 59300 Jun 28 1995 INSTANTANEOUS PEAK STAGE 17.15 Feb 18 a30.40 Jun 28 1995 INSTANTANEOUS LOW FLOW 32 Sep 30 2.1 bOct 4 1954 ANNUAL RUNOFF (CFSM) 2.11 1.14 1.16 ANNUAL RUNOFF (INCHES) 15.42 28.67 15.82 10 PERCENT EXCEEDS 941 2030 1080 50 PERCENT EXCEEDS 388 487 345 90 PERCENT EXCEEDS 108 76
86 a From high-water mark in gage house. b Also Oct. 5, 11, 1954. e Estimated. #### 01668500 CAT POINT CREEK NEAR MONTROSS, VA LOCATION.--Lat 38°02'23", long 76°49'38", Richmond County, Hydrologic Unit 02080104, on right bank 200 ft upstream from bridge on State Highway 637, 1.7 mi west of Farmers Fork, 3.8 mi south of Montross, and 11.4 mi upstream from mouth. DRAINAGE AREA. -- 45.6 mi². PERIOD OF RECORD. -- September 1943 to current year. REVISED RECORDS.--WSP 1382: 1944(M), 1945, 1946-51(M), 1952(P), 1953-54(M). WSP 2103: Drainage area. WDR VA-94-1: 1979(P), 1985(M), 1992(M). GAGE.--Water-stage recorder. Datum of gage is 3.04 ft above sea level. Prior to Aug. 19, 1953, nonrecording gage near right bank at downstream side of highway bridge at same datum. REMARKS.--No estimated daily discharges. Records good. Prior to 1980, slight diurnal fluctuation at low flow caused by gristmill upstream from station. Maximum discharge, 6,820 ${\rm ft}^3/{\rm s}$, from rating curve extended above 1,400 ${\rm ft}^3/{\rm s}$. No flow at times in 1943, 1957, 1959-60, 1966, and 1977. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in September 1935 exceeded 9.3 ft. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 250 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |-------------------|--------------|-----------------------------------|---------------------|-------------------|--------------|-----------------------------------|------------------| | Nov. 9
Jan. 24 | 2000
1200 | 254
488 | 5.23
5.87 | Feb. 5
Mar. 20 | 0500
0100 | *2,620
439 | *8.80
5.92 | | Jan. 29 | 0100 | 1,360 | 7.42 | Mar. 21 | 1800 | 598 | 6.25 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES Minimum discharge, 0.63 ft³/s, Oct. 10, 13. .74 .85 2 54 2.93 4 81 5.01 3 12 3.59 2 22 2.47 1 33 1.53 1 03 1.15 1 23 1.37 .08 .09 CESM TN. | | | | | | DA | TILL MEAN | VALUES | | | | | | |-------|--------|------|------|------|------|-----------|--------|------|------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1.7 | 16 | 32 | 41 | 127 | 95 | 94 | 66 | 33 | 27 | 10 | 3.1 | | 2 | 1.6 | 29 | 30 | 33 | 106 | 94 | 99 | 91 | 30 | 22 | 9.5 | 2.7 | | 3 | 1.5 | 31 | 26 | 30 | 95 | 116 | 90 | 88 | 29 | 20 | 8.4 | 2.4 | | 4 | 1.3 | 25 | 32 | 27 | 370 | 105 | 120 | 77 | 27 | 18 | 7.6 | 2.2 | | 5 | 1.2 | 20 | 37 | 25 | 1890 | 91 | 169 | 73 | 26 | 19 | 6.9 | 2.0 | | 6 | 1.0 | 17 | 35 | 23 | 595 | 86 | 109 | 80 | 26 | 17 | 6.1 | 1.8 | | 7 | .87 | 53 | 29 | 23 | 315 | 83 | 92 | 70 | 24 | 15 | 5.7 | 1.5 | | 8 | .82 | 197 | 24 | 33 | 213 | 98 | 88 | 79 | 23 | 23 | 5.6 | 1.6 | | 9 | .68 | 239 | 23 | 46 | 163 | 184 | 128 | 86 | 23 | 70 | 5.4 | 1.9 | | 10 | .64 | 186 | 25 | 38 | 139 | 186 | 156 | 78 | 61 | 57 | 7.9 | 1.8 | | 11 | .69 | 77 | 35 | 29 | 127 | 118 | 111 | 72 | 79 | 33 | 27 | 1.5 | | 12 | .74 | 39 | 33 | 23 | 137 | 99 | 94 | 80 | 71 | 22 | 30 | 1.4 | | 13 | .68 | 28 | 28 | 24 | 120 | 93 | 87 | 88 | 59 | 17 | 16 | 1.3 | | 14 | .75 | 51 | 23 | 28 | 104 | 89 | 84 | 77 | 56 | 15 | 9.1 | 1.1 | | 15 | .94 | 61 | 20 | 37 | 97 | 86 | 85 | 65 | 62 | 14 | 6.3 | .99 | | 16 | 1.2 | 45 | 18 | 71 | 93 | 83 | 82 | 58 | 82 | 14 | 5.1 | 1.1 | | 17 | 1.4 | 31 | 17 | 62 | 111 | 82 | 145 | 52 | 86 | 14 | 4.3 | .91 | | 18 | 2.5 | 24 | 16 | 47 | 149 | 114 | 165 | 47 | 68 | 15 | 4.7 | 1.1 | | 19 | 5.5 | 22 | 15 | 38 | 116 | 249 | 115 | 42 | 52 | 18 | 5.0 | 1.5 | | 20 | 9.2 | 20 | 15 | 35 | 100 | 315 | 137 | 40 | 44 | 21 | 4.4 | 1.7 | | 21 | 8.1 | 20 | 15 | 30 | 96 | 447 | 112 | 38 | 37 | 21 | 3.6 | 1.9 | | 22 | 4.7 | 88 | 18 | 27 | 89 | 335 | 92 | 37 | 33 | 18 | 3.1 | 2.8 | | 23 | 3.2 | 108 | 44 | 95 | 103 | 204 | 85 | 36 | 31 | 15 | 2.8 | 4.9 | | 24 | 2.6 | 66 | 44 | 411 | 200 | 157 | 81 | 37 | 80 | 13 | 2.6 | 4.5 | | 25 | 2.9 | 43 | 53 | 234 | 166 | 138 | 76 | 44 | 88 | 12 | 2.4 | 3.8 | | 26 | 6.5 | 36 | 52 | 122 | 118 | 126 | 72 | 53 | 55 | 11 | 3.3 | 3.4 | | 27 | 16 | 31 | 50 | 90 | 104 | 119 | 69 | 52 | 36 | 10 | 5.3 | 3.1 | | 28 | 14 | 27 | 75 | 550 | 98 | 112 | 67 | 51 | 30 | 9.6 | 10 | 2.8 | | 29 | 9.5 | 24 | 66 | 843 | | 106 | 64 | 46 | 33 | 9.0 | 7.7 | 2.5 | | 30 | 6.5 | 26 | 64 | 300 | | 100 | 63 | 41 | 31 | 8.3 | 5.1 | 2.5 | | 31 | 5.7 | | 53 | 174 | | 95 | | 36 | | 8.6 | 3.7 | | | TOTAL | 114.61 | 1680 | 1047 | 3589 | 6141 | 4405 | 3031 | 1880 | 1415 | 606.5 | 234.6 | 65.80 | | MEAN | 3.70 | 56.0 | 33.8 | 116 | 219 | 142 | 101 | 60.6 | 47.2 | 19.6 | 7.57 | 2.19 | | MAX | 16 | 239 | 75 | 843 | 1890 | 447 | 169 | 91 | 88 | 70 | 30 | 4.9 | | MIN | .64 | 16 | 15 | 23 | 89 | 82 | 63 | 36 | 23 | 8.3 | 2.4 | .91 | | | | | | | | | | | | | | | .43 . 49 .17 .19 0.5 .05 ## 01668500 CAT POINT CREEK NEAR MONTROSS, VA--Continued | STATISTICS O | Ŧ(| MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1944 | - 199 | 8. | RΥ | WATER | YEAR | (WY |) | |--------------|----|---------|------|------|-----|-------|-------|------|-------|----|----|-------|------|-----|---| OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|-------------|---------|------|-------------|----------|------|----------|----------|---------| | MEAN | 26.3 | 37.5 | 47.1 | 59.5 | 65.8 | 78.0 | 68.9 | 51.2 | 35.6 | 28.1 | 28.4 | 24.5 | | MAX | 134 | 119 | 126 | 175 | 219 | 211 | 164 | 149 | 232 | 128 | 153 | 210 | | (WY) | 1980 | 1980 | 1984 | 1978 | 1998 | 1994 | 1983 | 1990 | 1972 | 1995 | 1969 | 1979 | | MIN | 1.47 | 6.70 | 11.6 | 12.9 | 24.1 | 23.2 | 20.7 | 11.1 | 4.59 | 1.13 | .89 | .41 | | (WY) | 1955 | 1992 | 1955 | 1955 | 1955 | 1945 | 1985 | 1955 | 1945 | 1957 | 1963 | 1954 | | | | | | | | | | | | | | | | SUMMARY | STATIST: | ICS | FOR : | 1997 CALENI | AR YEAR | F | OR 1998 WA' | TER YEAR | | WATER YE | ARS 1944 | - 1998 | | ANNUAL | TOTAL | | | 13751.01 | | | 24209.51 | | | | | | | ANNUAL | MEAN | | | 37.7 | | | 66.3 | | | 45.8 | | | | HIGHEST | ANNUAL N | MEAN | | | | | | | | 89.4 | | 1958 | | LOWEST | ANNUAL MI | EAN | | | | | | | | 18.7 | | 1954 | | HIGHEST | DAILY M | EAN | | 239 | Nov 9 | | 1890 | Feb 5 | | 2390 | Sep | 6 1979 | | LOWEST | DAILY MEA | AN | | .57 | Sep 27 | | .64 | Oct 10 | | .00 | | (a) | | ANNUAL | SEVEN-DAY | Y MINIMUM | | .67 | Sep 22 | | .71 | Oct 8 | | .00 | bAug | 8 1957 | | INSTANT | CANEOUS PI | EAK FLOW | | | | | 2620 | Feb 5 | | 6820 | Aug | 20 1969 | | INSTANT | CANEOUS PI | EAK STAGE | | | | | 8.80 | Feb 5 | | c10.86 | Sep | 6 1992 | .63 dOct 10 1.45 19.75 2.4 127 33 .00 1.00 13.64 4.6 97 30 (f) .83 11.22 1.4 78 30 INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) ANNUAL RUNOFF (CFSM) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Many days in 1943 (partial year), 1957, 1959, 1966, and 1977. b Also Aug. 9, 10, 1957, and Aug. 31 to Sept. 7, 1966. c Result of Chandlers Millpond dam washout. d Also Oct. 13, 1997. f At times in 1943 (partial year), 1957, 1959-60, 1966, and 1977. ## 01669000 PISCATAWAY CREEK NEAR TAPPAHANNOCK, VA LOCATION.--Lat 37°52'37", long 76°54'03", Essex County, Hydrologic Unit 02080104, on right bank at upstream side of bridge on State Highway 691, 0.6 mi south of Hensley Fork, 2.3 mi downstream from Sturgeon Swamp, and 4.2 mi southwest of Tappahannock. DRAINAGE AREA. -- 28.0 mi². PERIOD OF RECORD. -- July 1951 to current year. REVISED RECORDS.--WSP 2103: Drainage area. WDR VA-79-1: 1970-76(P), 1978(P). GAGE.--Water-stage recorder. Datum of gage is 2.50 ft above sea level. REMARKS.--No estimated daily discharges. Records good. Maximum discharge, 2,380 ft^3/s , from rating curve extended above 1,400 ft^3/s . Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 250 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 29 | 0300 | 331 | 3.97 | Mar. 19 | 2100 | 357 | 4.06 | | Feb. 5 | 0330 | *805 | *5.36 | Mar. 21 | 1400 | 455 | 4.41 | | Mar. 9 | 2230 | 254 | 3.68 | | | | | DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum dicharge, $1.6 \text{ ft}^3/\text{s}$, Sept. 18, 19. | | | DISCH | ARGE, IN (| CUBIC FEET | | OND, WATER
ILY MEAN | | TOBER 1997 | TO SEPT | EMBER 199 | 8 | | |-------|-------|-------|------------|------------|------|------------------------|------|------------|---------|-----------|-------|------| | | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 3.4 | 14 | 24 | 21 | 60 | 64 | 81 | 63 | 26 | 14 | 6.1 | 3.1 | | 2 | 2.8 | 21 | 24 | 19 | 54 | 66 | 84 | 89 | 24 | 12 | 4.9 | 3.0 | | 3 | 2.6 | 24 | 20 | 18 | 50 | 88 | 76 | 76 | 22 | 10 | 4.4 | 2.7 | | 4 | 2.5 | 19 | 21 | 17 | 226 | 71 | 110 | 69 | 20 | 9.9 | 3.5 | 2.9 | | 5 | 2.4 | 15 | 22 | 16 | 631 | 61 | 139 | 74 | 20 | 9.7 | 3.4 | 2.6 | | 6 | 2.1 | 12 | 20 | 15 | 268 | 58 | 90 | 67 | 21 | 8.5 | 3.1 | 2.4 | | 7 | 2.0 | 51 | 17 | 15 | 192 | 56 | 75 | 59 | 19 | 7.8 | 2.9 | 2.2 | | 8 | 2.0 | 106 | 16 | 22 | 151 | 75 | 71 | 88 | 18 | 8.7 | 3.0 | 3.4 | | 9 | 2.0 | 102 | 15 | 28 | 120 |
188 | 109 | 105 | 18 | 10 | 3.8 | 2.9 | | 10 | 2.0 | 74 | 16 | 22 | 104 | 166 | 143 | 76 | 40 | 12 | 4.4 | 2.9 | | 10 | 2.0 | /1 | 10 | 22 | 104 | 100 | 143 | 70 | 40 | 12 | 7.7 | 2.9 | | 11 | 2.0 | 37 | 18 | 17 | 96 | 97 | 92 | 67 | 49 | 10 | 7.0 | 2.9 | | 12 | 1.9 | 23 | 19 | 17 | 103 | 81 | 74 | 69 | 36 | 8.2 | 7.4 | 2.5 | | 13 | 2.0 | 20 | 17 | 16 | 92 | 74 | 67 | 74 | 32 | 7.3 | 5.6 | 2.4 | | 14 | 2.1 | 35 | 15 | 16 | 82 | 74 | 65 | 65 | 30 | 6.7 | 4.7 | 2.2 | | 15 | 2.9 | 39 | 14 | 22 | 74 | 66 | 66 | 57 | 36 | 6.3 | 4.0 | 2.0 | | | 2.,, | 3, | | | , - | | | 3, | 30 | 0.5 | 1.0 | 2.0 | | 16 | 4.2 | 28 | 13 | 37 | 70 | 62 | 61 | 51 | 46 | 6.2 | 3.3 | 1.9 | | 17 | 5.9 | 20 | 14 | 32 | 101 | 62 | 118 | 45 | 43 | 6.3 | 3.3 | 1.7 | | 18 | 10 | 17 | 13 | 26 | 141 | 118 | 145 | 41 | 33 | 5.9 | 3.4 | 1.7 | | 19 | 17 | 16 | 12 | 22 | 89 | 255 | 101 | 37 | 33 | 5.2 | 3.3 | 1.9 | | 20 | 20 | 15 | 12 | 23 | 76 | 236 | 133 | 35 | 34 | 5.9 | 2.6 | 2.1 | | | | | | | | | | | | | | | | 21 | 16 | 15 | 12 | 19 | 74 | 377 | 103 | 35 | 26 | 5.5 | 2.5 | 1.8 | | 22 | 10 | 50 | 14 | 17 | 66 | 237 | 85 | 35 | 21 | 5.0 | 2.5 | 3.2 | | 23 | 6.8 | 54 | 21 | 54 | 91 | 164 | 79 | 33 | 20 | 4.4 | 2.4 | 5.3 | | 24 | 5.9 | 34 | 22 | 144 | 152 | 136 | 75 | 34 | 21 | 4.2 | 2.4 | 8.6 | | 25 | 9.6 | 25 | 24 | 78 | 98 | 120 | 69 | 36 | 21 | 4.1 | 2.1 | 6.2 | | 26 | 12 | 20 | 23 | 47 | 76 | 111 | 69 | 34 | 19 | 4.4 | 2.0 | 4.1 | | 27 | 20 | 18 | 24 | 43 | 69 | 107 | 65 | 38 | 16 | 4.1 | 2.6 | 3.5 | | | | | | | | | | | | | | | | 28 | 20 | 16 | 36 | 175 | 66 | 98 | 62 | 53 | 15 | 4.1 | 5.3 | 2.7 | | 29 | 14 | 16 | 33 | 264 | | 95 | 61 | 42 | 16 | 3.8 | 5.1 | 2.4 | | 30 | 9.8 | 18 | 33 | 120 | | 88 | 60 | 33 | 17 | 4.4 | 4.6 | 2.7 | | 31 | 8.6 | | 28 | 75 | | 83 | | 29 | | 6.4 | 3.7 | | | TOTAL | 224.5 | 954 | 612 | 1457 | 3472 | 3634 | 2628 | 1709 | 792 | 221.0 | 119.3 | 89.9 | | MEAN | 7.24 | 31.8 | 19.7 | 47.0 | 124 | 117 | 87.6 | 55.1 | 26.4 | 7.13 | 3.85 | 3.00 | | MAX | 20 | 106 | 36 | 264 | 631 | 377 | 145 | 105 | 49 | 14 | 7.4 | 8.6 | | MIN | 1.9 | 12 | 12 | 15 | 50 | 56 | 60 | 29 | 15 | 3.8 | 2.0 | 1.7 | | CFSM | .26 | 1.14 | .71 | 1.68 | 4.43 | 4.19 | 3.13 | 1.97 | .94 | .25 | .14 | .11 | | | .30 | 1.27 | .81 | 1.94 | 4.61 | 4.83 | 3.49 | 2.27 | 1.05 | . 29 | .16 | .12 | | IN. | .30 | 1.2/ | .81 | 1.94 | 4.01 | 4.83 | 3.49 | 2.21 | 1.05 | . 29 | .10 | . 12 | 15.24 5.2 64 23 ## RAPPAHANNOCK RIVER BASIN # 01669000 PISCATAWAY CREEK NEAR TAPPAHANNOCK, VA--Continued | STATIST | ICS OF N | MONTHLY MEAN | I DATA | FOR WATER | YEARS 1952 | - 1998, | BY WATER | YEAR (WY) | | | | | |---------|----------|--------------|--------|------------|------------|---------|--------------------|-----------|------|----------|----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 19.4 | 27.3 | 31.0 | 38.3 | 45.4 | 53.8 | 49.3 | 37.5 | 25.4 | 18.0 | 17.4 | 15.2 | | MAX | 63.4 | 74.1 | 74.7 | 88.4 | 124 | 118 | 109 | 87.0 | 111 | 105 | 88.0 | 70.4 | | (WY) | 1980 | 1980 | 1997 | 1978 | 1998 | 1994 | 1958 | 1958 | 1972 | 1975 | 1955 | 1979 | | MIN | 1.30 | 6.30 | 9.20 | 7.93 | 14.0 | 13.5 | 13.4 | 7.41 | 4.20 | 2.01 | 1.00 | .28 | | (WY) | 1955 | 1955 | 1966 | 1955 | 1955 | 1981 | 1985 | 1955 | 1986 | 1954 | 1954 | 1954 | | SUMMARY | STATIST | rics | FOF | R 1997 CAL | ENDAR YEAR | F | OR 1998 W <i>I</i> | ATER YEAR | | WATER YE | ARS 1952 | - 1998 | | ANNUAL | TOTAL | | | 10434. | 7 | | 15912.7 | | | | | | | ANNUAL | MEAN | | | 28. | б | | 43.6 | | | 31.4 | | | | HIGHEST | ANNUAL | MEAN | | | | | | | | 56.8 | | 1958 | | LOWEST | ANNUAL N | MEAN . | | | | | | | | 12.1 | | 1954 | | HIGHEST | DAILY N | MEAN . | | 129 | Jul 24 | | 631 | Feb 5 | | 1080 | Aug | 13 1955 | | LOWEST | DAILY ME | EAN | | 1. | 7 Sep 24 | | 1.7 | aSep 17 | | .02 | Oct | 1 1954 | | ANNUAL | SEVEN-DA | AY MINIMUM | | 2. | 0 Oct 7 | | 1.9 | Sep 15 | | .13 | Sep | 25 1954 | | INSTANT | ANEOUS E | PEAK FLOW | | | | | 805 | Feb 5 | | 2380 | Aug | 20 1969 | | INSTANT | ANEOUS E | PEAK STAGE | | | | | 5.36 | Feb 5 | | b7.52 | . Aug | 20 1969 | | INSTANT | ANEOUS I | LOW FLOW | | | | | 1.6 | cSep 18 | | .01 | Oct | 2 1954 | | ANNUAL | RUNOFF (| (CFSM) | | 1. | 02 | | 1.56 | 5 | | 1.12 | | | 21.14 2.7 102 21 13.86 3.2 59 20 ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Sept. 18, 1998. b From high-water mark in well. c Also Sept. 19, 1998. #### PIANKATANK RIVER BASIN ## 01669520 DRAGON SWAMP AT MASCOT, VA LOCATION.--Lat 37°38'01", long 76°41'48", King and Queen County, Hydrologic Unit 02080102, on right bank at up stream side of bridge on State Highway 603, 0.8 mi east of Mascot, 2.1 mi downstream from Church Swamp, and 3.3 mi west of Warner. DRAINAGE AREA. -- 108 mi². PERIOD OF RECORD. -- August 1981 to current year. GAGE.--Water-stage recorder. Datum of gage is 21.60 ft above sea level. REMARKS.--Records good except for period with backwater from beaver dam, Oct. 1-9, which is fair. Maximum discharge, 2,800 ft³/s, from rating curve extended above 2,150 ft³/s. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 600 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 30 | 2000 | 922 | 7.10 | Mar. 21 | 1200 | 1,450 | 7.60 | | Feb. 6 | 0900 | *2,800 | *9.39 | May 11 | 1400 | 752 | 6.46 | | Mar. 11 | 0700 | 854 | 6.64 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, zero flow, Aug. 25-26. | DAILY MEAN VALUES | | | | | | | | | | | |---|------------------|--|--|--|--|--|--|--|--|--| | DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL | AUG SEP | | | | | | | | | | | 1 e.98 41 86 138 557 269 240 161 111 73 1 | 6 .47 | | | | | | | | | | | | 4 .30 | | | | | | | | | | | | 2 .34 | | | | | | | | | | | | 0 .86 | | | | | | | | | | | | 86 .80 | | | | | | | | | | | 6 e.51 51 71 77 2690 221 301 172 61 31 | 79 .74 | | | | | | | | | | | 7 e.44 127 66 72 1840 222 302 176 54 24 | 74 .61 | | | | | | | | | | | 8 e.44 277 61 84 1040 273 296 241 46 21 | 67 .76 | | | | | | | | | | | 9 el.0 335 59 106 721 464 292 374 43 22 | 59 .86 | | | | | | | | | | | 10 2.8 381 60 104 548 666 309 472 80 22 | 59 .74 | | | | | | | | | | | 11 2.9 321 68 93 431 826 287 725 91 20 | 61 .69 | | | | | | | | | | | 12 3.3 246 67 82 411 649 256 702 106 17 | 56 .57 | | | | | | | | | | | 13 3.9 191 64 81 378 433 244 587 124 15 | 44 .36 | | | | | | | | | | | 14 4.6 208 60 89 313 322 244 441 139 12 | 35 .14 | | | | | | | | | | | | 26 .06 | | | | | | | | | | | 16 9.5 177 53 240 256 247 221 283 173 8.8 | 22 .06 | | | | | | | | | | | | 44 .05 | | | | | | | | | | | | 48 .08 | | | | | | | | | | | | 22 .10 | | | | | | | | | | | | 28 .17 | | | | | | | | | | | 21 26 71 42 164 339 1410 256 164 199 5.5 | 08 .34 | | | | | | | | | | | | 05 .76 | | | | | | | | | | | | 04 2.9 | | | | | | | | | | | | 02 2.3 | | | | | | | | | | | | 01 1.6 | | | | | | | | | | | 26 29 95 76 355 409 411 235 103 86 2.2 | 01 1.4 | | | | | | | | | | | | 20 1.2 | | | | | | | | | | | | 3 1.2 | | | | | | | | | | | | 2 1.0 | | | | | | | | | | | | 66 3.9 | | | | | | | | | | | | 59 | | | | | | | | | | | TOTAL 439.90 4053 2333 7227 17019 14688 7535 7665 3463 514.8 17 | 46 25.36 | 56 .85 | | | | | | | | | | | MAX 36 381 165 849 2690 1410 309 725 214 73 | 56 .85
.6 3.9 | | | | | | | | | | | | 6 3.9 | | | | | | | | | | | MIN .44 41 42 72 256 221 168 103 43 1.4 | | | | | | | | | | | e Estimated. ## PIANKATANK RIVER BASIN # 01669520 DRAGON SWAMP AT MASCOT, VA--Continued | STAT | STICS OF M | MONTHLY MEAN | DATA | FOR WATER | YEARS 1982 | - 1998, | BY WATER | YEAR (WY) | | | | | |------|------------|--------------|------|-----------|------------|---------|----------|-----------|------|------|------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 62.6 | 91.5 | 119 | 161 | 204 | 244 | 194 | 136 | 80.0 | 49.9 | 54.6 | 40.8 | | MAX | 293 | 290 | 331 | 340 | 608 | 567 | 450 | 247 | 166 | 106 | 200 | 170 | | (WY) | 1997 | 1986 | 1997 | 1993 | 1998 | 1994 | 1983 | 1998 | 1984 | 1996 | 1992 | 1985 | | MIN | 7.97 | 22.3 | 39.5 | 45.9 | 76.5 | 58.8 | 31.2 | 28.5 | 6.23 | 3.15 | .56 | .79 | | (WY) | 1982 | 1982 | 1989 | 1989 | 1991 | 1985 | 1985 | 1985 | 1986 | 1993 | 1998 | 1997 | | (WY) | 1982 | 1982 | 1989 | 1989 | 1991 | 1985 | 1985 | 1985 | 1986 | 1993 | 1998 | 1997 | | SUMMARY STATISTICS | FOR 1997 CALENDAR YEAR | FOR 1998 WATER YEAR | WATER YEARS 1982 - 1998 | |--------------------------|------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 41273.00 | 64980.52 | | | ANNUAL MEAN | 113 | 178 | 119 | | HIGHEST ANNUAL MEAN | | | 178 1998 | | LOWEST ANNUAL MEAN | | | 56.4 1985 | | HIGHEST DAILY MEAN | 388 Feb 18 | 2690 Feb 6 | 2690 Feb 6 1998 | | LOWEST DAILY MEAN | .30 Sep 24 | .01 aAug 25 | .01 aAug 25 1998 | | ANNUAL SEVEN-DAY MINIMUM | .33 Sep 19 | .06 Aug 21 | e.05 Sep 13 1991 | | INSTANTANEOUS PEAK FLOW | | 2800 Feb 6 | 2800 Feb 6 1998 | | INSTANTANEOUS PEAK STAGE | | 9.39 Feb 6 | 9.39 Feb 6 1998 | | INSTANTANEOUS LOW FLOW | | .00 aAug 25 | .00 aAug 25 1998 | | ANNUAL RUNOFF (CFSM) | 1.05 | 1.65 | 1.11 | | ANNUAL RUNOFF (INCHES) | 14.22 | 22.38 | 15.02 | | 10 PERCENT EXCEEDS | 238 | 384 | 265 | | 50 PERCENT EXCEEDS | 85 | 91 | 83 | | 90 PERCENT EXCEEDS | 1.3 | .60 | 7.4 | a Also Aug. 26, 1998. e Estimated. #
01671020 NORTH ANNA RIVER AT HART CORNER, NEAR DOSWELL, VA LOCATION.--Lat 37°51'00", long 77°25'41", Hanover County, Hydrologic Unit 02080106, on right bank at downstream side of bridge on State Highway 30, 0.3 mi west of Hart Corner, 2.1 mi east of Doswell, and 5.4 mi upstream from confluence with South Anna River. DRAINAGE AREA. -- 463 mi². PERIOD OF RECORD. -- October 1979 to current year. GAGE.--Water-stage recorder. Elevation of gage is 43 ft above sea level, from topographic map. REMARKS.--Records good except for period of doubtful gage-height record, Dec. 30 to Feb. 6, which is fair. Flow regulated since January 1972 by Lake Anna, capacity, 373,000 acre-ft, 27.7 mi upstream. At a point 0.8 mi upstream from station, there is diversion for municipal water supply by Hanover County Department of Public Utilities since June 1975. Maximum discharge, 12,000 ft³/s, from rating curve extended above 10,100 ft³/s. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1969 reached a stage of 28.02 ft, from floodmark, discharge not determined. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 EXTREMES FOR CURRENT YEAR.--Maximum discharge, 9,350 ft^3/s , Feb. 6, gage height, 20.13 ft ; minimum, 43 ft^3/s , Oct. 12-13, Sept. 28, 29. | | | 2100 | | 00210 11 | | DA | ILY MEAN | VALUES | 3 | 0000 | 10 0211 | | ,,, | | | |--------|------|-------|--------|----------|-----|-------|----------|--------|----|-------|---------|-------|------|------|-------| | DAY | OCT | NOV | DEC | JAI | 1 | FEB | MAR | A | PR | MAY | JUN | JU | L | AUG | SEP | | 1 | 52 | 74 | 272 | 363 | 3 | 1790 | 881 | 4 | 42 | 372 | 209 | 25 | 8 | 48 | 45 | | 2 | 46 | 79 | 273 | 302 | | 1510 | 1240 | | 80 | 835 | 201 | 25 | | 47 | 46 | | 3 | 45 | 80 | 258 | 276 | | 1400 | 1520 | | 30 | 762 | 243 | 13 | | 47 | 45 | | 4 | 45 | 80 | 268 | 276 | | 1670 | 922 | | 62 | 454 | 251 | 7 | | 47 | 45 | | 5 | 45 | 80 | 279 | 273 | | e6390 | 675 | | 70 | 566 | 250 | 7 | | 47 | 45 | | 6 | 45 | 74 | 275 | 269 | 9 | e9070 | 566 | 9 | 27 | 693 | 218 | 7 | 0 | 46 | 44 | | 7 | 45 | 284 | 268 | 269 | 9 | 6680 | 652 | 5 | 97 | 265 | 101 | 6 | 7 | 46 | 44 | | 8 | 44 | 2380 | 261 | e275 | 5 | 3860 | 1110 | 5 | 38 | 1580 | 92 | 7. | 1 | 47 | 50 | | 9 | 45 | 3200 | 261 | e635 | 5 | 2760 | 3450 | 9 | 18 | 3260 | 88 | 7 | 6 | 50 | 59 | | 10 | 45 | 2130 | 266 | e606 | 5 | 1680 | 3480 | 17 | 00 | 2260 | 128 | 7 | 6 | 58 | 45 | | 11 | 44 | 1310 | 282 | e472 | 2 | 1500 | 2340 | 7 | 87 | 940 | 131 | 7 | | 65 | 46 | | 12 | 43 | | 276 | e418 | | 1580 | 1060 | | 36 | 860 | 129 | 6 | | 51 | 46 | | 13 | 43 | | 271 | e384 | | 1550 | 769 | | 92 | 1240 | 264 | 6 | | 84 | 45 | | 14 | 44 | | 265 | e322 | | 1300 | 734 | | 80 | 1110 | 304 | 6 | | 119 | 45 | | 15 | 49 | 703 | 261 | e323 | L | 456 | 707 | 4 | 38 | 712 | 373 | 6 | 3 | 57 | 45 | | 16 | 54 | | 261 | e800 | | 1060 | 683 | | 97 | 630 | 558 | 6 | | 54 | 44 | | 17 | 51 | 600 | 255 | e1500 | | 993 | 672 | | 80 | 393 | 506 | 6 | | 53 | 44 | | 18 | 75 | 365 | 257 | e1000 | | 4640 | 802 | | 10 | 368 | 723 | 6 | | 83 | 45 | | 19 | 100 | 285 | 255 | e703 | | 5900 | 3030 | | 20 | 355 | 590 | 6 | | 107 | 45 | | 20 | 99 | 264 | 255 | e628 | 3 | 3510 | 3890 | 15 | 80 | 349 | 657 | 6 | 0 | 55 | 45 | | 21 | 82 | 268 | 254 | e432 | | 1890 | 5580 | | 70 | 349 | 503 | 5 | | 57 | 45 | | 22 | 66 | 357 | 257 | | | 1530 | 8240 | | 64 | 319 | 352 | 5 | | 51 | 48 | | 23 | 60 | 694 | | | | 1670 | 5490 | | 12 | 265 | 456 | 5 | | 47 | 49 | | 24 | 58 | 470 | 174 | | | 3450 | 2710 | | 87 | 266 | 424 | 5 | | 48 | 47 | | 25 | 61 | 391 | 378 | e3400 |) | 2760 | 1510 | 6 | 52 | 280 | 484 | 5 | 6 | 47 | 46 | | 26 | 72 | | 409 | 2040 | | 1700 | 1250 | | 35 | 276 | 416 | 5 | | 48 | 47 | | 27 | 105 | 276 | 379 | 1360 | | 1410 | 582 | | 17 | 348 | 326 | 6 | | 48 | 50 | | 28 | 111 | 271 | 389 | e3120 | | 782 | 502 | | 71 | 332 | 271 | 6 | | 52 | 44 | | 29 | 95 | | | e6690 | | | 480 | | 62 | 216 | 269 | 6 | | 49 | 44 | | 30 | 82 | | e516 | e6920 | | | 464 | | 54 | 222 | 268 | 5 | | 46 | 44 | | 31 | 72 | | e562 | e3420 |) | | 444 | _ | | 216 | | 5. | 1 | 45 | | | TOTAL | 1923 | 18239 | 9187 | 43069 | 9 | 74491 | 56435 | 269 | 36 | 21093 | 9785 | 240 | 8 | 1749 | 1382 | | MEAN | 62.0 | 608 | 296 | 1389 | 9 | 2660 | 1820 | 8 | 98 | 680 | 326 | 77. | 7 | 56.4 | 46.1 | | MAX | 111 | 3200 | 562 | 6920 |) | 9070 | 8240 | 33 | 10 | 3260 | 723 | 25 | 8 | 119 | 59 | | MIN | 43 | 74 | 172 | 269 | 9 | 456 | 444 | 2 | 97 | 216 | 88 | 5 | 1 | 45 | 44 | | (†) | 181 | 169 | 170 | 16' | | 120 | 132 | | 40 | 147 | 166 | 17 | | 189 | 181 | | MEAN‡ | 67.8 | 614 | | 139 | | 2665 | 1825 | | 03 | 685 | 332 | 83. | | 62.5 | 52.0 | | CFSM‡ | .15 | 1.33 | .65 | 3.03 | | 5.76 | 3.94 | | 95 | 1.48 | .72 | .1 | | .13 | .11 | | IN.‡ | .17 | 1.48 | .75 | 3.4 | / | 5.99 | 4.54 | 2. | 18 | 1.71 | .80 | . 2 | T | .16 | .13 | | CAL YR | | TOTAL | 141089 | MEAN | 387 | MAX | 3200 | MIN | 42 | MEAN‡ | 393 | CFSM‡ | .85 | IN.‡ | 11.53 | | WTR YR | 1998 | TOTAL | 266697 | MEAN | 731 | MAX | 9070 | MIN | 43 | MEAN‡ | 736 | CFSM‡ | 1.59 | IN.‡ | 21.58 | Total diversion, equivalent in cubic feet per second, per month; provided by Hanover County Department of Public Utilities. [‡] Adjusted for diversion. e Estimated. YORK RIVER BASIN # 01671020 NORTH ANNA RIVER AT HART CORNER, NEAR DOSWELL, VA--Continued | STATIST | FICS OF M | ONTHLY MEAN | DATA | FOR WATER | YEARS 1980 | - 1998, | BY WATER | R YEAR (WY) | [REGUL | ATED, UNAD | JUSTED] | | |---------|------------|-------------|------|------------|------------|---------|-----------|-------------|--------|------------|-----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 228 | 352 | 417 | 593 | 747 | 870 | 688 | 469 | 256 | 173 | 170 | 150 | | MAX | 1428 | 1561 | 1320 | 1389 | 2660 | 2345 | 1887 | 1217 | 795 | 591 | 614 | 1185 | | (WY) | 1980 | 1986 | 1997 | 1998 | 1998 | 1994 | 1983 | 1990 | 1995 | 1984 | 1984 | 1996 | | MIN | 43.7 | 46.7 | 75.2 | 71.9 | 122 | 90.5 | 108 | 110 | 51.1 | 66.3 | 56.4 | 46.1 | | (WY) | 1992 | 1992 | 1981 | 1981 | 1981 | 1981 | 1981 | 1991 | 1991 | 1980 | 1998 | 1998 | | SUMMARY | Y STATIST | ICS | FOR | R 1997 CAL | ENDAR YEAR | F | OR 1998 V | NATER YEAR | | WATER YE | EARS 1980 | - 1998 | | ANNUAL | TOTAL | | | 141089 | | | 266697 | | | | | | | ANNUAL | MEAN | | | 387 | | | 731 | | | 424 | | | | HIGHEST | r annual i | MEAN | | | | | | | | 731 | | 1998 | | LOWEST | ANNUAL M | EAN | | | | | | | | 85.7 | | 1981 | | HIGHEST | r DAILY M | EAN | | 3200 | Nov 9 | | e9070 | Feb 6 | | 10900 | Mar 3 | 30 1994 | | LOWEST | DAILY ME | AN | | 42 | aSep 22 | | 43 | b0ct 12 | | 36 | Oct | 8 1991 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 43 | cSep 21 | | 44 | Oct 8 | | 39 | Oct | 4 1991 | | INSTANT | TANEOUS P | EAK FLOW | | | | | 9350 | Feb 6 | | 12000 | Mar 2 | 29 1994 | | INSTANT | FANEOUS P | EAK STAGE | | | | | 20.1 | 13 Feb 6 | | 21.80 | Mar 2 | 29 1994 | | INSTANT | FANEOUS L | OW FLOW | | | | | 43 | dOct 12 | | £36 | Oct | 8 1991 | | ANNUAL | RUNOFF (| CFSM) | | - 1 | 83 | | 1.5 | 58 | | .92 | 1 | | | ANNUAL | RUNOFF (| INCHES) | | 11. | 34 | | 21.4 | 13 | | 12.46 | j | | | 10 PERG | CENT EXCE | EDS | | 829 | | | 1730 | | | 900 | | | | 50 PERG | CENT EXCE | EDS | | 261 | | | 276 | | | 181 | | | | 90 PERG | CENT EXCE | EDS | | 49 | | | 46 | | | 58 | | | Also Sept. 23, 1997. Also Oct. 13, 1997. Also Sept. 22, 1997. Also Oct. 13, 1997 and Sept. 28, 29, 1998. Estimated. Observed. ### 01671100 LITTLE RIVER NEAR DOSWELL, VA LOCATION.--Lat 37°52'21", long 77°30'48", Hanover County, Hydrologic Unit 02080106, on left bank at downstream side of bridge on State Highway 685, 0.8 mi southwest of Verdon, 2.9 mi west of Doswell, and 9.6 mi upstream from mouth. DRAINAGE AREA. -- 107 mi². PERIOD OF RECORD. -- October 1961 to current year. REVISED RECORDS. -- WDR VA-70-1: 1969. GAGE.--Water-stage recorder. Datum of gage is 132.30 ft above sea level (levels by La Prade Bros., Engineers). REMARKS.--Records good except for period of doubtful gage-height record, Nov. 16-18, which is fair. Maximum discharge, $12,000 \, \mathrm{ft}^3/\mathrm{s}$, from rating curve extended above $7,600 \, \mathrm{ft}^3/\mathrm{s}$ on basis of contracted-opening measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 650 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 9 | 0630 | 1,010 | 4.95 | Mar. 10 | 0630 | 1,290 | 5.31 | | Jan. 24 | 2030 | 1,560 | 5.59 | Mar. 22 | 0530 | 2,690 | 6.59 | | Jan. 29 | 1130 | 2,780 | 6.63 | Apr. 5 | 1900 | 970 | 4.91 | | Feb. 5 | 2200 | *3,380 | *7.08 | Apr. 18 | 2030 | 847 | 4.73 | | Feb. 19 | 0730 | 1,690 | 5.74 | May 9 | 0630 | 1,050 | 5.02 | | Feb 25 | 0600 | 1.070 | 5 04 | = | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 1.1 ft³/s, Sept. 27-30. | | | | | | DA: | ILY MEAN V | /ALUES | | | | | | |-------|-------|------|------|-------|-------|------------|--------|------|------|-------|-------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 6.3 | 32 | 56 | 99 | 205 | 197 | 141 |
93 | 60 | 33 | 6.7 | 3.4 | | 2 | 6.6 | 35 | 56 | 89 | 146 | 218 | 196 | 158 | 53 | 29 | 7.2 | 3.2 | | 3 | 9.3 | 34 | 55 | 82 | 109 | 352 | 286 | 272 | 46 | 27 | 6.7 | 4.4 | | 4 | 10 | 31 | 60 | 78 | 392 | 312 | 352 | 225 | 40 | 25 | 6.0 | 5.1 | | 5 | 9.3 | 29 | 65 | 73 | 2460 | 226 | 820 | 411 | 38 | 24 | 6.0 | 4.4 | | 6 | 8.0 | 26 | 63 | 71 | 2490 | 187 | 661 | 181 | 35 | 22 | 5.9 | 4.1 | | 7 | 7.1 | 110 | 60 | 69 | 1220 | 166 | 289 | 133 | 33 | 20 | 5.7 | 4.3 | | 8 | 6.7 | 610 | 55 | 80 | 696 | 208 | 206 | 492 | 30 | 19 | 5.9 | 5.9 | | 9 | 6.6 | 951 | 52 | 101 | 366 | 716 | 189 | 1010 | 29 | 19 | 5.6 | 5.4 | | 10 | 6.4 | 632 | 53 | 94 | 247 | 1160 | 190 | 722 | 47 | 20 | 5.9 | 4.1 | | 11 | 6.5 | 302 | 65 | 86 | 198 | 552 | 184 | 357 | 56 | 19 | 10 | 3.1 | | 12 | 6.1 | 160 | 69 | 76 | 227 | 270 | 164 | 233 | 60 | 17 | 7.5 | 3.1 | | 13 | 6.0 | 109 | 70 | 76 | 280 | 204 | 144 | 238 | 59 | 16 | 6.9 | 2.6 | | 14 | 5.7 | 105 | 65 | 78 | 232 | 180 | 132 | 226 | 72 | 14 | 7.1 | 2.3 | | 15 | 7.7 | 113 | 59 | 87 | 180 | 165 | 129 | 181 | 95 | 13 | 7.1 | 2.0 | | 16 | 8.2 | e102 | 55 | 187 | 156 | 152 | 126 | 144 | 139 | 12 | 7.0 | 2.0 | | 17 | 7.8 | e87 | 52 | 241 | 292 | 145 | 260 | 120 | 157 | 12 | 6.3 | 1.9 | | 18 | 27 | e70 | 50 | 192 | 954 | 192 | 710 | 102 | 109 | 12 | 5.9 | 1.9 | | 19 | 49 | 65 | 48 | 147 | 1510 | 772 | 596 | 89 | 79 | 11 | 5.9 | 2.1 | | 20 | 61 | 59 | 48 | 131 | 686 | 1470 | 352 | 78 | 80 | 10 | 5.3 | 2.2 | | 21 | 57 | 56 | 47 | 115 | 336 | 1630 | 289 | 70 | 64 | 9.8 | 5.3 | 1.7 | | 22 | 45 | 90 | 48 | 104 | 256 | 2290 | 218 | 64 | 72 | 9.2 | 5.3 | 1.6 | | 23 | 32 | 106 | 60 | 303 | 268 | 958 | 169 | 60 | 143 | 8.6 | 5.2 | 2.0 | | 24 | 24 | 104 | 66 | 1170 | 688 | 425 | 146 | 60 | 130 | 8.3 | 4.8 | 1.8 | | 25 | 23 | 86 | 97 | 1120 | 971 | 303 | 132 | 60 | 185 | 8.3 | 4.4 | 1.2 | | 26 | 24 | 73 | 130 | 465 | 474 | 231 | 121 | 58 | 121 | 8.2 | 4.4 | 1.2 | | 27 | 48 | 63 | 135 | 254 | 261 | 194 | 108 | 66 | 70 | 7.8 | 4.6 | 1.2 | | 28 | 64 | 56 | 133 | 836 | 210 | 179 | 98 | 90 | 51 | 7.3 | 4.6 | 1.1 | | 29 | 60 | 52 | 129 | 2430 | | 167 | 93 | 93 | 41 | 7.1 | 4.5 | 1.1 | | 30 | 46 | 51 | 125 | 1400 | | 156 | 87 | 83 | 37 | 6.3 | 4.1 | 1.1 | | 31 | 36 | | 112 | 473 | | 146 | | 70 | | 6.3 | 3.9 | | | TOTAL | 720.3 | 4399 | 2238 | 10807 | 16510 | 14523 | 7588 | 6239 | 2231 | 461.2 | 181.7 | 81.5 | | MEAN | 23.2 | 147 | 72.2 | 349 | 590 | 468 | 253 | 201 | 74.4 | 14.9 | 5.86 | 2.72 | | MAX | 64 | 951 | 135 | 2430 | 2490 | 2290 | 820 | 1010 | 185 | 33 | 10 | 5.9 | | MIN | 5.7 | 26 | 47 | 69 | 109 | 145 | 87 | 58 | 29 | 6.3 | 3.9 | 1.1 | | CFSM | .22 | 1.37 | .67 | 3.26 | 5.51 | 4.38 | 2.36 | 1.88 | .70 | .14 | .05 | .03 | | IN. | .25 | 1.53 | .78 | 3.76 | 5.74 | 5.05 | 2.64 | 2.17 | .78 | .16 | .06 | .03 | e Estimated. # 01671100 LITTLE RIVER NEAR DOSWELL, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1962 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|-----|---| | | | | | | | | | | | | | | | | | .87 11.87 8.1 177 63 | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|------------|-----------|------|------------|-----------|------|-----------|----------|---------| | MEAN | 56.4 | 76.8 | 105 | 152 | 170 | 199 | 149 | 103 | 67.3 | 40.6 | 50.5 | 36.9 | | MAX | 264 | 340 | 278 | 491 | 590 | 583 | 391 | 311 | 533 | 288 | 653 | 404 | | (WY) | 1980 | 1973 | 1997 | 1978 | 1998 | 1994 | 1993 | 1990 | 1972 | 1975 | 1969 | 1975 | | MIN | 1.03 | 3.25 | 18.2 | 20.5 | 46.6 | 33.0 | 44.2 | 22.0 | 5.45 | 2.78 | 1.35 | .70 | | (WY) | 1969 | 1992 | 1966 | 1981 | 1968 | 1981 | 1968 | 1969 | 1991 | 1968 | 1977 | 1968 | | SUMMARY | STATIST | ICS | FOR I | 1997 CALEN | idar year | F | OR 1998 WA | ATER YEAR | | WATER YEA | ARS 1962 | - 1998 | | ANNUAL | TOTAL | | | 34135.9 | | | 65979.7 | | | | | | | ANNUAL | MEAN | | | 93.5 | | | 181 | | | 100 | | | | HIGHEST | ' ANNUAL I | MEAN | | | | | | | | 181 | | 1998 | | LOWEST | ANNUAL MI | EAN | | | | | | | | 29.8 | | 1981 | | HIGHEST | DAILY M | EAN | | 951 | Nov 9 | | 2490 | Feb 6 | | 9800 | Aug : | 21 1969 | | LOWEST | DAILY ME | AN | | 4.9 | aSep 7 | | 1.1 | bSep 28 | | .10 | Sep : | 26 1968 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 5.3 | Sep 3 | | 1.2 | Sep 24 | | .21 | Sep : | 30 1968 | | INSTANT | 'ANEOUS PI | EAK FLOW | | | | | 3380 | Feb 5 | | 12000 | Aug : | 21 1969 | | INSTANT | ANEOUS PI | EAK STAGE | | | | | 7.08 | Feb 5 | | 11.09 | Aug : | 21 1969 | 1.1 cSep 27 1.69 22.94 5.2 417 69 .10 12.71 6.7 197 53 dSep 25 1968 INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) ANNUAL RUNOFF (CFSM) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Sept. 8, 1997. b Also Sept. 29, 30, 1998. c Also Sept. 28-30, 1998. d Also Sept. 26, 1968. ### 01673550 TOTOPOTOMOY CREEK NEAR STUDLEY, VA LOCATION.--Lat 37°39'44", long 77°15'29", Hanover County, Hydrologic Unit 02080106, on right bank at downstream side of bridge on State Highway 606, 2.0 mi southeast of Studley, 2.4 mi downstream from Hawes millrace, and 4.1 mi upstream from mouth. DRAINAGE AREA. -- 26.2 mi². PERIOD OF RECORD. -- October 1977 to current year. GAGE.--Water-stage recorder. Datum of gage is 38.36 ft above sea level. REMARKS.--Records good except those for periods of doubtful gage-height record, July 13-23, Aug. 3-6, 16-24, and Sept. 3-30, which are fair. Maximum discharge, 802 ft³/s, from rating curve extended above 783 ft³/s. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 160 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 24 | 1430 | 359 | 6.78 | Mar. 20 | 0300 | 452 | 7.37 | | Jan. 29 | 0030 | *585 | *7.83 | Mar. 22 | 0100 | 364 | 6.82 | | Feb. 5 | 0730 | *585 | *7.83 | Apr. 18 | 0930 | 202 | 5.34 | | Feb. 18 | 1430 | 267 | 5.98 | Jul. 10 | 0230 | 247 | 5.79 | | Mar. 10 | 0130 | 434 | 7.28 | Jul. 11 | 0300 | 378 | 6.93 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 0.08 ft³/s, Oct. 8. | | | DISCHARGE | , III | CODIC PER | I PER SEC | | | | | FMDFK 133 | | | |-------|--------|-----------|-------|-----------|-----------|------|------|------|------|-----------|-------|------| | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | | | | | | APR | MAY | JUN | JUL | AUG | SEP | | | | | | | | | | | | | | | | | | | 1 | 3.3 | 8.8 | 19 | 19 | 51 | 50 | 49 | 29 | 15 | 15 | 8.5 | 3.0 | | 2 | 2.1 | 13 | 25 | 16 | 42 | 49 | 50 | 51 | 14 | 12 | 8.6 | 3.0 | | 3 | 1.6 | 13 | 18 | 15 | 37 | 60 | 47 | 64 | 12 | 11 | e6.5 | e2.9 | | 4 | 1.8 | 11 | 17 | 15 | 168 | 55 | 84 | 41 | 11 | 8.9 | e5.2 | e4.5 | | 5 | 1.2 | 9.2 | 16 | 13 | 521 | 46 | 134 | 53 | 11 | 8.4 | e4.8 | e3.5 | | | | | | | | | | | | | | | | 6 | .81 | 8.4 | 15 | 13 | 303 | 41 | 74 | 45 | 11 | 7.7 | e3.9 | e3.0 | | 7 | 1.4 | 41 | 14 | 13 | 154 | 40 | 57 | 31 | 11 | 7.1 | 4.0 | e2.1 | | 8 | .79 | 104 | 12 | 24 | 98 | 51 | 52 | 54 | 10 | 7.5 | 4.1 | e4.2 | | 9 | .31 | 68 | 12 | 54 | 71 | 260 | 67 | 66 | 10 | 9.9 | 6.0 | e4.6 | | 10 | .71 | 51 | 14 | 29 | 58 | 299 | 78 | 51 | 18 | 189 | 6.5 | e4.0 | | 11 | .67 | 28 | 16 | 20 | 54 | 96 | 58 | 38 | 22 | 257 | 10 | e3.1 | | 12 | 1.5 | 19 | 17 | 17 | 54 | 67 | 46 | 37 | 19 | 43 | 8.1 | e2.4 | | 13 | .85 | | | 17 | 53 | 58 | 43 | 39 | 19 | | | | | | | 15 | 15 | | | | | | | e20 | 6.4 | e2.1 | | 14 | .98 | 22 | 13 | 19 | 44 | 54 | 42 | 36 | 18 | e18 | 5.5 | e1.8 | | 15 | 4.0 | 34 | 12 | 23 | 40 | 51 | 43 | 30 | 32 | e16 | 4.7 | e1.6 | | 16 | 4.1 | 25 | 12 | 40 | 38 | 47 | 41 | 27 | 74 | e18 | e4.3 | e1.3 | | 17 | 5.3 | 17 | 11 | 35 | 91 | 46 | 95 | 25 | 62 | e16 | e4.0 | e1.1 | | 18 | 8.6 | 14 | 11 | 24 | 225 | 93 | 166 | 22 | 26 | e13 | e3.6 | e1.1 | | 19 | 12 | 13 | 11 | 22 | 105 | 274 | 71 | 20 | 17 | e13 | e3.2 | e1.3 | | 20 | 14 | 13 | 11 | 21 | 66 | 351 | 79 | 18 | 16 | e12 | e3.2 | e1.4 | | 20 | 11 | 13 | 11 | 21 | 00 | 331 | ,, | 10 | 10 | CIZ | 65.0 | C1.4 | | 21 | 12 | 13 | 10 | 19 | 58 | 289 | 63 | 18 | 18 | e11 | e2.7 | e1.4 | | 22 | 9.2 | 66 | 12 | 17 | 51 | 260 | 48 | 17 | 20 | e10 | e2.5 | e3.0 | | 23 | 6.7 | 86 | 18 | 77 | 75 | 121 | 43 | 17 | 103 | e9.5 | e2.3 | e2.7 | | 24 | 5.7 | 29 | 19 | 282 | 145 | 88 | 40 | 18 | 63 | 9.3 | e2.0 | e2.3 | | 25 | 8.9 | 20 | 21 | 131 | 104 | 74 | 35 | 20 | 27 | 8.4 | 1.9 | e2.0 | | 23 | 0.5 | 20 | 21 | 131 | 104 | 71 | 33 | 20 | 27 | 0.1 | 1.7 | 62.0 | | 26 | 12 | 17 | 24 | 49 | 68 | 66 | 32 | 19 | 19 | 7.9 | 1.8 | e1.7 | | 27 | 21 | 15 | 24 | 40 | 57 | 63 | 30 | 20 | 15 | 7.7 | 3.5 | e1.6 | | 28 | 22 | 14 | 36 | 289 | 53 | 60 | 29 | 27 | 16 | 10 | 6.4 | e1.5 | | 29 | 15 | 13 | 32 | 448 | | 56 | 28 | 26 | 25 | 9.9 | 10 | e1.4 | | 30 | 10 | 14 | 26 | 147 | | 53 | 28 | 21 | 19 | 7.5 | 6.1 | e5.8 | | 31 | 7.9 | | 23 | 69 | | 51 | | 18 | | 7.4 | 3.8 | | | 31 | 7.5 | | 23 | 0,5 | | 31 | | 10 | | , | 3.0 | | | TOTAL | 196.42 | 814.4 | 536 | 2017 | 2884 | 3269 | 1752 | 998 | 753 | 801.1 | 153.9 | 75.4 | | MEAN | 6.34 | | 17.3 | 65.1 | 103 | 105 | 58.4 | 32.2 | 25.1 | 25.8 | 4.96 | 2.51 | | MAX | 22 | 104 | 36 | 448 | 521 | 351 | 166 | 66 | 103 | 257 | 10 | 5.8 | | MIN | .31 | 8.4 | 10 | 13 | 37 | 40 | 28 | 17 | 10 | 7.1 | 1.8 | 1.1 | | CFSM | .24 | 1.04 | .66 | 2.48 | 3.93 | 4.02 | 2.23 | 1.23 | .96 | .99 | .19 | .10 | | IN. | .28 | 1.16 | .76 | 2.86 | 4.09 | 4.64 | 2.49 | 1.42 | 1.07 | 1.14 | .22 | .11 | | | | | | | | | | | | | | | e Estimated. ### YORK RIVER BASIN
01673550 TOTOPOTOMOY CREEK NEAR STUDLEY, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1978 | - 1 | 998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|-----|------|----|-------|------|-----|---| OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-------|-------|------------|-----------|------|-----------|-----------|------|-----------|-----------|---------| | MEAN | 14.4 | 23.6 | 26.0 | 36.9 | 39.5 | 51.6 | 42.7 | 30.2 | 18.2 | 12.6 | 13.7 | 9.68 | | MAX | 54.0 | 80.8 | 56.0 | 114 | 103 | 127 | 106 | 68.4 | 43.2 | 25.8 | 49.7 | 44.4 | | (WY) | 1980 | 1986 | 1997 | 1978 | 1998 | 1984 | 1984 | 1978 | 1979 | 1998 | 1985 | 1979 | | MIN | 2.93 | 6.44 | 10.5 | 10.3 | 15.5 | 12.7 | 12.3 | 8.46 | 4.95 | 5.73 | .92 | 1.18 | | (WY) | 1982 | 1982 | 1981 | 1981 | 1991 | 1981 | 1985 | 1985 | 1986 | 1995 | 1995 | 1997 | | CIIMMAD | Y STATIST | TOS | FOR | 1007 CALE | NDAR YEAR | T. | OR 1998 W | ATED VEAD | | MATTED VI | EARS 1978 | 1000 | | SUMMAR | I SIAIISI. | ICS | FOR . | 1997 CALEI | NDAR ILAR | r | OK 1996 W | ALEK IEAK | | WAIER II | EARS 19/0 | - 1996 | | ANNUAL | TOTAL | | | 7279.1 | 1 | | 14250.2 | 2 | | | | | | ANNUAL | MEAN | | | 19.9 | | | 39.0 | | | 26.5 | | | | HIGHES | T ANNUAL I | MEAN | | | | | | | | 45.1 | | 1984 | | LOWEST | ANNUAL M | EAN | | | | | | | | 11.8 | | 1981 | | HITCHEC | יא עזדע אי | C A M | | 104 | Morr 0 | | E 2.1 | Fob F | | 612 | Moss | 20 1004 | | ANNUAL TOTAL | 1213.11 | 17230.22 | | | | |--------------------------|---------|----------|---------|-------|-------------| | ANNUAL MEAN | 19.9 | 39.0 | | 26.5 | | | HIGHEST ANNUAL MEAN | | | | 45.1 | 1984 | | LOWEST ANNUAL MEAN | | | | 11.8 | 1981 | | HIGHEST DAILY MEAN | 104 Nov | 8 521 | Feb 5 | 612 | Mar 29 1984 | | LOWEST DAILY MEAN | .25 Sep | 7 .31 | Oct 9 | e.03 | Aug 31 1995 | | ANNUAL SEVEN-DAY MINIMUM | .32 Sep | 3 .83 | Oct 8 | e.09 | Aug 25 1995 | | INSTANTANEOUS PEAK FLOW | | 585 | aJan 29 | 802 | Aug 19 1985 | | INSTANTANEOUS PEAK STAGE | | 7.83 | aJan 29 | 8.77 | Feb 25 1979 | | INSTANTANEOUS LOW FLOW | | .08 | Oct 8 | (b) | Sep 1 1995 | | ANNUAL RUNOFF (CFSM) | .76 | 1.49 | | 1.01 | | | ANNUAL RUNOFF (INCHES) | 10.34 | 20.23 | | 13.75 | | | 10 PERCENT EXCEEDS | 39 | 77 | | 52 | | | 50 PERCENT EXCEEDS | 16 | 18 | | 17 | | | 90 PERCENT EXCEEDS | 1.4 | 2.7 | | 4.3 | | | | | | | | | a Also Feb. 5, 1998. b Minimum discharge observed, 0.025 ${\rm ft}^3/{\rm s.}$ e Estimated. # 01673800 PO RIVER NEAR SPOTSYLVANIA, VA LOCATION.--Lat 38°10'17", long 77°35'42", Spotsylvania County, Hydrologic Unit 02080105, on right bank at upstream side of bridge on State Highway 208, 1.6 mi north of Snell, 2.0 mi south of Spotsylvania, 4.8 mi downstream from Gladys Run, and 4.9 mi upstream from U.S. Highway 1. DRAINAGE AREA. -- 77.4 mi². PERIOD OF RECORD. -- October 1962 to current year. REVISED RECORDS. -- WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 183.76 ft above sea level. Prior to Sept. 30, 1964, nonrecording gage at same site and datum. REMARKS.--Records good except those for periods of doubtful gage-height record, July 17 to Aug. 5, and Aug. 23 to Sept. 30, which are fair. Maximum discharge, 10,900 $\mathrm{ft^3/s}$, from rating curve extended above 3,400 $\mathrm{ft^3/s}$. Several measurements of water temperature were made during the year. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.—Peak discharges equal to or greater than base discharge of 900 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 8 | 2000 | 1,550 | 9.22 | Feb. 24 | 2000 | 1,100 | 7.95 | | Jan. 24 | 1730 | 1,530 | 9.19 | Mar. 10 | 0230 | 944 | 7.43 | | Jan. 29 | 1200 | 2,730 | 11.55 | Mar. 20 | 0630 | 1,070 | 7.86 | | Feb. 5 | 1730 | 3,850 | 13.17 | Mar. 21 | 2330 | *4,070 | *13.44 | | Feb. 18 | 1700 | 3,010 | 12.00 | Jun. 23 | 2330 | 1,410 | 8.88 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 0.50 ft³/s, Oct. 14. | | | Dibeini | KOL, IN C | JDIC IDDI | | ILY MEAN V | | JDBR 1997 | IO DELLE | IIDDIC 1990 | | | |-------|--------|---------|-----------|-----------|-------|------------|------|-----------|----------|-------------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 7.7 | 16 | 39 | 60 | 129 | 118 | 81 | 74 | 26 | 40 | e4.3 | e1.8 | | 2 | 5.2 | 29 | 40 | 49 | 104 | 128 | 79 | 186 | 24 | 34 | e4.6 | e1.7 | | 3 | 3.2 | 35 | 34 | 47 | 91 | 223 | 72 | 116 | 22 | 28 | e4.0 | e1.6 | | 4 | 2.4 | 24 | 39 | 48 | 521 | 165 | 195 | 86 | 21 | 24 | e3.4 | e1.6 | | 5 | 2.0 | 18 | 51 | 46 | 3040 | 121 | 353 | 75 | 20 | 22 | e3.2 | e1.5 | | 6 | 1.8 | 15 | 45 | 43 | 2320 | 104 | 150 | 68 | 20 | 20 | 3.3 | e1.4 | | 7 | 1.6 | 226 | 37 | 48 | 803 | 94 | 110 | 61 | 19 | 18 | 3.0 | e1.4 | | 8 | 1.3 | 1080 | 32 | 70 | 467 | 164 | 95 | 229 | 18 | 20 | 2.9 | e1.8 | | 9 | 1.4 | 608 | 31 | 92 | 333 | 707 | 182 | 436 | 18 | 34 | 3.1 | e1.4 | | 10 | 1.4 | 158 | 32 | 68 | 181 | 715 | 364 | 189 | 25 | 34 | 4.0 | e1.3 | | 11 | 1.1 | 86 | 45 | 52 | 140 | 204 | 183 | 119 | 30 | 26 | 9.6 | e1.1 | | 12 | 1.0 | 58 | 48 | 45 | 209 | 139 | 123 | 166 | 32 | 20 | 5.7 | e.98 | | 13 | .86 | 46 | 40 | 44 | 182 | 116 | 100 | 293 | 39 | 16 | 4.1 | e.90 | | 14 | .72 | 69 | 36 | 47 | 124 | 106 | 91 | 146 | 44 | 13 | 3.8 | e.82 | | 15 | 1.0 | 110 | 33 | 57 | 103 | 97 | 87 | 93 | 41 | 12 | 4.2 | e.77 | | 16 | 1.3 | 68 | 31 | 226 | 91 | 86 | 80 | 70 | 56 | 10 | 4.1 | e.70 | | 17 | 2.2 | 49 | 30 | 188 | 302 | 82 | 341 | 57 | 98 | e8.5 | 4.4 | e.72 | | 18 | 36 | 39 | 30 | 106 | 2330 | 138 | 576 | 49 | 63 | e7.5 | 5.3 | e1.2 | | 19 | 58 | 35 | 28 | 87 | 1330 | 555 | 186 | 45 | 39 | e7.0 | 4.7 | e1.7 | | 20 | 27 | 33 | 28 | 80 | 256 | 860 | 279 | 41 | 32 | e6.8 | 3.9 | e1.4 | | 21 | 15 | 33 | 27 | 71 | 237 | 2250 | 191 | 38 | 29 | e6.1 | 3.5 | e1.4 | | 22 | 10 | 91 | 27 | 61 | 174 | 2420 | 125 | 36 | 30 | e6.4 | 3.3 | e1.5 | | 23 | 7.4 | 125 | 37 | 334 | 278 | 457 | 103 | 34 | 383 | e7.8 | e3.1 | e1.5 | | 24 | 5.6 | 78 | 46 | 1190 | 906 | 215 | 91 | 33 | 514 | e6.4 | e3.0 | e1.4 | | 25 | 8.5 | 58 | 100 | 519 | 567 | 158 | 79 | 33 | 120 | e5.7 | e2.7 | e1.3 | | 26 | 15 | 48 | 127 | 184 | 195 | 133 | 72 | 33 | 64 | e5.3 | e2.6 | e1.2 | | 27 | 49 | 42 | 77 | 131 | 144 | 120 | 66 | 33 | 45 | e5.0 | e2.5 | e1.1 | | 28 | 48 | 37 | 88 | 881 | 124 | 110 | 62 | 39 | 38 | e4.7 | e2.3 | e1.0 | | 29 | 26 | 34 | 82 | 2420 | | 100 | 58 | 38 | 49 | e4.4 | e2.2 | e.90 | | 30 | 17 | 32 | 74 | 727 | | 92 | 55 | 33 | 50 | e4.2 | e2.1 | e.82 | | 31 | 13 | | 72 | 187 | | 85 | | 29 | | e4.0 | e2.0 | | | TOTAL | 371.68 | 3380 | 1486 | 8208 | 15681 | 11062 | 4629 | 2978 | 2009 | 460.8 | 114.9 | 37.91 | | MEAN | 12.0 | 113 | 47.9 | 265 | 560 | 357 | 154 | 96.1 | 67.0 | 14.9 | 3.71 | 1.26 | | MAX | 58 | 1080 | 127 | 2420 | 3040 | 2420 | 576 | 436 | 514 | 40 | 9.6 | 1.8 | | MIN | .72 | 15 | 27 | 43 | 91 | 82 | 55 | 29 | 18 | 4.0 | 2.0 | .70 | | CFSM | .15 | 1.46 | .62 | 3.42 | 7.24 | 4.61 | 1.99 | 1.24 | .87 | .19 | .05 | .02 | | IN. | .18 | 1.62 | .71 | 3.94 | 7.54 | 5.32 | 2.22 | 1.43 | .97 | .22 | .06 | .02 | e Estimated. YORK RIVER BASIN # 01673800 PO RIVER NEAR SPOTSYLVANIA, VA--Continued | STATIS | TICS OF M | ONTHLY MEAN | DATA | FOR WATER | YEARS 1963 | - 1998, | BY WATER | YEAR (WY) | | | | | |--------|-----------|-------------|------|-----------|------------|---------|----------|-----------|------|------|------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 44.7 | 66.7 | 87.8 | 121 | 140 | 157 | 115 | 78.8 | 52.3 | 29.4 | 25.2 | 25.8 | | MAX | 275 | 278 | 210 | 326 | 560 | 566 | 397 | 221 | 490 | 145 | 207 | 268 | | (WY) | 1980 | 1994 | 1997 | 1978 | 1998 | 1994 | 1983 | 1972 | 1972 | 1984 | 1969 | 1975 | | MIN | .24 | .85 | 11.1 | 10.4 | 37.3 | 25.2 | 27.1 | 19.1 | 4.62 | 1.68 | . 25 | .26 | | (WY) | 1992 | 1992 | 1966 | 1981 | 1968 | 1981 | 1981 | 1986 | 1986 | 1963 | 1963 | 1991 | | | | | | | | | | | | | | | | MIN | .24 | .85 | 11.1 | 10.4 | 37.3 | 25.2 | 27.1 | 19.1 | 4.62 | 1.68 | . 25 | .26 | | SUMMARY STATISTICS | FOR 1997 CALENDAR YEAR | FOR 1998 WATER YEAR | WATER YEARS 1963 - 1998 | |--------------------------|------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 24839.28 | 50418.29 | | | ANNUAL MEAN | 68.1 | 138 | 78.4 | | HIGHEST ANNUAL MEAN | | | 164 1972 | | LOWEST ANNUAL MEAN | | | 18.7 1981 | | HIGHEST DAILY MEAN | 1080 Nov 8 | 3040 Feb 5 | 8160 Jun 22 1972 | | LOWEST DAILY MEAN | .72 Oct 14 | e.70 Sep 16 | .04 Sep 23 1991 | | ANNUAL SEVEN-DAY MINIMUM | 1.1 Oct 10 | e.86 Sep 11 | .06 Oct 6 1986 | | INSTANTANEOUS PEAK FLOW | | 4070 Mar 21 | 10900 Jun 22 1972 | | INSTANTANEOUS PEAK STAGE | | 13.44 Mar 21 | 19.03 Jun 22 1972 | | INSTANTANEOUS LOW FLOW | | .50 Oct 14 | .03 Sep 23 1991 | | ANNUAL RUNOFF (CFSM) | .88 | 1.78 | 1.01 | | ANNUAL RUNOFF (INCHES) | 11.94 | 24.23 | 13.76 | | 10 PERCENT EXCEEDS | 141 | 265 | 152 | | 50 PERCENT EXCEEDS | 37 | 41 | 36 | | 90 PERCENT EXCEEDS | 3.2 | 1.7 | 2.9 | e Estimated. # 01674000 MATTAPONI RIVER NEAR BOWLING GREEN, VA LOCATION.--Lat 38°03'42", long 77°23'10", Caroline County, Hydrologic Unit 02080105, on right bank 0.1 mi upstream from bridge on State Highway 605, 2.2 mi northwest of Bowling Green, 2.4 mi upstream from South River, and 7.1 mi downstream from confluence of Matta and Poni Rivers. DRAINAGE AREA. -- 257 mi². PERIOD OF RECORD. -- September 1942 to current year. REVISED RECORDS.--WSP 1382: 1943, 1945(M), 1948(M), 1949, 1953(M).
WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 85.14 ft above sea level. Prior to Aug. 17, 1978, gage located on left bank at same datum. REMARKS.--Records good except those for periods of doubtful gage-height record, Feb. 12, 13, and July 15, 16, 27, 28, which are fair. Some diurnal fluctuation from gristmill upstream on Po River. Maximum discharge, 13,400 ${\rm ft}^3/{\rm s}$, from rating curve extended above 8,100 ${\rm ft}^3/{\rm s}$. No flow at times in September and October 1954 and September 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1928 reached a stage of 19.5 ft based on relative difference in stage between this flood and flood of Oct. 17, 1942, at Milford 4 mi downstream, discharge, 15,000 $\rm ft^3/s$, from rating curve extended above 8,100 $\rm ft^3/s$. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,000 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 25 | 1400 | 2,740 | 10.70 | Feb. 25 | 1700 | 2,690 | 10.57 | | Jan. 30 | 0300 | 5,340 | 13.42 | Mar. 10 | 1900 | 2,690 | 10.57 | | Feb. 6 | 1300 | *6,550 | *14.45 | Mar. 22 | 1800 | 5,550 | 13.60 | | Feb. 19 | 1700 | 4,950 | 13.05 | Apr. 19 | 0700 | 2,210 | 9.94 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 1.3 ft³/s, Sept. 17. | | | | | | D. | AILY MEAN | VALUES | | | | - | | |--|-----------------------------------|-----------------------------------|--|---|--|--|---|---|---------------------------------|----------------------------------|--|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.0
3.3
4.1
3.9
3.4 | 22
28
36
42
35 | 118
119
113
115
137 | 235
200
176
156
145 | 1250
763
554
621
2750 | 621
578
651
792
807 | 383
406
375
415
623 | 239
340
468
489
467 | 108
93
84
76
71 | 103
81
65
54
47 | 13
13
12
11 | 4.2
3.9
3.7
3.5
3.2 | | 6
7
8
9
10 | 3.1
2.8
2.6
2.4
2.4 | 28
79
338
781
1630 | 148
135
114
103
98 | 136
131
158
216
222 | 6310
5110
3090
1990
1340 | 622
510
505
823
2310 | 1010
839
558
510
638 | 379
306
420
673
1360 | 69
74
70
65
86 | 42
37
47
95
90 | 10
10
9.7
9.8
11 | 2.9
2.7
2.7
2.6
2.3 | | 11
12
13
14
15 | 2.3
2.2
2.1
2.2
2.7 | 895
408
211
198
261 | 118
130
131
116
103 | 204
172
153
151
159 | 956
e730
e640
768
615 | 2210
1260
805
608
513 | 929
868
603
474
420 | 1080
680
563
669
638 | 109
114
112
141
173 | 70
50
39
33
e32 | 12
12
11
11 | 2.1
1.8
1.8
1.7 | | 16
17
18
19
20 | 3.3
3.2
15
47
64 | 268
240
186
148
124 | 95
91
87
84
82 | 262
379
473
408
310 | 492
480
869
4190
3440 | 456
409
427
658
1720 | 385
495
1070
2030
1280 | 456
339
273
228
198 | 196
252
297
231
164 | e29
25
23
21
21 | 9.7
9.3
9.2
8.6
8.1 | 1.5
1.6
2.5
3.0
2.8 | | 21
22
23
24
25 | 42
25
15
11 | 112
161
218
265
257 | 82
81
98
112
165 | 264
234
336
891
2570 | 1510
976
825
1060
2450 | 3060
5130
4440
2090
1140 | 1020
884
626
479
400 | 176
160
146
135
141 | 118
95
98
233
439 | 19
19
26
23
20 | 7.2
7.2
7.0
6.8
6.2 | 2.5
2.8
2.7
2.6
2.2 | | 26
27
28
29
30
31 | 13
35
53
55
39
27 | 210
169
141
125
114 | 252
291
293
280
278
262 | 2010
1010
878
3390
4990
2870 | 2060
1150
777
 | 812
644
553
496
448
411 | 346
309
278
257
240 | 140
137
160
162
145
123 | 492
226
119
98
112 | 18
e17
e17
16
15 | 6.0
6.1
6.3
5.8
5.7
4.7 | 2.1
2.3
2.1
2.2
1.7 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 501.0
16.2
64
2.1
.06 | 7730
258
1630
22
1.00 | 4431
143
293
81
.56
.64 | 23889
771
4990
131
3.00
3.46 | 47766
1706
6310
480
6.64
6.91 | 36509
1178
5130
409
4.58
5.28 | 19150
638
2030
240
2.48
2.77 | 11890
384
1360
123
1.49
1.72 | 4615
154
492
65
.60 | 1208
39.0
103
14
.15 | 280.4
9.05
13
4.7
.04 | 75.3
2.51
4.2
1.5
.01 | e Estimated. YORK RIVER BASIN # 01674000 MATTAPONI RIVER NEAR BOWLING GREEN, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1943 | - | 1998, | BY | WATER | YEAR | (WY) | | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------|--| |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------|--| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|------------|----------|------|------------|----------|------|-----------|----------|---------| | MEAN | 126 | 172 | 272 | 368 | 417 | 486 | 385 | 257 | 141 | 105 | 116 | 81.1 | | MAX | 860 | 721 | 1041 | 1174 | 1706 | 1540 | 1164 | 707 | 1111 | 853 | 939 | 714 | | (WY) | 1943 | 1973 | 1949 | 1978 | 1998 | 1994 | 1983 | 1972 | 1972 | 1945 | 1955 | 1975 | | MIN | 1.44 | 6.04 | 33.1 | 34.7 | 113 | 79.8 | 104 | 56.5 | 17.5 | 9.24 | 1.18 | .43 | | (WY) | 1992 | 1992 | 1966 | 1981 | 1968 | 1981 | 1968 | 1955 | 1977 | 1977 | 1977 | 1954 | | | | | | | | _ | | | | | | | | SUMMARY | Y STATIST | ICS | FOR : | 1997 CALEN | DAR YEAR | F | OR 1998 WA | TER YEAR | | WATER YE. | ARS 1943 | - 1998 | | ANNUAL | TOTAL | | | 75607.2 | | | 158044.7 | | | | | | | ANNUAL | MEAN | | | 207 | | | 433 | | | 243 | | | | HIGHEST | r annual i | MEAN | | | | | | | | 516 | | 1972 | | LOWEST | ANNUAL M | EAN | | | | | | | | 61.0 | | 1981 | | HIGHEST | r daily M | EAN | | 1630 | Nov 10 | | 6310 | Feb 6 | | 12200 | Jun | 23 1972 | | LOWEST | DAILY ME | AN | | 2.1 | Oct 13 | | 1.5 | Sep 16 | | .00 | | (a) | | ANNUAL | SEVEN-DA | MINIMUM | | 2.3 | Oct 8 | | 1.7 | Sep 11 | | .00 | | (b) | | INSTAN | TANEOUS P | EAK FLOW | | | | | 6550 | Feb 6 | | 13400 | Jun | 23 1972 | | INSTANT | TANEOUS P | EAK STAGE | | | | | 14.45 | Feb 6 | | c18.95 | Jun | 23 1972 | | INSTANT | TANEOUS LO | OW FLOW | | | | | 1.3 | Sep 17 | | .00 | | (a) | | ANNUAL | RUNOFF (| CFSM) | | .81 | | | 1.68 | | | .95 | | | | | | | | | | | | | | | | | 12.85 548 127 12 22.88 3.2 1010 141 10.94 5.8 486 118 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS ANNUAL RUNOFF (INCHES) a Many days in September and October 1954, and September 1966. b Many days in September and October 1954. c From floodmark in well. # 02015700 BULLPASTURE RIVER AT WILLIAMSVILLE, VA LOCATION.--Lat 38°11'43", long 79°34'14", Bath County, Hydrologic Unit 02080201, on left bank 15 ft downstream from bridge on State Highway 614 at Williamsville and 0.62 mi upstream from mouth. DRAINAGE AREA. -- 110 mi². PERIOD OF RECORD. -- August 1960 to current year. REVISED RECORDS.--WSP 2104: Drainage area. WRD VA-62-1: 1961. WRD VA-96-1: 1985(M). GAGE.--Water-stage recorder. Datum of gage is 1,610.14 ft above sea level. Prior to July 12, 1974, at site 700 ft upstream at datum 11.84 ft higher. REMARKS.--No estimated daily discharges. Records good. Maximum discharge, 22,900 ft³/s, from rating curve extended above 3,300 ft³/s on basis of slope-area measurement of peak flow. Minimum discharge, 19 ft³/s, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location by the Virginia Department of Environmental Quality - Water Division. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,000 ft³/s and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-----------------------------|----------------------|-----------------------------------|-----------------------|--------------------|--------------|-----------------------------------|---------------------| | Jan. 8
Feb. 17
Mar. 9 | 0730
1800
1300 | *7,460
2,310
2,610 | *8.18
5.19
5.44 | Mar. 21
Apr. 19 | 0030
2000 | 2,570
2,430 | 5.41
5.29 | Minimum discharge, 36 ft³/s, Sept. 27. | | | DISCIN | ARGE, IN | CODIC FEE | | AILY MEAN | | TOBER 199 | , 10 PEFT | SHEEK IJJ | 3 | | |-------|------|--------|----------|-----------|-------
-----------|-------|-----------|-----------|-----------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 43 | 114 | 66 | 63 | 203 | 464 | 234 | 181 | 80 | 77 | 46 | 39 | | 2 | 41 | 168 | 62 | 74 | 184 | 377 | 221 | 236 | 77 | 66 | 44 | 39 | | 3 | 41 | 105 | 61 | 78 | 189 | 307 | 184 | 221 | 73 | 59 | 43 | 39 | | 4 | 40 | 83 | 64 | 94 | 218 | 249 | 558 | 233 | 70 | 59 | 42 | 39 | | 5 | 40 | 70 | 66 | 170 | 221 | 212 | 454 | 356 | 70 | 58 | 42 | 38 | | 6 | 40 | 63 | 62 | 272 | 227 | 181 | 345 | 341 | 70 | 54 | 41 | 39 | | 7 | 39 | 362 | 59 | 411 | 221 | 165 | 272 | 286 | 68 | 53 | 41 | 39 | | 8 | 39 | 430 | 58 | 3800 | 206 | 503 | 249 | 445 | 67 | 63 | 42 | 48 | | 9 | 38 | 239 | 57 | 1330 | 209 | 1680 | 853 | 377 | 66 | 59 | 43 | 43 | | 10 | 38 | 142 | 66 | 653 | 221 | 1020 | 705 | 307 | 73 | 53 | 45 | 40 | | 11 | 38 | 111 | 93 | 402 | 262 | 556 | 454 | 262 | 68 | 51 | 57 | 39 | | 12 | 38 | 91 | 85 | 296 | 504 | 377 | 337 | 242 | 70 | 49 | 46 | 39 | | 13 | 39 | 83 | 78 | 255 | 567 | 303 | 275 | 212 | 71 | 49 | 44 | 39 | | 14 | 39 | 105 | 73 | 206 | 445 | 262 | 246 | 184 | 71 | 49 | 45 | 38 | | 15 | 39 | 122 | 66 | 210 | 341 | 224 | 218 | 160 | 123 | 49 | 101 | 38 | | 16 | 39 | 103 | 64 | 372 | 286 | 189 | 192 | 151 | 101 | 48 | 62 | 38 | | 17 | 39 | 91 | 63 | 307 | 1210 | 170 | 203 | 155 | 89 | 51 | 55 | 38 | | 18 | 39 | 81 | 61 | 255 | 1320 | 341 | 168 | 133 | 75 | 49 | 54 | 38 | | 19 | 39 | 77 | 58 | 209 | 957 | 1220 | 1110 | 122 | 126 | 49 | 48 | 38 | | 20 | 40 | 73 | 57 | 178 | 855 | 1080 | 1110 | 114 | 120 | 47 | 44 | 40 | | 21 | 39 | 70 | 56 | 148 | 729 | 2080 | 642 | 109 | 88 | 49 | 43 | 39 | | 22 | 38 | 88 | 57 | 139 | 541 | 1070 | 450 | 105 | 78 | 47 | 42 | 39 | | 23 | 38 | 86 | 58 | 604 | 516 | 653 | 372 | 103 | 73 | 46 | 42 | 39 | | 24 | 41 | 78 | 59 | 598 | 441 | 450 | 318 | 111 | 68 | 46 | 41 | 38 | | 25 | 52 | 74 | 88 | 423 | 397 | 333 | 262 | 107 | 63 | 45 | 41 | 38 | | 26 | 49 | 73 | 88 | 311 | 360 | 282 | 227 | 94 | 62 | 45 | 40 | 38 | | 27 | 64 | 73 | 83 | 259 | 360 | 249 | 206 | 100 | 67 | 45 | 40 | 38 | | 28 | 49 | 67 | 81 | 239 | 419 | 221 | 181 | 103 | 74 | 46 | 40 | 39 | | 29 | 45 | 67 | 77 | 236 | | 198 | 163 | 91 | 153 | 45 | 40 | 38 | | 30 | 43 | 66 | 78 | 255 | | 173 | 155 | 86 | 88 | 44 | 40 | 38 | | 31 | 42 | | 75 | 242 | | 160 | | 81 | | 44 | 39 | | | TOTAL | 1288 | 3455 | 2119 | 13089 | 12609 | 15749 | 11364 | 5808 | 2442 | 1594 | 1433 | 1172 | | MEAN | 41.5 | 115 | 68.4 | 422 | 450 | 508 | 379 | 187 | 81.4 | 51.4 | 46.2 | 39.1 | | MAX | 64 | 430 | 93 | 3800 | 1320 | 2080 | 1110 | 445 | 153 | 77 | 101 | 48 | | MIN | 38 | 63 | 56 | 63 | 184 | 160 | 155 | 81 | 62 | 44 | 39 | 38 | | CFSM | .38 | 1.05 | .62 | 3.84 | 4.09 | 4.62 | 3.44 | 1.70 | .74 | .47 | .42 | .36 | | IN. | .44 | 1.17 | .72 | 4.43 | 4.26 | 5.33 | 3.84 | 1.96 | .83 | .54 | .48 | .40 | # 02015700 BULLPASTURE RIVER AT WILLIAMSVILLE, VA--Continued | STATIST | rics of MC | ONTHLY MEAN | DATA | FOR WATER | YEARS 1 | 960 | - 1998, | BY WATER | R YEAR (V | VY) | | | | |---------|------------|-------------|------|-----------|----------|-----|---------|-----------|-----------|------|----------|----------|--------| | | OCT | NOV | DEC | JAN | FEB | | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 85.1 | 123 | 164 | 202 | 227 | | 317 | 226 | 192 | 119 | 66.4 | 65.5 | 67.9 | | MAX | 295 | 784 | 543 | 631 | 498 | | 655 | 663 | 448 | 376 | 245 | 272 | 432 | | (WY) | 1977 | 1986 | 1974 | 1996 | 1982 | | 1993 | 1987 | 1996 | 1982 | 1972 | 1969 | 1996 | | MIN | 30.1 | 35.9 | 31.9 | 34.7 | 63.8 | | 62.2 | 74.9 | 65.4 | 41.4 | 32.9 | 27.7 | 28.5 | | (WY) | 1989 | 1992 | 1966 | 1981 | 1963 | | 1981 | 1981 | 1977 | 1964 | 1966 | 1964 | 1968 | | SUMMAR | Y STATISTI | ics | FOR | 1997 CALI | ENDAR YE | AR | F | OR 1998 V | WATER YEA | AR. | WATER YE | ARS 1960 | - 1998 | | ANNUAL | TOTAL | | | 45973 | | | | 72122 | | | | | | | ANNUAL | MEAN | | | 126 | | | | 198 | | | 154 | | | | HIGHEST | r annual N | MEAN . | | | | | | | | | 248 | | 1996 | | LOWEST | ANNUAL ME | EAN | | | | | | | | | 71.2 | | 1981 | | HIGHEST | C DAILY ME | EAN | | 1620 | Mar | 3 | | 3800 | Jan | 8 | e8700 | Nov | 4 1985 | | LOWEST | DAILY MEA | AN | | 37 | Sep | 6 | | 38 | a0ct | 9 | 23 | bSep | 8 1964 | | ANNUAL | SEVEN-DAY | MINIMUM | | 38 | Sep | 2 | | 38 | cSep 1 | L3 | 24 | Sep | 5 1964 | | INSTAN | CANEOUS PE | EAK FLOW | | | | | | 7460 | Jan | 8 | 22900 | Nov | 4 1985 | | INSTANT | CANEOUS PE | EAK STAGE | | | | | | 8.3 | 18 Jan | 8 | d12.79 | Nov | 4 1985 | | INSTAN | CANEOUS LO | OW FLOW | | | | | | 36 | Sep 2 | 27 | f19 | Jan | 4 1981 | | ANNUAL | RUNOFF (| CFSM) | | 1.3 | 15 | | | 1.8 | 80 | | 1.40 | | | | ANNUAL | RUNOFF () | INCHES) | | 15. | 55 | | | 24.3 | 39 | | 19.08 | | | 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Oct. 10-12, 22, 23, 1997 and Sept. 5, 14-19, 24-27, 29, 30, 1998. b Also Sept. 9, 1964. c Also Sept. 24, 1998. d From floodmarks. e Estimated. f Result of freezeup. # 02017500 JOHNS CREEK AT NEW CASTLE, VA LOCATION.--Lat 37°30'22", long 80°06'25", Craig County, Hydrologic Unit 02080201, on right bank 20 ft downstream from bridge on State Highway 615 at New Castle and 1,700 ft upstream from mouth. DRAINAGE AREA. -- 104 mi². PERIOD OF RECORD. -- April 1926 to current year. REVISED RECORDS.--WSP 972: 1935-36(M), 1940(M). WSP 1203: 1928, 1935. WSP 1303: 1927(M), 1928, 1929-34(M), 1935. WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,254.30 ft above sea level. Prior to June 7, 1937, nonrecording gage at same site and datum. REMARKS.--Records good except those for period with ice effect, Dec. 31 to Jan. 1, and periods of doubtful gage-height record, July 26 to Aug. 4, and Sept. 5-8, 11, 14, 15, 18, 22, 28, 29, which are fair. Maximum discharge, 8,000 ft³/s, from rating curve extended above 3,200 ft³/s on basis of slope-area measurement of peak flow. Minimum discharge, 6.0 ft³/s, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,100 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-------------------|--------------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8
Mar. 21 | 1300
0330 | 2,540
2,760 | 8.80
9.02 | Apr. 19 | 2300 | *3,100 | *9.30 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 8.8 ft³/s, Oct. 14. | | | | | | Di | AILY MEAN | VALUES | | | | | | |-------|-------|------|------|-------|-------|-----------|--------|------|------|------|------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 9.7 | 17 | 22 | e30 | 368 | 258 | 153 | 245 | 85 | 31 | e14 | 11 | | 2 | 9.4 | 26 | 22 | 36 | 303 | 242 | 136 | 327 | 71 | 28 | e14 | 11 | | 3 | 9.6 | 27 | 21 | 39 | 313 | 220 | 119 | 263 | 66 | 26 | e14 | 11 | | 4 | 9.7 | 22 | 21 | 48 | 1240 | 191 | 312 | 362 | 70 | 25 | e13 | 11 | | 5 | 9.5 | 20 | 21 | 89 | 1190 | 164 | 403 | 469 | 70 | 28 | 13 | e10 | | 6 | 9.4 | 18 | 21 | 112 | 1030 | 142 | 328 | 374 | 71 | 24 | 13 | e10 | | 7 | 9.2 | 17 | 20 | 137 | 771 | 123 | 278 | 329 | 65 | 22 | 13 | e9.8 | | 8 | 9.0 | 17 | 19 | 1400 | 575 | 157 | 243 | 496 | 59 | 22 | 20 | e12 | | 9 | 9.2 | 17 | 19 | 607 | 477 | 451 | 466 | 426 | 56 | 22 | 25 | 11 | | 10 | 9.2 | 16 | 21 | 423 | 406 | 430 | 482 | 360 | 58 | 22 | 22 | 11 | | 11 | 11 | 16 | 23 | 340 | 397 | 348 | 389 | 561 | 57 | 21 | 25 | e10 | | 12 | 9.8 | 16 | 23 | 294 | 471 | 299 | 334 | 449 | 72 | 20 | 17 | 11 | | 13 | 9.1 | 16 | 23 | 257 | 448 | 260 | 292 | 367 | 74 | 19 | 15 | 10 | | 14 | 9.0 | 18 | 22 | 203 | 384 | 230 | 258 | 305 | 80 | 19 | 14 | e9.5 | | 15 | 9.7 | 21 | 22 | 230 | 326 | 191 | 223 | 249 | 85 | 19 | 14 | e9.3 | | 16 | 9.3 | 20 | 22 | 407 | 290 | 164 | 219 | 206 | 80 | 18 | 20 | 10 | | 17 | 9.5 | 18 | 23 | 344 | 977 | 144 | 952 | 169 | 78 | 17 | 50 | 9.7 | | 18 | 9.9 | 18 | 21 | 280 | 990 | 150 | 588 | 136 | 68 | 17 | 37 | e9.4 | | 19 | 10 | 17 | 20 | 237 | 650 | 820 | 1240 | 112 | 71 | 17 | 27 | 9.8 | | 20 | 10 | 17 | 20 | 202 | 559 | 1220 | 1600 | 94 | 76 | 16 | 22 | 11 | | 21 | 9.9 | 18 | 19 | 168 | 472 | 2170 | 820 | 82 | 66 | 16 | 18 | 11 | | 22 | 9.9 | 25 | 24 | 145 | 397 | 1010 | 629 | 72 | 60 | 16 | 16 | e14 | | 23 | 10 | 28 | 31 | 337 | 432 | 686 | 528 | 87 | 52 | 17 | 15 | 12 | | 24 | 11 | 27 | 32 | 371 | 444 | 555 | 457 | 106 | 46 | 17 | 14 | 11 | | 25 | 13 | 24 | 38 | 325 | 369 | 461 | 384 | 111 | 51 | 16 | 14 | 11 | | 26 | 16 | 22 | 40 | 264 | 324 | 404 | 326 | 110 | 40 | e16 | 13 | 11 | | 27 | 19 | 22 | 42 | 232 | 297 | 357 | 277 | 151 | 35 | e16 | 13 | 10 | | 28 | 17 | 20 | 42 | 711 | 275 | 304 | 227 | 184 | 33 | e15 | 13 | e9.7 | | 29 | 13 | 20 | 38 | 737 | | 255 | 185 | 153 | 37 | e15 | 12 | e9.1 | | 30 | 13 | 20 | 40 | 618 | | 209 | 160 | 127 | 35 | e14 | 12 | 9.8 | | 31 | 13 | | e33 | 465 | | 173 | | 105 | | e14 | 12 | | | TOTAL | 336.0 | 600 | 805 | 10088 | 15175 | 12788 | 13008 | 7587 | 1867 | 605 | 554 | 316.1 | | MEAN | 10.8 | 20.0 | 26.0 | 325 | 542 | 413 | 434 | 245 | 62.2 | 19.5 | 17.9 | 10.5 | | MAX | 19 | 28 | 42 | 1400 | 1240 | 2170 | 1600 | 561 | 85 | 31 | 50 | 14 | | MIN | 9.0 | 16 | 19 | 30 | 275 | 123 | 119 | 72 | 33 | 14 | 12 | 9.1 | | CFSM | .10 | .19 | .25 | 3.13 | 5.21 | 3.97 | 4.17 | 2.35 | .60 | .19 | .17 | .10 | | IN. | .12 | .21 | .29 | 3.61 | 5.43 | 4.57 | 4.65 | 2.71 | .67 | .22 | .20 | .11 | e Estimated. Jun 21 1972 Dec 6 1946 ### JAMES RIVER BASIN # 02017500 JOHNS CREEK AT NEW CASTLE, VA--Continued | STATISTICS | OF |
MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1927 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|-----|---| OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------------------|------------|-----------|-------|------------|----------|------|--------------------|-----------|------|----------|----------|--------| | MEAN | 57.5 | 89.1 | 134 | 191 | 228 | 279 | 225 | 160 | 90.2 | 40.6 | 43.4 | 40.3 | | MAX | 396 | 445 | 514 | 546 | 542 | 730 | 820 | 398 | 471 | 291 | 364 | 353 | | (WY) | 1930 | 1986 | 1949 | 1996 | 1998 | 1955 | 1987 | 1989 | 1972 | 1941 | 1940 | 1989 | | MIN | 9.81 | 14.0 | 15.7 | 16.2 | 18.0 | 51.9 | 47.8 | 33.5 | 20.2 | 8.90 | 9.39 | 9.07 | | (WY) | 1992 | 1931 | 1940 | 1956 | 1934 | 1988 | 1995 | 1930 | 1970 | 1930 | 1930 | 1930 | | SUMMARY STATISTICS | | | FOR I | 1997 CALEN | DAR YEAR | F | OR 1998 W <i>i</i> | ATER YEAR | | WATER YE | ARS 1927 | - 1998 | | ANNUAL | TOTAL | | | 35627.9 | | | 63729.1 | | | | | | | ANNUAL | MEAN | | | 97.6 | | | 175 | | | 131 | | | | HIGHEST | C ANNUAL N | MEAN | | | | | | | | 235 | | 1973 | | LOWEST | ANNUAL M | EAN | | | | | | | | 66.1 | | 1981 | | HIGHEST | DAILY M | EAN | | 1050 | Mar 4 | | 2170 | Mar 21 | | 6040 | Jun 2 | 1 1972 | | LOWEST | DAILY MEA | AN | | 8.4 | aSep 21 | | 9.0 | bOct 8 | | 6.6 | Oct | 1 1968 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 8.8 | Sep 3 | | 9.3 | Oct 4 | | 7.1 | Sep 2 | 7 1968 | | INSTANT | TANEOUS PI | EAK FLOW | | | - | | 3100 | Apr 19 | | 8000 | - | 3 1935 | INSTANTANEOUS PEAK FLOW 3100 Apr 19 8000 INSTANTANEOUS PEAK STAGE 9.30 Apr 19 12.48 INSTANTANEOUS LOW FLOW 8.8 Oct 14 c6.0 ANNUAL RUNOFF (CFSM) .94 1.68 1.26 ANNUAL RUNOFF (INCHES) 12.74 22.80 17.11 10 PERCENT EXCEEDS 217 463 303 50 PERCENT EXCEEDS 39 37 60 90 PERCENT EXCEEDS 10 13 9.8 a Also Sept. 22, 1997. b Also Oct. 14, 1998. c Result of freezeup. ### 02018500 CATAWBA CREEK NEAR CATAWBA, VA LOCATION.--Lat 37°28'05", long 80°00'20", Botetourt County, Hydrologic Unit 02080201, on right bank 80 ft upstream from bridge on State Highway 779, 1.0 mi downstream from Little Catawba Creek, 1.9 mi west of Haymakertown, and 8.2 mi northeast of Catawba. DRAINAGE AREA. -- 34.3 mi². PERIOD OF RECORD. -- September 1943 to current year. REVISED RECORDS.--WSP 1303: 1944-45(M). WSP 2104: Drainage area. WDR VA-72-1: 1954, 1955(P), 1957-58(P), 1959, 1960-62(P), 1963, 1964(M), 1965-67(P), 1968(M), 1969, 1970(M), 1971. GAGE.--Water-stage recorder. Datum of gage is 1,299.96 ft above sea level. Prior to Aug. 1, 1953, nonrecording gage at site 80 ft downstream at same datum. REMARKS.--Records good except those for period of doubtful gage-height record, Oct. 21 to Dec. 2, and period with ice effect, Jan. 1, 2, which are fair. At a point 5.3 mi upstream from station, there has been transmountain diversion through a tunnel into Roanoke River Basin for municipal water supply of city of Roanoke since December 1974. From October 1953 to October 1976, monthly means adjusted for pumpage by Citadel Cement Corporation. Maximum discharge, 21,200 ft³/s, from rating curve extended above 1,700 ft³/s on basis of slope-area measurements at gage heights 10.35 ft and 19.19 ft. Minimum discharge, 0.28 ft³/s, Aug. 21, 1987, gage height, 0.99 ft, cause unknown. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1940 reached a stage of 13.26 ft, from information by observer. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,590 ft³/s, Mar. 20, gage height, 6.98 ft; minimum, 1.5 ft³/s, Sept. 29. | | | _ | 10011111027 | 111 0021 | .0 1221 | D D | DAILY ME | AN VALU | ES | | . 10 52 | | 1,,,, | | |--|---|------------------------------|--|--|-------------------------------------|---|--|--|----------------------------|---|--|---|--|--| | DAY | OCT | NC | V DEC | 2 a | ΓAN | FEB | MAR | AP | R | MAY | JUN | JUI | L AU | G SEP | | 1
2
3
4
5 | 5.7
5.4
5.2
5.1
5.0 | | 2 4.8 | 5 e5 | 1.9
5.9
5.3
7.3 | 38
51
105
820
585 | 72
66
60
55
51 | 4
4
7 | 0
6
3
6
8 | 61
91
83
91
99 | 23
22
21
17
11 | 8.2
7.1
8.5
9.2 | 2 4.
7 4.
5 4. | 3.8
3.9
1 4.1 | | 6
7
8
9
10 | 4.7
4.3
4.2
4.2
4.6 | e6.
e6. | 1 4.3
2 4.2
4 4.3 | 3 644
3 45 | 5 | 442
283
192
153
128 | 47
45
69
231
151 | 6
5
6 | 8
1
5
3
0 | 78
69
70
62
57 | 14
13
12
12
13 | 8.0
8.2
8.2
7.4 | 1 4.
7 8.
2 8. | 4.0
4.2
5 3.9 | | 11
12
13
14
15 | 4.3
4.5
4.3
4.3 | e5.
e5.
e6. | 6 4.5
5 4.4
0 4.4 | 7 20
1 19
1 18 |)
)
3 | 123
133
129
108
86 | 103
83
72
65
58 | 5
4
4 | 6
1
8
6
4 | 75
65
60
55
49 | 13
13
12
11
12 | 7.0
6.9
6.4
6.4 | 7.
5 6.
4 5. | 3.0
5 3.7
3 3.4 | | 16
17
18
19
20 | 4.3
4.4
4.5
4.3
3.9 | e5.
e5. | 4 4.2
3 4.2
2 4.1 | 2 30
2 23
L 21 |)
3
- | 80
967
423
221
163 | 54
50
54
202
739 | 5
39
18
25
31 | 5
3 | 44
40
36
34
32 | 11
11
10
9.6
9.5 | 6.3
5.9
6.2
5.6 | 8.
2 6.
5 5. | 3.8
5 3.9
3 5.0 | | 21
22
23
24
25 | e4.9
e4.8
e4.7
e5.0
e5.5 | e6.
e7.
e6.
e5. | 4 4.9
5 5.0
5 5.1 |) 18
) 32
L 32 | 3
2
2 | 125
102
165
160
124 | 754
287
180
133
106 | | 0 | 30
27
31
32
30 | 9.8
8.9
9.5
8.7
9.0 | 5.2
5.2
5.2 | 0 4.
3 4.
2 4. | 2 3.7
2 2.9
3.2 | | 26
27
28
29
30
31 | e6.0
e6.5
e5.4
e5.0
e4.7
e6.0 | e4.
e4. | 7 5.6
6 5.4
7 5.4
9 5.1 | 5 22
1 85
1 69
L 61 | 2 | 104
91
80
 | 92
83
76
65
56
52 | 6
5
4 | 8
0
4
9
6 | 30
41
36
31
28
26 | 8.4
7.9
8.8
9.1
7.8 | 5.2
5.3
5.2
6.2
5.3 | 1 3. 3. 5 3. 2 3. 1 3. 1 | 7 2.3
7 2.2
6 2.1
8 2.4 | | TOTAL
MEAN
MAX
MIN
(†)
MEAN‡
CFSM‡
IN.‡ | 150.1
4.84
6.5
3.9
0
4.84
.14 | 6.0
1
4.
7.4
7.4 | 9 4.67
2 5.6
6 4.1
0 0
2 4.67
2 .14 | 7 46
5 6
L 4
D 14
7 94
1 2. | 4
5.2
544
1.9
1.5
76 | 6181
221
967
38
59.3
223
6.50
6.77 | 4211
136
754
45
0
136
3.96
4.57 | 291
97.
39
4
97.
2.8
3.1 | 2
7
3
0
2
3 | 1593
51.4
99
26
0
51.4
1.50
1.73 | 358.0
11.9
23
7.8
193
18.4
.54 | 203.9
6.58
9.2
5.0
3.8
6.7 | 3 5.4
2 9.
3 3.
3 5.4
5 .1 | 1 3.46
4 5.0
5 2.1
0 0
1 3.46
5 .10 | | CAL YR
WTR YR | 1997
1998 | TOTAL
TOTAL | 10017.7
17644.5 | MEAN
MEAN | 27.4
48.3 | MAX
MAX | 703
967 | MIN
MIN | 3.9
2.1 | MEAN‡
MEAN‡ | 29.4
53.3 | CFSM‡
CFSM‡ | | N.‡ 11.63
N.‡ 21.08 | Total diversion, equivalent in cubic feet per second, per month, provided by city of Roanoke. Adjusted for diversion. e Estimated. # 02018500 CATAWBA CREEK NEAR CATAWBA, VA--Continued | STATIS' | TICS OF MO | ONTHLY MEA | N DATA F | OR WATER Y | EARS 1944 | - 1952, | BY WATER | YEAR (WY) | [UNREG | ULATED] | | | |---|---|--|--|---|---|--|--|--|--|--|---|---| | MEAN
MAX
(WY)
MIN
(WY) | OCT
23.7
106
1948
5.00
1952 | NOV
27.4
93.2
1948
5.89
1944 | DEC
40.1
134
1949
7.70
1944 | JAN
52.2
104
1947
15.1
1951 | FEB
65.6
104
1948
20.0
1947 | MAR
69.0
103
1951
35.1
1950 | APR
67.0
152
1951
23.1
1945 | MAY
47.1
114
1950
21.5
1945 | JUN
33.3
108
1949
7.93
1944 | JUL
24.4
107
1949
4.95
1944 | AUG
20.0
46.5
1949
3.91
1944 | SEP
22.9
62.2
1945
5.94
1951 | | SUMMAR | Z OMAMICMI | raa |
| ANDER ADAR | g 1044 | 1050 | | | | | | | | ANNUAL HIGHES' LOWEST HIGHES' LOWEST ANNUAL INSTAN' INSTAN' INSTAN' ANNUAL ANNUAL ANNUAL 10 PER 90 PER 90 PER 10 10 10 10 10 10 10 10 10 10 10 10 10 | MEAN I ANNUAL M ANNUAL ME I DAILY ME DAILY ME TANEOUS PE TANEOUS PE TANEOUS L RUNOFF (1 CENT EXCER CENT EXCER | MEAN EAN EAN EAN AN AN EAK FLOW EAK STAGE OW FLOW CISSM) CINCHES EDS EDS | | 40.9
75.5
22.3
1540
a2.2
a2.4
3300
c5.80
a2.2
1.19
16.21
84
21
6.1 | Jun 29
bSep 9
Sep 5
Dec 7
Dec 7
dSep 7 | 1949
1944
1949
1944
1944
1950
1950
1944 | | | | | | | | STATIS' | TICS OF MO | ONTHLY MEA | N DATA F | OR WATER Y | EARS 1953 | - 1998, | BY WATER | YEAR (WY) | [REGUL | ATED, UNADJ | USTED] | | | MEAN
MAX
(WY)
MIN
(WY) | OCT
17.4
82.2
1990
2.63
1964 | 390
1986 | DEC
28.6
127
1973
3.16
1982 | JAN
40.9
131
1996
3.45
1981 | 221
1998 | 82.4 | APR
65.7
337
1987
6.78
1981 | MAY
39.8
138
1958
9.75
1963 | 5.06 | 52.2
1989 | AUG
12.3
75.5
1985
2.28
1981 | SEP
14.5
105
1979
2.30
1981 | | SUMMAR | Y STATISTI | ICS | FOR | 1997 CALEN | DAR YEAR | F | OR 1998 WA | TER YEAR | | WATER YEA | ARS 1953 | - 1998 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | | 703
3.9
4.1 | Jun 1
Oct 20
Dec 15 | | 967
2.1
2.4 | Sep 29
Sep 24
Mar 20
Mar 20
Sep 29 | | 21200
g19.19
h.28
1.04
14.14
73 | Aug
fNov
Nov
Nov
Aug | 4 1985 | | | 90 PER | CENT EXCE | EDS | | 4.7 | | | 4.1 | | | 4.3 | | | a Observed. b Also Sept. 10, 1944. c From floodmark or crest-stage indicator. d Also Sept. 8-11, 1944. f Also Nov. 17, 1963. g From high-water mark. h Regulation from unknown source. # 02022500 KERRS CREEK NEAR LEXINGTON, VA LOCATION.--Lat 37°49'32", long 79°26'36", Rockbridge County, Hydrologic Unit 02080202, on right bank 100 ft upstream from bridge on Interstate Highway 64, 1.4 mi upstream from mouth, and 2.9 mi north of Lexington. DRAINAGE AREA. -- 35.0 mi². PERIOD OF RECORD.--October 1926 to current year. Monthly discharge only for some periods, published in WSP 1303. REVISED RECORDS.--WSP 1203: 1927-29, 1930-34(M), 1935-40, 1941(M), 1942, 1943-48(M), 1949. WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 980.32 ft above sea level (levels by U.S. Army Corps of Engineers). Jan. 27, 1927, to Sept. 30, 1953, nonrecording gage at site 1,000 ft downstream at different datum. REMARKS.--Records good except for period with ice effect, Jan. 1, which is fair. Maximum discharge, $23,000 \text{ ft}^3/\text{s}$, from rating curve extended above $800 \text{ ft}^3/\text{s}$ on basis of contracted-opening and slope-area measurements of peak flow. Minimum discharge, $0.90 \text{ ft}^3/\text{s}$, July 22, 1966, result of temporary dam upstream. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 600 ft^3/s and maximum (*): | Date | Time | Discharge (ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|--------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 0530 | *6,350 | *10.73 | Mar. 20 | 1830 | 2,770 | 8.53 | | Jan. 28 | 1145 | 890 | 6.12 | Mar. 21 | 0315 | 1,280 | 6.80 | | Feb. 4 | 1545 | 875 | 6.10 | Apr. 19 | 1930 | 681 | 5.71 | | Feb. 17 | 1330 | 1,100 | 6.50 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 6.0 ft³/s, Sept. 28, 29, 30. | | DAILY MEAN VALUES | | | | | | | | | | | | | | |-------|-------------------|------------|------------|------|------|------|------|------|------|-------|-------|-------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 7.0 | 26 | 27 | e12 | 101 | 67 | 47 | 59 | 27 | 20 | 11 | 7.4 | | | | 2 | 7.0 | 18 | 17 | 14 | 85 | 62 | 43 | 66 | 25 | 18 | 9.9 | 7.3 | | | | 3 | 7.0 | 13 | 14 | 15 | 86 | 56 | 41 | 61 | 24 | 18 | 9.6 | 7.1 | | | | 4 | 6.9 | 11 | 15 | 21 | 376 | 51 | 116 | 61 | 24 | 17 | 9.2 | 6.9 | | | | 5 | 6.8 | 9.5 | 14 | 29 | 240 | 47 | 84 | 64 | 24 | 17 | 9.0 | 6.8 | | | | 6 | 6.7 | 9.8 | 13 | 31 | 230 | 43 | 67 | 58 | 23 | 16 | 8.7 | 6.8 | | | | 7 | 6.6 | 30 | 12 | 64 | 197 | 41 | 58 | 60 | 22 | 16 | 8.6 | 6.7 | | | | 8 | 6.6 | 17 | 11 | 1060 | 145 | 93 | 53 | 252 | 21 | 19 | 10 | 7.7 | | | | 9 | 6.7 | 14 | 11 | 268 | 119 | 261 | 137 | 129 | 21 | 17 | 11 | 7.3 | | | | 10 | 6.7 | 12 | 12 | 120 | 104 | 136 | 108 | 94 | 22 | 16 | 12 | 7.0 | | | | 11 | 6.7 | 11 | 13 | 82 | 107 | 96 | 82 | 78 | 21 | 14 | 12 | 6.9 | | | | 12 | 6.9 | 10 | 12 | 65 | 142 | 77 | 68 | 68 | 21 | 14 | 9.6 | 6.8 | | | | 13 | 7.0 | 9.9 | 11 | 57 | 122 | 67 | 60 | 58 | 21 | 13 | 9.3 | 6.6 | | | | 14 | 7.1 | 12 | 11 | 47 | 98 | 61 | 56 | 52 | 19 | 13 | 9.3 | 6.5 | | | | 15 | 7.7 | 12 | 11 | 95 | 82 | 54 | 51 | 47 | 41 | 13 | 9.7 | 6.5 | | | | 16 | 7.2 | 11 | 11 | 138 | 75 | 49 | 47 | 43 | 49 | 12 | 14 | 6.5 | | | | 17 | 7.2 | 10 | 10 | 93 | 566 | 46 | 206 | 40 | 41 | 12 | 14 | 6.6 | | | | 18 | 7.3 | 9.8 | 10 | 72 | 280 | 81 | 102 | 36 | 27 | 12 | 11 | 6.8 | | | | 19 | 7.4 | 9.5 | 10 | 61 | 162 | 314 | 232 | 34 | 30 | 12 | 10 | 6.8 | | | | 20 | 7.3 | 9.5 | 9.9 | 54 | 137 | 581 | 222 | 32 | 25 | 11 | 9.3 | 7.0 | | | | 21 | 7.2 | 10 | 9.7 | 46 | 113 | 603 | 129 | 31 | 22 | 11 | 8.8 | 7.0 | | | | 22 | 7.3 | 14 | 11 | 43 | 94 | 247 | 101 | 29 | 21 | 11 | 8.7 | 6.9 | | | | 23 | 7.2 | 12 | 11 | 238 | 105 | 152 | 87 | 31 | 20 | 11 | 8.6 | 6.6 | | | | 24 | 8.0 | 11 | 11 | 154 | 112 | 114 | 74 | 36 | 19 | 12 | 8.4 | 6.6 | | | | 25 | 11 | 10 | 19 | 121 | 93 | 92 | 63 | 34 | 20 | 11 | 7.9 | 6.8 | | | | 26 | 10 | 10 | 17 | 88 | 83 | 80 | 57 | 28 | 22 | 10 | 7.9 | 6.8 | | | | 27 | 11 | 9.8 | 18 | 78 | 76 | 71 | 55 | 64 | 21 | 11 | 7.7 | 6.6 | | | | 28 | 8.5 | 9.5 | 19 | 479 | 71 | 63 | 48 | 50 | 22 | 11 | 7.8 | 6.4 | | | | 29 | 8.0 | 9.5 | 18 | 219 | | 58 | 45 | 37 | 32 | 10 | 7.8 | 6.3 | | | | 30 | 7.9 | 9.8 | 17 | 176 | | 52 | 43 | 32 | 23 | 9.7 | 7.7 | 6.3 | | | | 31 | 7.8 | | 15 | 133 | | 48 | | 29 | | 13 | 7.5 | | | | | TOTAL | 233.7 | 370.6 | 420.6 | 4173 | 4201 | 3863 | 2582 | 1793 | 750 | 420.7 | 296.0 | 204.3 | | | | MEAN | 7.54 | 12.4 | 13.6 | 135 | 150 | 125 | 86.1 | 57.8 | 25.0 | 13.6 | 9.55 | 6.81 | | | | MAX | 11 | 30 | 27 | 1060 | 566 | 603 | 232 | 252 | 49 | 20 | 14 | 7.7 | | | | MIN | 6.6 | 9.5 | 9.7 | 12 | 71 | 41 | 41 | 28 | 19 | 9.7 | 7.5 | 6.3 | | | | CFSM | .22 | .35
.39 | .39
.45 | 3.85 | 4.29 | 3.56 | 2.46 | 1.65 | .71 | .39 | .27 | .19 | | | | IN. | . 25 | . 39 | .45 | 4.44 | 4.47 | 4.11 | 2.74 | 1.91 | .80 | . 45 | .31 | . 22 | | | e Estimated. # 02022500 KERRS CREEK NEAR LEXINGTON, VA--Continued | STATISTICS | OF | V.THTI/OM | MEDN | $D\Delta T\Delta$ | FOR | MATER | VEARS | 1927 | - 1998 | RY W | JATER | VEAR | (WV) | | |------------|----|-----------|------|-------------------|-----|-------|-------|------|--------|------|-------|------|------|--| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|------------|-----------|------|------------|----------|------|----------|----------|---------| | MEAN | 23.2 | 24.3 | 33.1 | 47.2 | 55.8 | 74.7 | 58.9 | 38.9 | 28.1 | 17.8 | 23.8 | 19.5 | | MAX | 141 | 209 | 129 | 163 | 150 | 357 | 306 | 159 | 195 | 99.5 | 162 | 188 | | (WY) | 1938 | 1986 | 1949 | 1937 | 1998 | 1936 | 1987 | 1989 | 1995 | 1972 | 1969 | 1950 | | MIN | 5.24 | 6.50 | 5.88 | 5.15 | 8.86 | 14.5 | 10.3 | 12.0 | 8.59 | 5.56 | 5.85 | 5.31 | | (WY) | 1964 | 1966 | 1966 | 1966 | 1931 | 1981 | 1942 | 1956 | 1945 | 1966 | 1981 | 1970 | | SUMMARY | Y STATIST | ICS | FOR I | 1997 CALEN | IDAR YEAR | F | OR 1998 WA | TER YEAR | | WATER YE | ARS 1927 | - 1998 | | ANNUAL | TOTAL | | | 10819.0 | | | 19307.9 | | | | | | | ANNUAL | MEAN | | | 29.6 | | | 52.9 | | | 37.0 | | | | HIGHEST | r annual i | MEAN | | | | | | | | 75.5 | | 1936 | | LOWEST | ANNUAL M | EAN | | | | | | | | 14.1 | | 1981 | | HIGHEST | C DAILY M | EAN | | 463 | Jun 1 | | 1060 | Jan 8 | | e4840 | Mar 1 | L7 1936 | | LOWEST | DAILY MEA | AN | | 6.6 | aOct 7 | | 6.3 | bSep 29 | | 4.0 | cAug 3 | 30 1932 | | ANNUAL | SEVEN-DAY | MINIMUM Y | | 6.7 | Oct 5 | | 6.5 | Sep 24 | | 4.2 | Jan 2 | 24 1966 | | INSTANT | TANEOUS PI | EAK FLOW | | | | | 6350 | Jan 8 | | 23000 | Sep 1 | LO 1950 | | INSTANT | TANEOUS PI | EAK STAGE | | | | | 10.73 | Jan 8 | | d15.44 | Jun 2 | 28 1995 | 6.0 fSep 28 1.51 20.52 7.0 119 19 g.90 1.06 14.38 7.7 70 18 Jul 22 1966 INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS ANNUAL RUNOFF (INCHES) .85 11.50 7.3 58 16 A Also Oct. 8, 1997. b Also Sept. 30, 1998. c Also many days in September 1932, Nov. 21, 1938, and July 22, 1966. d From high-water mark in gage house. e Estimated. f Also Sept. 29, 30, 1998. g Result of temporary dam upstream. # 02027000 TYE RIVER NEAR LOVINGSTON, VA LOCATION.--Lat 37°42'55", long 78°58'55", Nelson County, Hydrologic Unit 02080203, on right bank at downstream side of bridge on State Highway 158, 3.5 mi downstream from Hat Creek, 4.8 mi upstream from Piney River, and 6.8 mi southwest of Lovingston. DRAINAGE AREA. -- 92.8 mi². PERIOD OF RECORD. -- August 1938 to current year. REVISED RECORDS.--WSP 892: 1938. WSP 2104: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 578.39 ft above sea level. Sept. 15, 1969, to Oct. 15, 1970, nonrecording gage at same site and datum. REMARKS.--Records good except those for periods with doubtful gage-height record, Oct. 3-11, 22, 23, Nov. 17, 26, 27, 29, Mar. 26, and July 14, 15, and period with ice effect, Jan. 1, 2, which are fair. Maximum discharge, 80,000 ft³/s, from rating curve extended above 7,600 ft³/s on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,600 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge (ft ³ /s) | Gage height
(ft) | Date | Time | Discharge (ft ³ /s) | Gage height
(ft) | |---------|------|--------------------------------|---------------------|---------|------|--------------------------------|---------------------| | Jan. 8 | 1230 | *6,850 | *9.15 | Feb. 17 | 1700 | 3,640 | 6.13 | | Jan. 28 | 1230 | 2,570 | 4.89 | Mar. 9 | 1230 | 2,040 | 4.20 | | Feb. 4 | 1200 | 2,160 | 4.36 | May 8 | 0500 | 2,110 | 4.29 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 7.7 ft³/s, Sept. 29. | | | 210011 | .11.02 / 111 | 00010 122 | Di | AILY MEAN | VALUES | ,102211 177 | , 10 0211. | | , | | |-------|------|--------|--------------|-----------|-------|-----------|--------|-------------|------------|------|------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 26 | 154 | 95 | e87 | 427 | 484 | 246 | 255 | 102 | 69 | 34 | 21 | | 2 | 23 | 202 | 82 | e90 | 367 | 507 | 223 | 264 | 97 | 59 | 27 | 20 | | 3 | e21 | 147 | 74 | 95 | 341 | 449 | 202 | 240 | 92 | 63 | 25 | 18 | | 4 | e23 | 114 | 84 | 107 | 1360 | 394 | 405 | 249 | 86 | 60 | 24 | 19 | | 5 | e20 | 95 | 76 | 120 | 1110 | 352 | 391 | 296 | 91 | 72 | 23 | 16 | | 6 | e18 | 86 | 70 | 139 | 896 | 313 | 341 | 255 | 89 | 57 | 23 | 15 | | 7 | e17 | 392 | 69 | 349 | 740 | 289 | 303 | 374 | 80 | 51 | 22 | 17 | | 8 | e17 | 383 | 65 | 3830 | 596 | 620 | 280 | 1340 | 76 | 64 | 29 | 22 | | 9 | e16 | 306 | 64 | 1540 | 512 | 1530 | 406 | 928 | 74 | 63 | 60 | 17 | | 10 | e20 | 220 | 74 | 842 | 453 | 1170 | 423 | 698 | 89 | 55 | 42 | 14 | | 11 | e21 | 177 | 82 | 566 | 486 | 804 | 387 | 551 | 82 | 49 | 37 | 13 | | 12 | 17 | 143 | 72 | 432 | 907 | 628 | 352 | 489 | 77 | 46 | 32 | 12 | | 13 | 17 | 120 | 69 | 363 | 788 | 517 | 320 | 415 | 76 | 46 | 28 | 11 | | 14 | 18 | 145 | 67 | 296 | 661 | 444 | 293 | 363 | 70 | e44 | 32 | 10 | | 15 | 17 | 131 | 65 | 400 | 551 | 383 | 273 | 320 | 165 | e42 | 27 | 10 | | 16 | 17 | 116 | 65 | 462 | 484 | 334 | 252 | 328 | e250 | 47 | 50 | 9.9 | | 17 | 17 | e108 | 65 | 387 | 2000 | 303 | 536 | 442 | e270 | 92 | 138 | 9.6 | | 18 | 23 | 100 | 63 | 338 | 1830 | 299 | 379 | 283 | 139 | 50 | 68 | 11 | | 19 | 23 | 92 | 63 | 306 | 1210 | 360 | 696 | 240 | e185 | 43 | 48 | 11 | | 20 | 20 | 82 | 60 | 280 | 1010 | 389 | 1100 | 209 | 139 | 41 | 39 | 11 | | 21 | 18 | 88 | 60 | 240 | 869 | 847 | 777 | 194 | e110 | 38 | 33 | 12 | | 22 | e17 | 133 | 68 | 220 | 730 | 682 | 607 | 172 | e100 | 34 | 31 | 12 | | 23 | e16 | 114 | 77 | 612 | 719 | 541 | 512 | 167 | e93 | 41 | 34 | 10 | | 24 | 18 | 104 | 73 | 644 | 623 | 457 | 432 | 181 | e89 | 50 | 32 | 8.9 | | 25 | 36 | 97 | 133 | 512 | 546 | 371 | 379 | 160 | e82 | 38 | 29 | 9.4 | | 26 | 42 | e92 | 116 | 411 | 503 | e350 | 334 | 141 | e78 | 35 | 29 | 9.7 | | 27 | 62 | e88 | 120 | 467 | 475 | 323 | 306 | 160 | e65 | 35 | 26 | 9.3 | | 28 | 36 | 84 | 118 | 1480 | 457 | 299 | 273 | 165 | 69 | 38 | 27 | 8.5 | | 29 | 29 | e80 | 112 | 842 | | 273 | 246 | 133 | 94 | 33 | 24 | 8.2 | | 30 | 26 | 77 | 114 | 644 | | 249 | 231 | 118 | 79 | 31 | 21 | 8.9 | | 31 | 26 | | 102 | 517 | | 234 | | 110 | | 32 | 20 | | | TOTAL | 717 | 4270 | 2517 | 17618 | 21651 | 15195 | 11905 | 10240 | 3188 | 1518 | 1114 | 384.4 | | MEAN | 23.1 | 142 | 81.2 | 568 | 773 | 490 | 397 | 330 | 106 | 49.0 | 35.9 | 12.8 | | MAX | 62 | 392 | 133 | 3830 | 2000 | 1530 | 1100 | 1340 | 270 | 92 | 138 | 22 | | MIN | 16 | 77 | 60 | 87 | 341 | 234 | 202 | 110 | 65 | 31 | 20 | 8.2 | | CFSM | .25 | 1.53 | .87 | 6.12 | 8.33 | 5.28 | 4.28 | 3.56 | 1.15 | .53 | .39 | .14 | | IN. | .29 | 1.71 | 1.01 | 7.06 | 8.68 | 6.09 | 4.77 | 4.10 | 1.28 | .61 | .45 | .15 | e Estimated. # 02027000 TYE RIVER NEAR LOVINGSTON, VA--Continued | STATIST | rics of | MONTHLY MEAN | DATA | FOR WATER | YEARS 1939 | - 1998, | BY WATER | YEAR (WY) | | | | | |---------|----------|--------------|------|-----------|------------|---------|-----------|-----------|------|---------|-----------|--------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 104 | 133 | 171 | 195 | 221 | 264 | 240 | 184 | 137 | 79.4 | 109 | 89.2 | | MAX | 550 | 765 | 499 | 568 | 773 | 568 | 692 | 492 | 676 | 382 | 1541 | 556 | | (WY) | 1943 | 1986 | 1997 | 1998 | 1998 | 1993 | 1987 | 1989 | 1972 | 1972 | 1969 | 1979 | | MIN | 8.69 | 15.3 | 23.7 | 14.7 | 69.7 | 64.0 | 63.1 | 53.1 | 30.8 | 15.1 | 7.07 | 6.87 | | (WY) | 1942 | 1942 | 1981 | 1981 | 1963 | 1981 | 1966 | 1941 | 1956 | 1966 | 1966 | 1954 | | | | | | | | | | | | | | | | SUMMARY | Y STATIS | TICS | FOR | 1997 CAL | ENDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER Y | EARS 1939 | - 1998 | | | | | | | | | | | | | | | | ANNUAL TOTAL | 45338 | | | 90317.4 | | | | | | |--------------------------|-------|------|---|---------|--------|--------|------|----|------| | ANNUAL MEAN | 124 | | | 247 | | 160 | | | | | HIGHEST ANNUAL MEAN | | | | | | 280 | | | 1973 | | LOWEST ANNUAL MEAN | | | | | | 61.7 | | | 1956 | | HIGHEST DAILY MEAN | 586 | Mar | 4 | 3830 | Jan 8 | e32600 | Aug | 20 | 1969 | | LOWEST DAILY MEAN | 12 | aSep | 7 | 8.2 | Sep 29 | .60 | bSep | 9 | 1966 | | ANNUAL SEVEN-DAY MINIMUM | 14 | Sep | 3 | 9.0 | Sep 24 | .73 | Sep | 7 | 1966 | | INSTANTANEOUS PEAK FLOW | | | | 6850 | Jan 8 | 80000 | Aug | 20 | 1969 | | INSTANTANEOUS PEAK STAGE | | | | 9.15 | Jan 8 | c29.00 | Aug | 20 | 1969 | | INSTANTANEOUS LOW FLOW | | | | 7.7 | Sep 29 | .50 | dSep | 10 | 1966 | | ANNUAL RUNOFF (CFSM) | 1.3 | 4 | | 2.67 | | 1.72 | | | | | ANNUAL RUNOFF (INCHES) | 18.1 | 7 | | 36.20 | | 23.42 | | | | | 10 PERCENT EXCEEDS | 276 | | | 609 | | 325 | | | | | 50 PERCENT EXCEEDS | 91 | | | 100 | | 104 | | | | | 90 PERCENT EXCEEDS | 19 | | | 18 | | 23 | | | | Also Sept. 8, 1997. Also Sept. 10, 11, 1966. From floodmarks. Also Sept. 11, 1966. Estimated. #### 02027500 PINEY RIVER AT PINEY RIVER, VA LOCATION.--Lat 37°42'08", long 79°01'40", Nelson County, Hydrologic Unit 02080203, on left bank at upstream side of bridge on State Highway 151, 0.2 mi southwest of Piney River Post Office, 1.7 mi downstream from Indian Creek, and 2.5 mi southeast of Lowesville. DRAINAGE AREA. -- 47.6 mi². PERIOD OF RECORD. -- July 1949 to current year. REVISED RECORDS.--WSP 2104: Drainage area. WDR VA-72-1: 1971(M). GAGE.--Water-stage recorder. Datum of gage is 633.58 ft above sea level. Prior to May 27, 1969, water-stage recorder, and Nov. 4, 1969, to Feb. 26, 1970, nonrecording gage at site 20 ft downstream from former highway bridge at same datum. Feb. 26, 1970, to Sept. 20, 1973, on right bank 20 ft upstream from bridge at same datum. REMARKS.--Records good except those for periods of doubtful gage-height record, May 20-23, May 29 to June 4, and period with ice effect, Jan. 1, 2, which are fair. Periodic dewatering of upstream quarries adds small amount of inflow. Maximum discharge, 38,000 ft³/s, from rating curve extended above 6,000 ft³/s on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1949 reached a stage of 9.9 ft, from floodmarks. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 650 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|------------------| | Jan. 8 | 1115 | *3,160 | *6.54 | Apr. 17 | 0545 | 864 | 3.18 | | Jan. 28 | 0745 | 716 | 2.85 | Apr. 19 | 1845 | 785 | 3.01 | | Feb. 17 | 1645 | 1,360 | 4.10 | May 8 | 1345 | 958 | 3.37 | | Mar. 9 | 1045 | 845 | 3.14 | May 16 | 2215 | 1,370 | 4.12 | Minimum discharge, 2.3 ft^3/s , Sept. 17, 26-30. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|--|---|---|--|--|--|--------------------------------|-----------------------------------|------------------------------------| | 1
2
3
4
5 | 12
11
9.7
10
9.5 | 103
125
103
85
71 | 59
50
49
55
50 | e54
e55
56
59
63 | 269
232
212
346
350 | 194
195
182
170
157 | 117
103
96
277
230 | 158
149
137
144
146 | e67
e63
e60
e57 | 33
31
30
30
33 | 14
11
11
10
9.5 |
4.8
4.5
4.1
4.0
3.9 | | 6
7
8
9
10 | 9.0
8.5
8.4
8.4 | 65
166
174
169
142 | 49
48
47
47
51 | 69
233
2060
1060
571 | 347
309
267
236
213 | 144
136
264
707
606 | 213
193
172
243
250 | 139
228
701
542
419 | 63
60
56
56
59 | 27
26
35
30
26 | 8.9
8.6
16
24
21 | 3.4
3.3
8.2
6.9
4.6 | | 11
12
13
14
15 | 9.7
9.2
8.8
8.9
9.0 | 118
99
88
98
83 | 48
45
44
42
41 | 396
308
251
203
259 | 227
335
334
304
267 | 451
352
285
239
201 | 238
220
200
182
163 | 343
301
248
215
187 | 54
53
53
49
74 | 24
22
21
21
20 | 17
13
12
19 | 4.2
3.9
3.1
3.0
2.8 | | 16
17
18
19
20 | 8.9
11
13
13 | 79
75
70
65
61 | 40
39
38
37
36 | 287
267
240
217
192 | 244
814
966
650
506 | 174
153
145
157
216 | 148
347
234
403
626 | 278
375
256
226
e170 | 64
62
51
63
54 | 26
30
21
19
18 | 23
55
25
17
13 | 2.7
2.6
3.9
3.7
3.8 | | 21
22
23
24
25 | 10
9.6
9.3
11
21 | 63
78
65
62
61 | 35
41
43
44
68 | 168
155
313
334
309 | 404
336
329
290
257 | 421
385
325
277
237 | 475
382
319
270
232 | e145
e130
e120
148
127 | 49
47
45
43
41 | 17
16
18
22
17 | 11
10
9.3
8.5
7.7 | 4.2
4.2
3.4
2.9
2.8 | | 26
27
28
29
30
31 | 25
34
20
17
16
15 | 60
57
54
51
50 | 60
68
67
67
67 | 270
288
576
491
392
322 | 235
219
205
 | 206
181
161
144
129
117 | 203
184
162
145
136 | 111
132
115
e90
e82
e75 | 39
37
37
47
36 | 16
16
17
14
13 | 7.0
6.5
6.1
6.1
5.5 | 3.3
2.9
2.8
2.3
2.4 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 385.8
12.4
34
8.4
.26
.30 | 2640
88.0
174
50
1.85
2.06 | 1536
49.5
68
35
1.04
1.20 | 10518
339
2060
54
7.13
8.22 | 9703
347
966
205
7.28
7.58 | 7711
249
707
117
5.23
6.03 | 7163
239
626
96
5.02
5.60 | 6637
214
701
75
4.50
5.19 | 1606
53.5
74
36
1.12
1.26 | 703
22.7
35
13
.48 | 423.9
13.7
55
5.2
.29 | 112.6
3.75
8.2
2.3
.08 | e Estimated. 203 61 11 ### JAMES RIVER BASIN # 02027500 PINEY RIVER AT PINEY RIVER, VA--Continued | STATISTICS OF | MONTHLY MEAN | DATA FOR | WATER Y | EARS 1950 | - 1998. | BY WATER | YEAR (| (WY) | |----------------|--------------------|-------------|-----------|------------|---------|------------|--------|----------| | DIMITIDITED OF | LIOIATITET LIBITIA | DITTI I OIC | WILLIAM I | LIMED IJJO | 100, | DI WHILDIO | TDIM(| · ** ± / | 152 60 9.6 | | OCT | NOV | DEC | JAN | FEB | 3 | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|-----------|-----------|-------|------------|--------|----|------|-----------|-----------|------|---------|-----------|---------| | MEAN | 65.4 | 91.1 | 109 | 119 | 132 | ! | 162 | 148 | 111 | 90.3 | 40.3 | 60.6 | 48.5 | | MAX | 313 | 644 | 297 | 339 | 347 | | 311 | 417 | 352 | 541 | 213 | 1239 | 388 | | (WY) | 1991 | 1986 | 1997 | 1998 | 1998 | | 1993 | 1987 | 1989 | 1972 | 1972 | 1969 | 1996 | | MIN | 4.75 | 10.7 | 14.2 | 7.94 | 34.4 | : | 37.8 | 38.4 | 35.8 | 15.9 | 9.04 | 4.92 | 3.75 | | (WY) | 1964 | 1954 | 1981 | 1981 | 1977 | ' | 1981 | 1966 | 1963 | 1956 | 1964 | 1987 | 1998 | | | | | | | | | | | | | | | | | SUMMARY | STATIST | ICS | FOR 1 | 1997 CALEN | DAR YE | AR | F | OR 1998 W | ATER YEAR | | WATER Y | EARS 1950 | - 1998 | | ANNUAL | TOTAL | | | 26168.7 | | | | 49139.3 | | | | | | | ANNUAL | MEAN | | | 71.7 | | | | 135 | | | 98.0 | | | | HIGHEST | ANNUAL I | MEAN | | | | | | | | | 188 | | 1969 | | LOWEST | ANNUAL M | EAN | | | | | | | | | 35.9 | | 1956 | | HIGHEST | DAILY M | EAN | | 544 | Jun | 2 | | 2060 | Jan 8 | | 25000 | Aug 2 | 0 1969 | | LOWEST | DAILY ME | AN | | 3.7 | aSep | 7 | | 2.3 | Sep 29 | | b1.4 | Sep 1 | .3 1966 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 4.5 | Sep | 2 | | 2.8 | Sep 24 | | b1.7 | Sep | 7 1966 | | INSTANT | ANEOUS P | EAK FLOW | | | | | | 3160 | Jan 8 | | 38000 | Aug 2 | 0 1969 | | INSTANT | ANEOUS P | EAK STAGE | | | | | | 6.5 | 4 Jan 8 | | c13.80 |) Aug 2 | 0 1969 | | INSTANT | CANEOUS L | OW FLOW | | | | | | 2.3 | dSep 17 | | b1.1 | Sep 1 | .3 1966 | | ANNUAL | RUNOFF (| CFSM) | | 1.51 | | | | 2.8 | 3 | | 2.06 | 5 | | | ANNUAL | RUNOFF (| INCHES) | | 20.45 | | | | 38.4 | 0 | | 27.97 | 7 | | 327 62 8.0 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Sept. 8, 1997. b Dewatering of upstream quarry at a rate of 300 gallons per minute or 0.67 ft³/s included in flow. c From floodmarks. d Also Sept. 26-30, 1998. # 02028500 ROCKFISH RIVER NEAR GREENFIELD, VA LOCATION.--Lat 37°52'10", long 78°49'25", Nelson County, Hydrologic Unit 02080203, on left bank 50 ft downstream from bridge on State Highway 634, 2.8 mi downstream from confluence of North and South Forks, and 4.1 mi south of Greenfield. DRAINAGE AREA. -- 94.6 mi². PERIOD OF RECORD. -- April 1943 to current year. REVISED RECORDS. -- WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 530.29 ft above sea level. Prior to Aug. 21, 1943, nonrecording gage at same site and datum. REMARKS.--Records good except those for periods of doubtful gage-height record, Jan. 28 to Feb. 3, Feb. 5-11, June 22-26, and July 9-11, 19, 20, which are fair. Maximum discharge, 70,000 ft³/s, from rating curve extended above 8,500 ft³/s on basis of contracted-opening measurement at gage height 18.11 ft, slope-area measurements at gage heights 17.2 ft, 23.4 ft, and 31.2 ft, and peak runoff comparison with nearby stations. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 15, 1942, reached a stage of 23.4 ft, from floodmarks, discharge, about $30,000 \text{ ft}^3/\text{s}$. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,500 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1130 | 2,530 | 6.50 | Feb. 17 | 1730 | *4,210 | *8.48 | | Jan. 28 | 1330 | 3,840 | 8.09 | Mar. 9 | 0900 | 1,690 | 5.18 | | Feb. 4 | 1100 | 2,760 | 6.84 | May 8 | 0100 | 2,670 | 6.71 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 6.5 ft³/s, Sept. 26, 29, 30. | | | | | | Di | AILY MEAN | VALUES | | | | | | |-------|------|------|------|-------|-------|-----------|--------|------|------|------|------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 19 | 175 | 79 | 77 | e390 | 348 | 238 | 208 | 110 | 72 | 24 | 11 | | 2 | 17 | 153 | 62 | 81 | e355 | 357 | 212 | 212 | 102 | 69 | 20 | 10 | | 3 | 17 | 104 | 62 | 90 | e325 | 317 | 195 | 190 | 92 | 70 | 19 | 10 | | 4 | 16 | 70 | 67 | 106 | 1680 | 286 | 360 | 188 | 88 | 66 | 18 | 10 | | 5 | 15 | 53 | 61 | 120 | e1150 | 260 | 320 | 246 | 90 | 77 | 16 | 9.2 | | 6 | 14 | 51 | 53 | 122 | e850 | 238 | 292 | 212 | 88 | 61 | 15 | 9.0 | | 7 | 14 | 661 | 50 | 363 | e650 | 222 | 263 | 455 | 81 | 57 | 15 | 8.6 | | 8 | 14 | 490 | 49 | 1730 | e530 | 571 | 241 | 1520 | 77 | 69 | 18 | 11 | | 9 | 14 | 326 | 50 | 926 | e450 | 1250 | 399 | 830 | 77 | e64 | 99 | 10 | | 10 | 14 | 220 | 66 | 554 | e400 | 849 | 397 | 602 | 90 | e56 | 42 | 9.8 | | 11 | 14 | 174 | 67 | 390 | e570 | 622 | 370 | 486 | 86 | e53 | 32 | 9.1 | | 12 | 14 | 138 | 60 | 295 | 840 | 501 | 329 | 449 | 84 | 50 | 26 | 8.6 | | 13 | 14 | 122 | 55 | 238 | 772 | 428 | 295 | 390 | 77 | 46 | 23 | 8.0 | | 14 | 14 | 170 | 51 | 183 | 694 | 377 | 271 | 341 | 70 | 45 | 22 | 7.6 | | 15 | 14 | 136 | 51 | 252 | 614 | 329 | 246 | 298 | 147 | 43 | 23 | 7.3 | | 16 | 14 | 120 | 51 | 320 | 562 | 295 | 227 | 274 | 239 | 45 | 32 | 7.1 | | 17 | 15 | 104 | 53 | 252 | 2330 | 266 | 303 | 362 | 248 | 80 | 46 | 7.2 | | 18 | 23 | 98 | 51 | 217 | 1430 | 283 | 230 | 283 | 163 | 46 | 44 | 7.7 | | 19 | 20 | 90 | 50 | 195 | 910 | 378 | 451 | 246 | 189 | e40 | 27 | 9.0 | | 20 | 19 | 81 | 49 | 179 | 754 | 472 | 670 | 222 | 165 | e37 | 22 | 9.3 | | 21 | 17 | 87 | 47 | 155 | 622 | 874 | 497 | 200 | 140 | 35 | 20 | 9.0 | | 22 | 15 | 136 | 50 | 142 | 531 | 630 | 417 | 176 | e120 | 31 | 18 | 8.8 | | 23 | 15 | 104 | 61 | 542 | 600 | 505 | 360 | 172 | e110 | 35 | 17 | 8.0 | | 24 | 17 | 92 | 58 | 490 | 562 | 431 | 314 | 172 | e100 | 42 | 16 | 7.4 | | 25 | 44 | 82 | 142 | 393 | 475 | 373 | 277 | 157 | e90 | 34 | 14 | 8.2 | | 26 | 42 | 79 | 116 | 317 | 431 | 338 | 243 | 140 | e84 | 30 | 13 | 7.5 | | 27 | 60 | 75 | 116 | 335 | 400 | 310 | 230 | 191 | 79 | 31 | 14 | 7.8 | | 28 | 33 | 70 | 116 | e1900 | 370 | 283 | 210 | 170 | 82 | 35 | 15 | 7.4 | | 29 | 27 | 66 | 104 | e900 | | 260 | 190 | 140 | 114 | 28 | 13 | 6.7 | | 30 | 25 | 64 | 104 | e580 | | 235 | 179 | 126 | 84 | 24 | 12 | 7.1 | | 31 | 23 | | 90 | e430 | | 220 | | 118 | | 24 | 12 | | | TOTAL | 633 | 4391 | 2141 | 12874 | 20247 | 13108 | 9226 | 9776 | 3366 | 1495 | 747 | 257.4 | | MEAN | 20.4 | 146 | 69.1 | 415 | 723 | 423 | 308 | 315 | 112 | 48.2 | 24.1 | 8.58 | | MAX | 60 | 661 | 142 | 1900 | 2330 | 1250 | 670 | 1520 | 248 | 80 | 99 | _11 | | MIN | 14 | 51 |
47 | . 77 | 325 | 220 | 179 | 118 | 70 | 24 | 12 | 6.7 | | CFSM | .22 | 1.55 | .73 | 4.39 | 7.64 | 4.47 | 3.25 | 3.33 | 1.19 | .51 | .25 | .09 | | IN. | . 25 | 1.73 | .84 | 5.06 | 7.96 | 5.15 | 3.63 | 3.84 | 1.32 | .59 | .29 | .10 | e Estimated. # 02028500 ROCKFISH RIVER NEAR GREENFIELD, VA--Continued | STATISTICS | OF | W.THTIOM | MEAN | DATA | FOR | WATER | VEARS | 1943 | _ | 1998 | RY | WATER | VEAR | (WV) | |------------|----|----------|------|------|-----|-------|-------|------|---|------|----|-------|------|------| | | | | | | | | | | | | | | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------|------|------|-------|------|------|------|------|------|------|------|------| | MEAN | 95.6 | 126 | 152 | 174 | 200 | 249 | 224 | 163 | 125 | 74.4 | 87.1 | 83.8 | | MAX | 394 | 733 | 445 | 480 | 723 | 629 | 699 | 369 | 696 | 327 | 1246 | 506 | | (WY) | 1991 | 1986 | 1951 | 1996 | 1998 | 1993 | 1983 | 1990 | 1995 | 1972 | 1969 | 1979 | | MIN | 8.65 | 17.9 | 18.5 | 23.1 | 62.0 | 55.9 | 52.5 | 44.7 | 23.1 | 8.82 | 4.10 | 3.34 | | (WY) | 1964 | 1954 | 1966 | a1966 | 1944 | 1981 | 1981 | 1981 | 1956 | 1966 | 1966 | 1954 | | (W ±) | 1704 | 1754 | 1000 | a1500 | 1711 | 1701 | 1701 | 1701 | 1930 | 1500 | 1000 | 1001 | | | | | | | | | | | | | | | | SUMMARY STATISTICS | FOR 1997 CALENDAR YEAR | FOR 1998 WATER YEAR | WATER YEARS 1943 - 1998 | |--------------------------|------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 39896.6 | 78261.4 | | | ANNUAL MEAN | 109 | 214 | 146 | | HIGHEST ANNUAL MEAN | | | 290 1973 | | LOWEST ANNUAL MEAN | | | 45.9 1981 | | HIGHEST DAILY MEAN | 955 Jul 24 | 2330 Feb 17 | e28800 Aug 20 1969 | | LOWEST DAILY MEAN | 9.6 bSep 5 | 6.7 Sep 29 | .20 cSep 8 1966 | | ANNUAL SEVEN-DAY MINIMUM | 10 Sep 3 | 7.4 Sep 24 | .30 Sep 6 1966 | | INSTANTANEOUS PEAK FLOW | | 4210 Feb 17 | 70000 Aug 20 1969 | | INSTANTANEOUS PEAK STAGE | | 8.48 Feb 17 | d31.20 Aug 20 1969 | | INSTANTANEOUS LOW FLOW | | 6.5 fSep 26 | .20 gSep 8 1966 | | ANNUAL RUNOFF (CFSM) | 1.16 | 2.27 | 1.54 | | ANNUAL RUNOFF (INCHES) | 15.69 | 30.78 | 20.97 | | 10 PERCENT EXCEEDS | 249 | 530 | 303 | | 50 PERCENT EXCEEDS | 79 | 100 | 89 | | 90 PERCENT EXCEEDS | 15 | 14 | 19 | a Also 1981. b Also Sept. 6, 8. 1997. c Also Sept. 9-11, 1966. d From floodmarks. e Estimated. f Also Sept. 29, 30, 1998. g Also Sept. 9-12, 1966. # 02031000 MECHUMS RIVER NEAR WHITE HALL, VA LOCATION.--Lat 38°06'09", long 78°35'35", Albemarle County, Hydrologic Unit 02080204, on right bank 20 ft downstream from bridge on State Highway 614, 1.5 mi downstream from Rocky Run, 4.0 mi southeast of White Hall, and 4.9 mi upstream from confluence with Moormans River. DRAINAGE AREA. -- 95.4 mi². PERIOD OF RECORD.--October 1942 to September 1951, October 1979 to current year. Prior to September 1951, published as Mechum River near Ivy. GAGE.--Water-stage recorder. Datum of gage is 429.75 ft above sea level. Oct. 1, 1942, to Sept. 30, 1951, on right bank 20 ft downstream from former highway bridge at different datum. REMARKS.--Records good except those for period with ice effect, Jan. 1, 2, and periods of no gage-height record, Mar. 21-23, and Apr. 10-28, which are fair. Maximum discharge, 20,000 ${\rm ft}^3/{\rm s}$, from rating curve extended above 8,000 ${\rm ft}^3/{\rm s}$. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Sept. 6, 1979, reached a stage of 24.5 ft, from floodmarks, discharge, about 13,500 ${\rm ft}^3/{\rm s}$, from rating curve extended above 8,300 ${\rm ft}^3/{\rm s}$. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $1,200~{\rm ft}^3/{\rm s}$. | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 7 | 0830 | 1,730 | 9.88 | Feb. 17 | 1800 | *6,040 | *16.60 | | Jan. 8 | 1130 | 2,230 | 10.86 | Mar. 20 | 2100 | 1,860 | 10.15 | | Jan. 28 | 5100 | 4,900 | 15.12 | May 12 | 0300 | 3,850 | 13.61 | | Feb. 4 | 1700 | 3,230 | 12.63 | Aug. 9 | 0530 | 1,650 | 9.72 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES Minimum discharge, 13 ${\rm ft}^3/{\rm s}$, Sept. 29, gage height, 4.30 ft. | | | | | | DA | TLY MEAN | VALUES | | | | | | |-------------|-----------|------|-----------|------------|-------------|-------------|-------------|-------------|------------|-----------|-----------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 22 | 92 | 68 | e66 | 311 | 219 | 180 | 154 | 95 | 61 | 30 | 21 | | | 20 | 114 | 60 | e70 | 273 | 228 | 170 | 189 | 87 | 56 | 27 | 21 | | 3 | 19 | 71 | 56 | 72 | 249 | 224 | 156 | 164 | 84 | 59 | 26 | 20 | | 2
3
4 | 19 | 57 | 57 | 86 | 1660 | 202 | 228 | 176 | 80 | 55 | 25 | 20 | | 5 | 19 | 37 | 56 | 90 | 1130 | 191 | 221 | 233 | 81 | 58 | 24 | 18 | | 6 | 18 | 35 | 53 | 90 | 764 | 183 | 191 | 193 | 83 | 51 | 23 | 18 | | 7 | 18 | 1030 | 50 | 178 | 638 | 176 | 174 | 358 | 77 | 48 | 22 | 17 | | 8 | 18 | 677 | 48 | 1060 | 488 | 398 | 164 | 2210 | 72 | 64 | 24 | 24 | | 9 | 18 | 254 | 48 | 494 | 381 | 802 | 221 | 730 | 74 | 61 | 510 | 21 | | 10 | 18 | 164 | 56 | 300 | 319 | 492 | e350 | 440 | 95 | 64 | 113 | 17 | | 11 | 18 | 125 | 61 | 214 | 312 | 355 | e305 | 338 | 89 | 51 | 68 | 17 | | 12 | 18 | 102 | 55 | 178 | 428 | 289 | e270 | 297 | 97 | 46 | 53 | 17 | | 13 | 18 | 87 | 53 | 156 | 330 | 251 | e225 | 259 | 87 | 44 | 43 | 16 | | 14 | 18 | 126 | 51 | 132 | 289 | 226 | e205 | 224 | 80 | 42 | 39 | 16 | | 15 | 19 | 107 | 48 | 170 | 251 | 205 | e185 | 198 | 166 | 40 | 37 | 15 | | 16 | 19 | 89 | 49 | 256 | 233 | 187 | e170 | 180 | 156 | 46 | 40 | 15 | | 17 | 19 | 78 | 50 | 189 | 2920 | 178 | e200 | 170 | 220 | 103 | 45 | 16 | | 18 | 95 | 72 | 48 | 162 | 1050 | 196 | e175 | 152 | 114 | 55 | 55 | 28 | | 19 | 27 | 67 | 48 | 145 | 540 | 336 | e350 | 141 | 112 | 45 | 39 | 23 | | 20 | 24 | 63 | 48 | 138 | 420 | 399 | e500 | 132 | 121 | 42 | 33 | 22 | | 21 | 21 | 66 | 46 | 123 | 344 | e630 | e320 | 128 | 94 | 39 | 31 | 21 | | 22 | 20 | 109 | 49 | 118 | 292 | e470 | e265 | 121 | 84 | 37 | 29 | 20 | | 23 | 19 | 89 | 58 | 544 | 342 | e380 | e220 | 121 | 138 | 35 | 29 | 19 | | 24 | 20 | 78 | 57 | 378 | 384 | 300 | e195 | 125 | 157 | 39 | 27 | 17 | | 25 | 40 | 68 | 119 | 286 | 302 | 256 | e185 | 123 | 94 | 35 | 26 | 17 | | 26 | 37 | 66 | 97 | 224 | 262 | 233 | e175 | 112 | 81 | 34 | 25 | 18 | | 27 | 56 | 63 | 92 | 247 | 246 | 214 | e168 | 134 | 72 | 34 | 26 | 17 | | 28 | 33 | 61 | 94 | 2810 | 228 | 205 | e150 | 141 | 70 | 38 | 28 | 16 | | 29 | 27 | 57 | 87 | 894 | | 193 | 140 | 116 | 90 | 33 | 25 | 14 | | 30 | 26 | 61 | 92 | 460 | | 185 | 136 | 105 | 70 | 30 | 24 | 15 | | 31 | 24 | | 80 | 381 | | 178 | | 100 | | 30 | 22 | | | TOTAL | 787 | 4165 | 1934 | 10711 | 15386 | 8981 | 6594 | 8264 | 3020 | 1475 | 1568 | 556 | | MEAN | 25.4 | 139 | 62.4 | 346 | 550 | 290 | 220 | 267 | 101 | 47.6 | 50.6 | 18.5 | | MAX | 95 | 1030 | 119 | 2810 | 2920 | 802 | 500 | 2210 | 220 | 103 | 510 | 28 | | MIN
CFSM | 18
.27 | 35 | 46
.65 | 66
3.62 | 228
5.76 | 176
3.04 | 136
2.30 | 100
2.79 | 70
1.06 | 30
.50 | 22
.53 | 14 | | | | 1.46 | | | | | | | | | | .19 | | IN. | .31 | 1.62 | .75 | 4.18 | 6.00 | 3.50 | 2.57 | 3.22 | 1.18 | .58 | .61 | .22 | e Estimated. # 02031000 MECHUMS RIVER NEAR WHITE HALL, VA--Continued | STATIST | TICS OF M | ONTHLY M | EAN DATA | FOR WATER | YEARS 194 | 12 - 1951, | 1979 - | 1998, BY | WATER YEAR | (WY) | | | |----------|------------|----------|----------|-------------|--------------|------------|----------|--------------|------------|--------|------------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 89.4 | 106 | 120 | 135 | 154 | 172 | 175 | 125 | 93.9 | 64.2 | 58.5 | 85.2 | | MAX | 606 | 636 | 329 | 425 | 550 | 473 | 703 | 289 | 323 | 192 | 245 | 422 | | (WY) | 1943 | 1986 | 1949 | 1996 | 1998 | 1993 | 1983 | 1989 | 1995 | 1991 | 1949 | 1987 | | MIN | 8.65 | 19.7 | 20.7 | 24.0 | 55.4 | 45.2 | 37.1 | 34.9 | 23.9 | 8.95 | 13.2 | 8.29 | | (WY) | 1944 | 1944 | 1944 | 1981 | 1947 | 1981 | 1981 | 1981 | 1944 | 1944 | 1943 | 1943 | | SIIMMARY | Y STATIST | TCS | FOF | R 1997 CAL | ENDAR YEAF | म ९ | OR 1998 | WATER YEA | \ R | WATER | YEARS 1942 | - 1951 | | DOI HILL | ı billilbi | 100 | 1 01 | C 1997 CHIL | BIVDING IBIN | | 010 1000 | WIII DIC IDI | 110 | WIIIDI | | - 1998 | | | | | | | | | | | | | | | | ANNUAL | TOTAL | | | 34186. | 8 | | 63441 | | | | | | | ANNUAL | MEAN | | | 93. | 7 | | 174 | | | 114 | | | | HIGHEST | r annual | MEAN | | | | | | | | 178 | | 1996 | | LOWEST | ANNUAL M | EAN | | | | | | | | 41. | 6 | 1981 | | HIGHEST | r daily M | EAN | | 1030 | Nov ' | 7 | 2920 | Feb 1 | L7 | 10600 | Oct | 15 1942 | | LOWEST | DAILY ME | AN | | 9. | 2 Sep 8 | 3 | 14 | Sep 2 | 29 | . ' | 70 Sep | 9 1944 | | ANNUAL | SEVEN-DA | Y MINIMU | M | 11 | aSep 2 | 2 | 16 | Sep 1 | 1 | 1. | 2 Sep | 5 1944 | | INSTANT | TANEOUS P | EAK FLOW | | | | | 6040 | Feb 1 | L7 | 20000 | Oct | 15 1942 | | INSTANT | TANEOUS P | EAK STAG | E | | | | 16. | 60 Feb 1 | L7 | b30. | 30 Oct | 15 1942 | | INSTANT | TANEOUS L | OW FLOW | | | | | 13 | Sep 2 | 29 | | 60 Sep | 9 1944 | | ANNUAL | RUNOFF (| CFSM) | | | 98 | | 1. | 82 | | 1. | 20 | | | ANNUAL | RUNOFF (| INCHES) | | 13. | 33 | | 24. | 74 | | 16. | 30 | | | 10 PERG | CENT EXCE | EDS | | 166 | | | 352 | | | 205 | | | | 50 PERG | CENT EXCE | EDS | | 78 | | | 89 | | | 72 | | | | 90 PERG | CENT EXCE | EDS | | 18 | | | 20 | | | 22 | | | | | | | | |
 | | | | | | | a Also Sept. 3, 1997. b From floodmarks, datum then in use. # 02032640 NORTH FORK RIVANNA RIVER NEAR EARLYSVILLE, VA LOCATION.--Lat 38°09'48", long 78°25'30", Albemarle County, Hydrologic Unit 02080204, on right bank at downstream side of bridge on State Highway 606, 0.4 mi upstream from mouth of Jacobs Run, 1.9 mi downstream from mouth of Marsh Run, and 2.1 mi southeast of Advance Mills. DRAINAGE AREA. -- 108 mi². PERIOD OF RECORD. -- October 1993 to current year. GAGE.--Water-stage recorder. Elevation of gage is 365 ft above sea level, from topographic map. REMARKS.--Records good except those for period with ice effect, Jan. 1, and periods of doubtful gage-height record, Jan. 12-14, Feb. 26 to Mar. 3, Mar. 20, 25-27, and May 11-20, which are fair. Maximum discharge, $30,100 \text{ ft}^3/\text{s}$, from rating curve extended above 2,150 ft^3/s on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in April 1992 reached a stage of 19.92 ft, from floodmark, by the Virginia Department of Highways. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,000 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|------------------| | Nov. 7 | 1530 | 2,540 | 7.60 | Feb. 17 | 1830 | 6,370 | 12.28 | | Jan. 8 | 1230 | *7,130 | *13.06 | Mar. 20 | 2400 | 2,700 | 7.88 | | Jan. 28 | 1330 | 3,810 | 9.35 | May 8 | 0930 | 7,030 | 12.96 | | Feb 4 | 1530 | 2.250 | 7 23 | - | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 3.0 ft³/s, Sept. 7. | | | | | | Di | AILY MEAN | VALUES | | | | | | |-------|------|------|------|-------|-------|-----------|--------|-------|------|------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 33 | 40 | 72 | e75 | 312 | e225 | 162 | 157 | 86 | 45 | 16 | 5.7 | | 2 | 26 | 127 | 64 | 79 | 256 | e245 | 156 | 391 | 81 | 41 | 14 | 5.3 | | 3 | 23 | 122 | 61 | 86 | 229 | e250 | 140 | 306 | 77 | 40 | 13 | 5.0 | | 4 | 22 | 89 | 65 | 106 | 1280 | 223 | 249 | 350 | 72 | 37 | 12 | 5.3 | | 5 | 20 | 71 | 61 | 124 | 1510 | 203 | 234 | 828 | 76 | 36 | 11 | 5.0 | | 6 | 18 | 61 | 57 | 125 | 1040 | 185 | 204 | 545 | 73 | 31 | 11 | 4.2 | | 7 | 17 | 1580 | 55 | 355 | 763 | 173 | 183 | 748 | 68 | 30 | 11 | 3.7 | | 8 | 16 | 1690 | 52 | 3530 | 503 | 512 | 173 | 4320 | 67 | 38 | 11 | 8.9 | | 9 | 16 | 586 | 52 | 1240 | 381 | 1030 | 342 | 1110 | 66 | 43 | 16 | 7.5 | | 10 | 16 | 317 | 61 | 597 | 315 | 659 | 451 | 628 | 83 | 48 | 29 | 6.2 | | 11 | 15 | 218 | 72 | 396 | 302 | 429 | 375 | e430 | 79 | 36 | 28 | 5.8 | | 12 | 15 | 169 | 64 | e285 | 504 | 325 | 306 | e325 | 84 | 34 | 23 | 5.4 | | 13 | 15 | 141 | 59 | e240 | 406 | 267 | 257 | e305 | 86 | 31 | 18 | 4.7 | | 14 | 15 | 177 | 56 | e200 | 335 | 243 | 229 | e240 | 88 | 30 | 15 | 4.4 | | 15 | 15 | 163 | 52 | 272 | 278 | 221 | 203 | e210 | 150 | 29 | 15 | 4.7 | | 16 | 15 | 139 | 50 | 461 | 242 | 195 | 184 | e180 | 132 | 28 | 17 | 4.1 | | 17 | 16 | 123 | 48 | 317 | 2930 | 174 | 212 | e195 | 123 | 31 | 27 | 10 | | 18 | 26 | 112 | 46 | 262 | 1720 | 201 | 176 | e178 | 84 | 33 | 42 | 46 | | 19 | 23 | 103 | 45 | 226 | 782 | 495 | 339 | e155 | 85 | 29 | 27 | 12 | | 20 | 21 | 96 | 44 | 201 | 551 | e470 | 673 | e147 | 87 | 26 | 20 | 9.4 | | 21 | 19 | 94 | 43 | 173 | 423 | 1530 | 400 | 140 | 70 | 24 | 17 | 8.5 | | 22 | 18 | 124 | 47 | 159 | 336 | 667 | 304 | 129 | 70 | 24 | 15 | 8.8 | | 23 | 17 | 104 | 55 | 679 | 404 | 443 | 253 | 127 | 181 | 22 | 13 | 8.2 | | 24 | 18 | 91 | 53 | 538 | 510 | 337 | 219 | 129 | 154 | 21 | 12 | 7.4 | | 25 | 34 | 82 | 141 | 405 | 368 | e260 | 191 | 125 | 79 | 21 | 10 | 7.0 | | 26 | 47 | 80 | 120 | 309 | e290 | e245 | 174 | 112 | 62 | 20 | 9.2 | 7.0 | | 27 | 81 | 75 | 111 | 301 | e255 | e230 | 176 | 118 | 52 | 19 | 8.9 | 6.9 | | 28 | 47 | 71 | 114 | 2060 | e240 | 195 | 154 | 118 | 49 | 20 | 7.9 | 6.3 | | 29 | 36 | 69 | 105 | 994 | | 178 | 143 | 106 | 61 | 19 | 7.2 | 5.5 | | 30 | 32 | 69 | 111 | 578 | | 165 | 136 | 98 | 53 | 17 | 6.7 | 5.1 | | 31 | 29 | | 97 | 406 | | 154 | | 92 | | 17 | 6.4 | | | TOTAL | 761 | 6983 | 2133 | 15779 | 17465 | 11129 | 7398 | 13042 | 2578 | 920 | 489.3 | 234.0 | | MEAN | 24.5 | 233 | 68.8 | 509 | 624 | 359 | 247 | 421 | 85.9 | 29.7 | 15.8 | 7.80 | | MAX | 81 | 1690 | 141 | 3530 | 2930 | 1530 | 673 | 4320 | 181 | 48 | 42 | 46 | | MIN | 15 | 40 | 43 | 75 | 229 | 154 | 136 | 92 | 49 | 17 | 6.4 | 3.7 | | CFSM | . 23 | 2.15 | .64 | 4.71 | 5.77 | 3.32 | 2.28 | 3.89 | .79 | .27 | .15 | .07 | | IN. | .26 | 2.40 | .73 | 5.43 | 6.01 | 3.83 | 2.54 | 4.49 | .89 | .32 | .17 | .08 | e Estimated. JAMES RIVER BASIN # 02032640 NORTH FORK RIVANNA RIVER NEAR EARLYSVILLE, VA--Continued | STATIST | TICS OF MO | ONTHLY MEAN | N DATA F | FOR WATER | YEARS 1994 | - 1998, | BY WATER | YEAR (| WY) | | | | | |---------|------------|-------------|----------|-----------|------------|---------|-------------|--------|-----|------|----------|----------|--------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | | JUN | JUL | AUG | SEP | | MEAN | 78.0 | 156 | 165 | 351 | 274 | 264 | 161 | 161 | | 150 | 94.9 | 49.4 | 162 | | MAX | 195 | 233 | 367 | 574 | 624 | 406 | 247 | 421 | | 316 | 195 | 112 | 682 | | (WY) | 1996 | 1998 | 1997 | 1996 | 1998 | 1994 | 1998 | 1998 | ; | 1995 | 1995 | 1994 | 1996 | | MIN | 18.9 | 47.1 | 68.8 | 143 | 80.1 | 127 | 60.1 | 60.8 | ; | 31.4 | 29.7 | 15.8 | 7.80 | | (WY) | 1994 | 1995 | 1998 | 1997 | 1995 | 1995 | 1995 | 1994 | | 1994 | 1998 | 1998 | 1998 | | SUMMARY | Y STATIST | ICS | FOR | 1997 CALE | ENDAR YEAR | F | OR 1998 WAT | rer ye | AR | | WATER YE | ARS 1994 | - 1998 | | ANNUAL | TOTAL | | | 41078.9 |) | | 78911.3 | | | | | | | | ANNUAL | MEAN | | | 113 | | | 216 | | | | 172 | | | | HIGHEST | T ANNUAL 1 | MEAN | | | | | | | | | 246 | | 1996 | | LOWEST | ANNUAL MI | EAN | | | | | | | | | 116 | | 1995 | | HIGHEST | r daily Mi | EAN | | 1720 | Jul 24 | | 4320 | May | 8 | | e11000 | Sep | 6 1996 | | LOWEST | DAILY ME | AN | | 5.9 | | | 3.7 | Sep | 7 | | 3.7 | Sep | 7 1998 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 6.9 | 9 Sep 3 | | 4.9 | Sep | 1 | | 4.9 | Sep | 1 1998 | | INSTAN | TANEOUS PI | EAK FLOW | | | | | 7130 | Jan | 8 | | 30100 | Sep | 6 1996 | | INSTAN | TANEOUS PI | EAK STAGE | | | | | 13.06 | Jan | 8 | | a23.56 | Sep | 6 1996 | | | TANEOUS LO | | | | | | 3.0 | Sep | 7 | | 3.0 | Sep | 7 1998 | | | RUNOFF (| / | | 1.0 | | | 2.00 | | | | 1.59 | | | | | RUNOFF (| | | 14.1 | L3 | | 27.14 | | | | 21.55 | | | | | CENT EXCE | | | 192 | | | 465 | | | | 327 | | | | | CENT EXCE | | | 80 | | | 87 | | | | 89 | | | | 90 PER | CENT EXCE | EDS | | 15 | | | 11 | | | | 19 | | | a From floodmarks. e Estimated. # 02036500 FINE CREEK AT FINE CREEK MILLS, VA LOCATION.--Lat 37°35'52", long 77°49'12", Powhatan County, Hydrologic Unit 02080205, on right bank 75 ft downstream from bridge on State Highway 711 at Fine Creek Mills, 0.8 mi upstream from mouth, and 6.7 mi northeast of Powhatan. DRAINAGE AREA. -- 22.1 mi². PERIOD OF RECORD. -- July 1944 to current year. REVISED RECORDS.--WSP 1203: 1948. WSP 1303: 1945(M). WSP 1383: 1954. WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 156.59 ft above sea level. Prior to Oct. 28, 1953, nonrecording gage and crest-stage gage at site 75 ft upstream at same datum. REMARKS.--Records good except for period of doubtful or no gage-height record, Aug. 13 to Sept. 30, which is fair. Maximum discharge, 4,180 ft³/s, from rating curve extended above 2,600 ft³/s. Minimum gage height, 1.53 ft, Sept. 30, Oct. 1, 1970. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 200 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 24 | 1230 | 222 | 2.94 | Feb. 18 | 0515 | 308 | 3.19 | | Jan. 28 | 1930 | 670 | 3.98 | Mar. 19 | 1645 | *742 | *4.14 | | Feb. 5 | 0430 | 423 | 3.47 | Mar. 21 | 1245 | 573 | 3.80 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum daily discharge, 0.32 ${\rm ft}^3/{\rm s}$, Sept. 16. | | | | | | DA | ILY MEAN | VALUES | | | | | | |-------|-------|-------|-------|------|------|----------|--------|------|-------|------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | .99 | 1.5 | 16 | 17 | 43 | 30 | 24 | 19 | 10 | 3.3 | 1.4 | e.45 | | 2 | .86 | 2.0 | 14 | 15 | 32 | 32 | 27 | 32 | 8.4 | 2.6 | 1.1 | e1.2 | | 3 | .77 | 2.3 | 12 | 15 | 27 | 39 | 23 | 31 | 7.5 | 2.3 | 1.0 | e1.0 | | 4 | .80 | 2.7 | 15 | 14 | 135 | 33 | 59 | 22 | 6.8 | 2.4 | .90 | e1.1 | | 5 | .72 | 2.5 | 14 | 13 | 361 | 28 | 90 | 19 | 6.9 | 2.6 | .85 | e1.1 | | 6 | .63 | 2.3 | 11 | 12 | 231 | 25 | 48 | 16 | 11 | 2.2 | .76 | e1.6 | | 7 | .58 | 40 | 9.2 | 14 | 169 | 23 | 36 | 15 | 7.4 | 2.3 | .78 | e3.2 | | 8 | .64 | 91 | 8.4 | 22 | 87 | 49 | 32 | 47 | 5.4 | 3.3 | .95 | e1.9 | | 9 | .75 | 70 | 8.2 | 27 | 52 | 160 | 44 | 112 | 6.9 | 3.9 | 1.1 | e1.2 | | 10 | .84 | 36 | 12 | 21 | 37 | 136 | 59 | 64 | 15 | 6.1 | 1.3 | e.82 | | 11 | .79 | 22 | 16 | 17 | 32 | 62 | 38 | 39 | 14
 5.1 | 1.5 | e.68 | | 12 | .68 | 15 | 15 | 15 | 43 | 41 | 29 | 36 | 13 | 3.6 | 1.2 | e.58 | | 13 | .67 | 11 | 12 | 17 | 41 | 34 | 25 | 34 | 15 | 2.9 | e.80 | e.50 | | 14 | 1.0 | 22 | 9.7 | 16 | 31 | 31 | 24 | 28 | 20 | 2.7 | e.76 | e.42 | | 15 | 2.1 | 20 | 9.0 | 26 | 26 | 28 | 24 | 22 | 27 | 2.4 | e.72 | e.36 | | 16 | 1.1 | 16 | 8.4 | 54 | 25 | 25 | 23 | 19 | 22 | 2.0 | e.90 | e.32 | | 17 | 1.2 | 13 | 8.2 | 45 | 101 | 25 | 78 | 17 | 16 | 1.8 | e1.2 | e.43 | | 18 | 3.3 | 11 | 7.9 | 32 | 234 | 48 | 87 | 15 | 12 | 1.9 | e1.2 | e.54 | | 19 | 3.6 | 7.9 | 7.7 | 26 | 95 | 447 | 52 | 13 | 12 | 1.8 | e.96 | e.95 | | 20 | 3.0 | 7.6 | 7.5 | 24 | 54 | 324 | 69 | 12 | 12 | 1.6 | e.85 | e1.3 | | 21 | 2.1 | 9.1 | 7.4 | 20 | 39 | 400 | 48 | 12 | 11 | 1.5 | e.72 | e1.6 | | 22 | 1.6 | 26 | 9.9 | 18 | 32 | 214 | 36 | 10 | 9.1 | 1.2 | e.64 | e2.2 | | 23 | 1.1 | 24 | 14 | 88 | 56 | 98 | 30 | 11 | 8.4 | 1.2 | e.70 | e1.5 | | 24 | .87 | 18 | 14 | 190 | 127 | 62 | 30 | 13 | 14 | 1.8 | e.60 | e1.1 | | 25 | 1.3 | 13 | 26 | 113 | 82 | 46 | 27 | 13 | 13 | 2.9 | e.52 | e1.0 | | 26 | 3.3 | 11 | 26 | 62 | 49 | 37 | 23 | 13 | 10 | 2.5 | e.48 | e.92 | | 27 | 4.8 | 9.1 | 28 | 47 | 37 | 34 | 20 | 17 | 8.3 | 2.4 | e1.0 | e.86 | | 28 | 2.9 | 8.1 | 33 | 361 | 34 | 31 | 17 | 21 | 7.0 | 2.0 | e.82 | e.80 | | 29 | 1.8 | 7.5 | 28 | 393 | | 29 | 16 | 17 | 6.4 | 1.8 | e.70 | e1.2 | | 30 | 1.4 | 12 | 26 | 147 | | 27 | 15 | 14 | 4.7 | 1.5 | e.62 | e2.0 | | 31 | 1.0 | | 22 | 71 | | 25 | | 12 | | 1.5 | e.55 | | | TOTAL | 47.19 | 533.6 | 455.5 | 1952 | 2312 | 2623 | 1153 | 765 | 340.2 | 77.1 | 27.58 | 32.83 | | MEAN | 1.52 | 17.8 | 14.7 | 63.0 | 82.6 | 84.6 | 38.4 | 24.7 | 11.3 | 2.49 | .89 | 1.09 | | MAX | 4.8 | 91 | _ 33 | 393 | 361 | 447 | 90 | 112 | 27 | 6.1 | 1.5 | 3.2 | | MIN | .58 | 1.5 | 7.4 | 12 | 25 | 23 | 15 | 10 | 4.7 | 1.2 | .48 | .32 | | CFSM | .07 | .80 | .66 | 2.85 | 3.74 | 3.83 | 1.74 | 1.12 | .51 | .11 | .04 | .05 | | IN. | .08 | .90 | .77 | 3.29 | 3.89 | 4.42 | 1.94 | 1.29 | .57 | .13 | .05 | .06 | e Estimated. 6 1972 ### JAMES RIVER BASIN # 02036500 FINE CREEK AT FINE CREEK MILLS, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1945 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|-----|---| OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|------|-------|------------|-----------|------|--------------------|-----------|------|----------|-----------|--------| | MEAN | 14.6 | 17.5 | 21.9 | 27.7 | 31.9 | 35.3 | 29.6 | 20.7 | 11.8 | 8.15 | 11.4 | 8.54 | | MAX | 119 | 105 | 53.9 | 92.5 | 92.7 | 99.1 | 84.1 | 54.1 | 60.8 | 25.7 | 83.3 | 46.1 | | (WY) | 1973 | 1986 | 1949 | 1978 | 1979 | 1994 | 1983 | 1978 | 1972 | a1949 | 1955 | 1996 | | MIN | .47 | 3.15 | 5.60 | 6.38 | 8.76 | 11.4 | 7.63 | 3.21 | 2.87 | 1.34 | .74 | .31 | | (WY) | 1969 | 1992 | 1966 | 1955 | 1991 | 1985 | 1985 | 1991 | 1970 | 1993 | 1977 | 1968 | | SUMMARY | Y STATIST | ICS | FOR I | 1997 CALEN | IDAR YEAR | F | OR 1998 W <i>F</i> | ATER YEAR | | WATER YE | EARS 1945 | - 1998 | | ANNUAL | TOTAL | | | 5337.26 | 5 | | 10319.00 |) | | | | | | ANNUAL | MEAN | | | 14.6 | | | 28.3 | | | 19.9 | | | | HIGHEST | r annual i | MEAN | | | | | | | | 40.7 | | 1973 | | LOWEST | ANNUAL MI | EAN | | | | | | | | 8.79 | 9 | 1981 | | HIGHEST | r DAILY M | EAN | | 102 | Mar 1 | | 447 | Mar 19 | | 1880 | Oct 2 | 1 1961 | | LOWEST | DAILY ME | AN | | e.45 | Sep 9 | | e.32 | 2 Sep 16 | | .08 | Oct | 1 1968 | ANNUAL SEVEN-DAY MINIMUM e.55 Sep 3 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) .66 ANNUAL RUNOFF (INCHES) 8.98 10 PERCENT EXCEEDS 31 50 PERCENT EXCEEDS 9.9 90 PERCENT EXCEEDS .87 e.45 Sep 12 .10 Sep 25 1968 742 Mar 19 4180 Oct 6 1972 4.14 Mar 19 9.02 Oct (b) .08 Oct 1 1968 (c) 1.28 .90 17.37 12.22 59 38 13 11 2.4 .83 a Also 1975. b Unknown. c Probably occurred Sept. 16, 1998. e Estimated. # 02037000 JAMES RIVER AND KANAWHA CANAL NEAR RICHMOND, VA LOCATION.--Lat 37°33'52", long 77°34'28", Henrico County, Hydrologic Unit 02080205, on left bank 75 ft downstream from Canal bridge, 400 ft downstream from head gates, 1,200 ft north of north end of Bosher Dam on James River, 1.6 mi upstream from Huguenot Memorial Bridge, and 2.0 mi west of Richmond city limits. PERIOD OF RECORD. -- September 1936 to current year. GAGE.--Water-stage recorder. Datum of gage is 106.07 ft above sea level. Prior to Oct. 1, 1938, at datum 3.06 ft higher. REMARKS.--Records fair except those for periods of doubtful gage-height record, Nov. 3-5, and Jun. 1-8, which are poor. Canal diverts from James River 1,200 ft upstream from Bosher Dam and discharges into river at several points downstream from gaging station near Richmond. Beginning with the 1969 water year, the descriptive statement that above 2,540 ft³/s, gage height, 14.5 ft, there is interchange of flow with the James River and that discharge above 2,540 ft³/s is included in discharge for the James River near Richmond (station 02037500) has been used. Daily discharges in excess of 2,540 ft³/s for water years 1937-68 should be used with caution until historical records of canal construction and modifications can be reviewed. Figures given show flow in canal only. Probably no flow at times when head gates were closed. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 340 ${\rm ft}^3/{\rm s}$, Mar. 21; maximum gage height, 8.61 ${\rm ft}$, Mar. 21; minimum discharge, 1.5 ${\rm ft}^3/{\rm s}$, Oct. 26, result of head gates being closed. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | | | - , | | DA | ILY MEAN | VALUES | | | | | | |-------|--------|-------|-------|-------|------|----------|--------|-------|-------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 141 | 8.3 | 6.0 | 4.7 | 19 | 18 | 21 | 18 | e2.8 | 52 | 117 | 132 | | 2 | 138 | 9.9 | 4.9 | 4.6 | 18 | 19 | 21 | 23 | e2.6 | 41 | 117 | 132 | | 3 | 132 | e8.4 | 4.8 | 6.0 | 18 | 18 | 20 | 19 | e2.9 | 32 | 113 | 132 | | 4 | 133 | e7.0 | 5.6 | 4.7 | 62 | 18 | 30 | 26 | e2.4 | 24 | 99 | 136 | | 5 | 131 | e5.6 | 5.4 | 4.6 | 45 | 18 | 22 | 20 | e2.5 | 18 | 92 | 136 | | 6 | 131 | 8.9 | 4.9 | 4.7 | 41 | 18 | 21 | 17 | e2.5 | 14 | 91 | 136 | | 7 | 132 | 35 | 4.5 | 5.0 | 28 | 18 | 20 | 17 | e2.7 | 11 | 90 | 134 | | 8 | 134 | 7.2 | 4.4 | 7.5 | 21 | 26 | 20 | 38 | e2.6 | 64 | 99 | 141 | | 9 | 123 | 8.5 | 4.3 | 6.0 | 20 | 54 | 23 | 16 | 6.6 | 146 | 109 | 137 | | 10 | 123 | 5.7 | 5.9 | 8.4 | 19 | 21 | 21 | 14 | 9.5 | 149 | 124 | 138 | | 11 | 125 | 5.2 | 6.0 | 9.0 | 19 | 19 | 20 | 13 | 8.7 | 145 | 158 | 138 | | 12 | 125 | 5.0 | 5.0 | 8.3 | 20 | 18 | 20 | 14 | 8.5 | 145 | 163 | 137 | | 13 | 124 | 5.1 | 4.7 | 9.1 | 19 | 18 | 20 | 13 | 11 | 140 | 160 | 138 | | 14 | 125 | 7.7 | 4.5 | 8.0 | 19 | 18 | 20 | 12 | 2.3 | 132 | 158 | 134 | | 15 | 126 | 5.4 | 4.4 | 11 | 19 | 18 | 20 | 12 | 8.5 | 131 | 159 | 132 | | 16 | 125 | 5.0 | 4.3 | 8.2 | 19 | 18 | 20 | 12 | 22 | 124 | 159 | 133 | | 17 | 91 | 5.1 | 4.2 | 7.2 | 68 | 18 | 38 | 12 | 26 | 116 | 151 | 133 | | 18 | 15 | 4.9 | 4.1 | 6.8 | 25 | 24 | 22 | 12 | 23 | 126 | 146 | 135 | | 19 | 3.3 | 4.8 | 4.0 | 7.0 | 30 | 71 | 22 | 11 | 20 | 128 | 148 | 134 | | 20 | 2.8 | 6.2 | 4.0 | 6.7 | 24 | 34 | 21 | 9.3 | 19 | 123 | 142 | 138 | | 21 | 2.6 | 6.3 | 3.9 | 6.5 | 19 | 77 | 20 | 8.6 | 16 | 119 | 139 | 135 | | 22 | 2.7 | 17 | 4.7 | 6.5 | 18 | 43 | 20 | 8.0 | 14 | 113 | 134 | 138 | | 23 | 4.1 | 6.0 | 6.2 | 40 | 30 | 37 | 20 | 7.9 | 12 | 106 | 134 | 137 | | 24 | 6.6 | 5.6 | 5.4 | 13 | 24 | 24 | 19 | 8.5 | 14 | 107 | 131 | 136 | | 25 | 7.1 | 5.7 | 7.4 | 8.3 | 20 | 22 | 19 | 8.3 | 13 | 109 | 132 | 135 | | 26 | 3.2 | 5.7 | 5.5 | 7.3 | 19 | 22 | 19 | 7.2 | 11 | 111 | 134 | 136 | | 27 | 4.2 | 5.4 | 7.8 | 9.3 | 18 | 21 | 19 | 6.0 | 8.3 | 110 | 136 | 135 | | 28 | 2.9 | 5.2 | 7.2 | 85 | 18 | 21 | 19 | 7.0 | 64 | 109 | 133 | 133 | | 29 | 5.1 | 5.1 | 5.7 | 32 | | 21 | 19 | 5.2 | 71 | 109 | 132 | 135 | | 30 | 6.5 | 6.6 | 6.0 | 31 | | 21 | 19 | 3.5 | 63 | 110 | 132 | 145 | | 31 | 7.0 | | 5.0 | 20 | | 21 | | e2.9 | | 114 | 132 | | | TOTAL | 2232.1 | 227.5 | 160.7 | 396.4 | 719 | 814 | 635 | 401.4 | 472.4 | 3078 | 4064 | 4071 | | MEAN | 72.0 | 7.58 | 5.18 | 12.8 | 25.7 | 26.3 | 21.2 | 12.9 | 15.7 | 99.3 | 131 | 136 | | MAX | 141 | 35 | 7.8 | 85 | 68 | 77 | 38 | 38 | 71 | 149 | 163 | 145 | | MIN | 2.6 | 4.8 | 3.9 | 4.6 | 18 | 18 | 19 | 2.9 | 2.3 | 11 | 90 | 132 | e Estimated. # 02037000 JAMES RIVER AND KANAWHA CANAL NEAR RICHMOND, VA--Continued | STATISTICS OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1937 | _ | 1998, | BY | WATER | YEAR | (WY) | |---------------|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------| |---------------|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|-----------|-----------|-------|---------|-----------|-------|------------|--------|-------|---------|-----------|---------| | MEAN | 592 | 622 | 646 | 667 | 679 | 670 | 685 | 663 | 670 | 604 | 590 | 571 | | MAX | 1078 | 1014 | 1220 | 1145 | 1086 | 1094 | 1108 | 1086 | 1061 | 956 | 1108 | 937 | | (WY) | 1949 | 1948 | 1949 | 1949 | 1979 | 1951 | 1951 | 1952 | 1951 | 1940 | 1940 | 1949 | | MIN | .60 | .60 | .60 | .60 | .60 | .60 | .60 | .60 | .60 | .60 | .60 | .60 | | (WY) | a1981 | a1980 | | Y STATIST | CICS | FOR | | NDAR YEAR | F | FOR 1998 W | | | WATER Y | EARS 1937 | - 1998 | | ANNUAL | | | | 33607.3 | | | 17271.5 | | | | | | | ANNUAL | MEAN | | | 92.1 | | |
47.3 | | | 638 | | | | HIGHES' | T ANNUAL | MEAN | | | | | | | | 1023 | | 1949 | | LOWEST | ANNUAL M | IEAN | | | | | | | | 1.4 | 8 | 1980 | | HIGHES' | T DAILY M | IEAN | | 304 | Jul 25 | | 163 | Aug 12 | | b3860 | Aug | 18 1940 | | LOWEST | DAILY ME | AN | | c2.6 | Oct 21 | | c2.3 | Jun 14 | | (d) | | (f) | | ANNUAL | SEVEN-DA | Y MINIMUM | | c4.1 | Dec 15 | | c2.6 | Jun 2 | | c.4 | 4 Jan | 1 1991 | 340 135 19 8.61 1.5 4.7 Mar 21 Mar 21 Oct 26 (g) (d) Jun 23 1972 (f) h29.10 988 802 17 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 17 5.3 a Estimated, leakage through head gates; also 1983. b See REMARKS. D See REMARKS. C Result of headgates being closed. d Probably no flow at times when head gates were closed prior to 1958. f Many days in 1937-38, 1949-50, 1952, 1954-55, and 1957. Interchange of flow with James River makes maximum discharge indeterminate. h From floodmarks. ### 02037500 JAMES RIVER NEAR RICHMOND, VA LOCATION.--Lat 37°33'47", long 77°32'50", Henrico County, Hydrologic Unit 02080205, on left bank 0.2 mi upstream from Huguenot Memorial Bridge, 0.5 mi southwest of Richmond city limits, 1.7 mi downstream from Bosher Dam, 3.3 mi upstream from Powhite Creek, and at mile 116.6. DRAINAGE AREA. -- 6,758 mi². PERIOD OF RECORD. --October 1934 to current year. Gage-height records collected in vicinity of Mayo's Bridge, at mile 109.5, 1876-1956, and at mile 108.7 since 1957, are contained in reports of the National Weather Service. REVISED RECORDS.--WSP 972: 1936(M). WSP 1433: 1951(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Control is Williams Island dams which divert flow for city of Richmond water supply. Datum of gage is 98.82 ft above sea level. REMARKS.--Records good except those for periods of doubtful or no gage-height record, Dec. 31 to Jan. 1, Jun. 26—30, July 12-23, and Sept. 21, 22, 25, 26, 29, which are fair. City of Richmond takes from 40 ft³/s to 90 ft³/s for water supply from river downstream from gage except during periods of low flow when supply is obtained from James River and Kanawha Canal. Flow regulated by powerplants upstream from station. Above 18.2 ft stage, there is interchange of flow with James River and Kanawha Canal. Records of daily discharge include diversion by city of Richmond but do not include flow in James River and Kanawha Canal (station 02037000) which diverts around station. National Weather Service gage-height telemeter at station. Maximum discharge, 313,000 ft³/s, includes canal flow. Minimum daily discharge of James River and James River and Kanawha Canal combined, 214 ft³/s, Oct. 5, 1941, caused by recharging of the pool above Bosher Dam after the canal gates were closed. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $50,000 \text{ ft}^3/\text{s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 10 | 1800 | 74,300 | 15.70 | Feb. 19 | 1300 | 85,700 | 16.66 | | Jan. 29 | 2245 | *87,000 | *16.77 | Mar. 22 | 1845 | 86,900 | 16.76 | | Feb. 6 | 1545 | 86.500 | 16 73 | | | | | Minimum discharge, 865 ft³/s, Sept. 28, gage height, 3.34 ft. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAY | OCT | NON | / DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|--|---|---|---|--|---|--|---|---| | 1
2
3
4
5 | 2380
2160
1440
1470
1440 | 2000
2070
3520
5000
4090 | 3420
3470
3610 | e5450
4770
4340
4100
4080 | 27300
21700
17500
20500
60500 | 16200
15200
15600
15200
13600 | 11800
11500
11100
10800
21500 | 10900
12700
12600 | 7720
6940
6210
5700
5430 | 4120
4250
4460
4220
4010 | 1870
1790
1710 | 1430
1490
1310
1280
1310 | | 6
7
8
9 | 1410
1310
1330
1270
1190 | 3600
4310
19400
20300
11700 | 4640
3740
2490 | 4210
4440
6870
37300
69800 | | 12400
11300
11100
24400
37200 | 20300
17600
16000
14300
15100 | 16900
22000
42900 | 5150
5040
4940
4750
4800 | 3790
3600
3530
3420
3400 | 1410
1520
1490 | 1170
942
1140
1140
1200 | | 11
12
13
14
15 | 1210
1180
1070
1080
1190 | 9340
7480
5720
5000
5060 | 3580
3520
3170 | 41800
20200
15000
12100
10800 | 22100
20600
25400
24200
22500 | 32900
27600
21500
17700
15200 | 16900
19600
16600
14700
13400 | 20500
18500
17000 | 4920
5200
5070
5040
5010 | 3570
e4000
e3300
e2850
e3250 | 2960
2330
2080 | 1240
1250
1310
1190
984 | | 16
17
18
19
20 | 1240
1300
1630
2940
2720 | 5140
4420
3890
3540
3410 | 3200
3030
2890 | | 19100
20300
58800
83200
61000 | 13400
12500
12200
21600
31500 | 12600
13800
33600
28800
25900 | 11400
12600
11000 | 6460
7070
7120
6780
6830 | e2550
e2500
e2600
e2800
e3000 | 2190
2610
3240 | 1090
1020
1100
1110
1520 | | 21
22
23
24
25 | 2100
1800
1610
1560
1570 | 3250
3800
4580
4960
4430 | 2770
2770
3130 | | 37600
30700
27600
32300
27800 | 59900
84100
78300
42500
29800 | 42400
42400
29200
22300
18000 | 8180
7580
7250 | 6510
5550
5340
6050
6570 | e2650
e2250
e1850
1750
2160 | e2350
e2100
1790 | e1200
e1150
1210
1150
e1000 | | 26
27
28
29
30
31 | 1610
2060
2920
3110
2440
2240 | 3950
3710
3560
3440
3180 | 5820
5650
6500
6230 | 26400
21100
36600
78500
70800
35700 | 17300
 | 24700
21200
17400
14800
13500
12600 | 15700
13900
12900
11900
10800 | 7510
7940
8760
10700 | e5300
e4400
e4150
e3900
e4000 | 2330
2220
2050
2070
2150
2160 | 1680
1520
1590
1510 | e1150
1020
913
e1050
964 | | TOTAL
MEAN
MAX
MIN
(†)
MEAN‡
CFSM‡
IN.‡ | 53980
1741
3110
1070
2232.1
1813
.27 | 167850
5595
20300
2000
227.5
5603
.83 | 3825
6500
2490
5 160.7
8 3831
5 .57 | 78500
4080
396.4
22460
3.32 | 719
34990 | 777100
25070
84100
11100
814
25090
3.71
4.28 | 565400
18850
42400
10800
635
18870
2.79
3.12 | 14210
42900
7250
401.4
14220
2.10 | 167950
5598
7720
3900
472.4
5614
.83
.93 | 92860
2995
4460
1750
3078
3095
.46 | 2083
4570
1410
4064
2214
.33 | 35033
1168
1520
913
4071
1303
.19 | | CAL YR
WTR YR | 1997 | TOTAL TOTAL | 2335330
4158543 | MEAN 6 | 398 MAX
390 MAX | 38200
84100 | MIN 10 | 70 MEAN‡ | | CFSM‡ | .96 IN.‡
1.69 IN.‡ | 13.04 | [†] Total diversion, in cubic feet per second, per month, by James River and Kanawha Canal. [‡] Adjusted for diversion. e Estimated. # 02037500 JAMES RIVER NEAR RICHMOND, VA--Continued | STATIS | TICS OF | MONTHLY MEA | N DATA | FOR WATER | YEARS 1937 | - 1998, | BY WATER | R YEAR (WY) | [REGU | LATED, UI | NADJUSTED] | | | |------------------------|--------------------|-------------|--------|------------|------------|---------|-----------|-------------|-------|-----------|------------|----------|--| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | MEAN | 4047 | 4740 | 6861 | 9325 | 11040 | 13020 | 11000 | 7847 | 5624 | 3219 | 3690 | 3198 | | | MAX | 19090 | 30480 | 26480 | 25300 | 34960 | 32740 | 35900 | 24280 | 30910 | 11300 | 21710 | 18390 | | | (WY) | 1938 | 1986 | 1949 | 1937 | 1998 | 1993 | 1987 | 1989 | 1972 | 1972 | 1969 | 1996 | | | MIN | 177 | 338 | 450 | 837 | 3243 | 2988 | 2766 | 2137 | 904 | 76.1 | 149 | 125 | | | (WY) | 1942 | 1942 | 1966 | 1966 | 1959 | 1981 | 1966 | 1941 | 1964 | 1966 | 1966 | 1963 | | | SUMMAR | Y STATIS | TICS | FOI | R 1997 CAL | ENDAR YEAR | F | OR 1998 W | NATER YEAR | | WATER | YEARS 193 | 7 - 1998 | | | ANNUAL | TOTAL | | | 2335330 | | | 4158543 | | | | | | | | ANNUAL | MEAN | | | 6398 | | | 11390 | | | 6946 | | | | | HIGHES' | T ANNUAL | MEAN | | | | | | | | 13540 | | 1973 | | | LOWEST | ANNUAL | MEAN | | | | | | | | 2666 | | 1981 | | | HIGHES | T DAILY | MEAN | | 38200 | Mar 6 | | 84100 | Mar 22 | | a296000 | Jun | 23 1972 | | | LOWEST | DAILY M | EAN | | 1070 | bSep 8 | | 913 | Sep 28 | | c10 | dSep | 8 1966 | | | ANNUAL | SEVEN-D | AY MINIMUM | | 1170 | Oct 10 | | 1040 | Sep 24 | | c10 | fSep | 8 1966 | | | INSTAN | TANEOUS | PEAK FLOW | | | | | 87000 | Jan 29 | | a313000 | Jun | 23 1972
| | | INSTAN | TANEOUS | PEAK STAGE | | | | | 16.7 | 77 Jan 29 | | 28. | .62 Jun | 23 1972 | | | INSTANTANEOUS LOW FLOW | | | | | | | 865 | Sep 28 | | (9 | g) | (h) | | | ANNUAL RUNOFF (CFSM) | | | | | 95 | | 1.6 | 59 | 1.03 | | | | | | ANNUAL | RUNOFF | (INCHES) | | 12. | 86 | | 22.8 | 39 | | 13. | .96 | | | | 10 PER | 10 PERCENT EXCEEDS | | | 13400 | | | 27700 | | 15000 | | | | | | 50 PER | CENT EXC | EEDS | | 4530 | | | 5000 | | | 4200 | | | | | 90 PER | CENT EXC | EEDS | | 1440 | | | 1310 | | | 950 | | | | a Includes canal flow. b Also Oct. 13, 1997. c Result of diversion by Bosher Dam construction. d Also Sept. 9-15, 1966, Sept. 30, Oct. 5, 6, 1968, and Oct. 8-10, 1970. f Also Sept. 9, 1966. g Not determined. h Probably occurred Sept. 8-15, 1966. # 02039000 BUFFALO CREEK NEAR HAMPDEN SYDNEY, VA LOCATION.--Lat 37°15'25", long 78°29'12", Prince Edward County, Hydrologic Unit 02080207, on left bank 100 ft upstream from bridge on State Highway 658, 0.8 mi upstream from Locket Creek, 2.0 mi northwest of Hampden Sydney, and 6.0 mi southwest of Farmville. DRAINAGE AREA. -- 69.7 mi². PERIOD OF RECORD. -- August 1946 to current year. REVISED RECORDS.--WSP 1303: 1948-50(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 339.19 ft above sea level (levels by Virginia Department of Transportation). Prior to Aug. 19, 1953, nonrecording gage at same site and datum. REMARKS.-Records good except for period of doubtful gage-height record, May 9-17, which is fair. Maximum discharge, 9,160 ft³/s, from rating curve extended above 1,600 ft³/s on basis of slope-area measurement at gage height 11.96 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location by the Virginia Department of Environmental Quality - Water Division. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1940 reached a stage of about 15 ft, from information by local resident. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 500 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 24 | 0300 | 701 | 6.22 | Mar. 19 | 1200 | *1,650 | *7.86 | | Jan. 28 | 2230 | 1,500 | 7.55 | Apr. 4 | 2100 | 518 | 5.83 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum daily discharge, 14 ft³/s, Sept. 12-16. | | | 21001111 | 102, 11, 0 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | DAI | LY MEAN V | ALUES | 02211 1337 | 10 021121 | | | | |-------|------|----------|------------|---|------|-----------|-------|------------|-----------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 18 | 40 | 65 | 52 | 221 | 86 | 76 | 71 | 55 | 34 | 23 | 17 | | 2 | 17 | 47 | 53 | 48 | 145 | 90 | 74 | 79 | 52 | 32 | 22 | 17 | | 3 | 16 | 42 | 46 | 46 | 99 | 93 | 69 | 70 | 50 | 32 | 21 | 17 | | 4 | 16 | 37 | 55 | 45 | 542 | 81 | 308 | 67 | 50 | 32 | 21 | 20 | | 5 | 16 | 33 | 53 | 43 | 584 | 75 | 369 | 95 | 51 | 36 | 20 | 19 | | 6 | 15 | 32 | 47 | 41 | 403 | 70 | 225 | 82 | 50 | 33 | 20 | 18 | | 7 | 15 | 104 | 43 | 45 | 320 | 67 | 151 | 80 | 47 | 32 | 20 | 17 | | 8 | 15 | 99 | 40 | 120 | 235 | 178 | 115 | 590 | 45 | 32 | 38 | 16 | | 9 | 16 | 75 | 39 | 144 | 167 | 379 | 107 | e450 | 45 | 32 | 91 | 15 | | 10 | 16 | 58 | 44 | 90 | 126 | 302 | 97 | e300 | 57 | 34 | 64 | 15 | | 11 | 16 | 48 | 52 | 69 | 111 | 187 | 87 | e180 | 55 | 32 | 46 | 15 | | 12 | 16 | 43 | 47 | 58 | 231 | 125 | 79 | e145 | 54 | 30 | 36 | 14 | | 13 | 16 | 41 | 43 | 57 | 186 | 99 | 73 | e120 | 50 | 29 | 31 | 14 | | 14 | 16 | 56 | 40 | 54 | 133 | 87 | 72 | e100 | 46 | 28 | 28 | 14 | | 15 | 21 | 52 | 38 | 124 | 107 | 78 | 71 | e84 | 45 | 27 | 27 | 14 | | 16 | 23 | 45 | 36 | 382 | 97 | 72 | 67 | e76 | 47 | 27 | 31 | 14 | | 17 | 24 | 41 | 35 | 259 | 501 | 69 | 313 | e73 | 47 | 27 | 36 | 15 | | 18 | 60 | 39 | 34 | 158 | 532 | 97 | 333 | 71 | 43 | 26 | 39 | 15 | | 19 | 47 | 37 | 33 | 111 | 341 | 929 | 215 | 64 | 52 | 25 | 34 | 16 | | 20 | 42 | 36 | 32 | 97 | 249 | 496 | 209 | 61 | 55 | 24 | 29 | 16 | | 21 | 33 | 36 | 32 | 79 | 179 | 551 | 149 | 59 | 48 | 24 | 26 | 17 | | 22 | 28 | 62 | 35 | 69 | 129 | 406 | 113 | 56 | 44 | 23 | 24 | 24 | | 23 | 25 | 59 | 42 | 295 | 170 | 313 | 99 | 61 | 43 | 27 | 23 | 19 | | 24 | 25 | 51 | 40 | 569 | 206 | 240 | 100 | 67 | 57 | 28 | 22 | 17 | | 25 | 27 | 45 | 67 | 368 | 145 | 181 | 85 | 65 | 47 | 26 | 21 | 17 | | 26 | 38 | 42 | 62 | 229 | 113 | 141 | 75 | 60 | 42 | 26 | 20 | 16 | | 27 | 55 | 39 | 63 | 185 | 99 | 115 | 69 | 85 | 38 | 26 | 20 | 16 | | 28 | 42 | 37 | 85 | 1210 | 92 | 100 | 65 | 87 | 36 | 27 | 21 | 15 | | 29 | 35 | 35 | 74 | 784 | | 91 | 62 | 74 | 37 | 25 | 20 | 15 | | 30 | 31 | 43 | 68 | 450 | | 84 | 61 | 65 | 36 | 24 | 19 | 15 | | 31 | 29 | | 61 | 325 | | 79 | | 59 | | 23 | 18 | | | TOTAL | 809 | 1454 | 1504 | 6606 | 6463 | 5961 | 3988 | 3596 | 1424 | 883 | 911 | 489 | | MEAN | 26.1 | 48.5 | 48.5 | 213 | 231 | 192 | 133 | 116 | 47.5 | 28.5 | 29.4 | 16.3 | | MAX | 60 | 104 | 85 | 1210 | 584 | 929 | 369 | 590 | 57 | 36 | 91 | 24 | | MIN | 15 | 32 | 32 | 41 | 92 | 67 | 61 | 56 | 36 | 23 | 18 | 14 | | CFSM | .37 | .70 | .70 | 3.06 | 3.31 | 2.76 | 1.91 | 1.66 | .68 | .41 | .42 | .23 | | IN. | .43 | .78 | .80 | 3.53 | 3.45 | 3.18 | 2.13 | 1.92 | .76 | . 47 | .49 | .26 | e Estimated. # 02039000 BUFFALO CREEK NEAR HAMPDEN SYDNEY, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1947 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|-----|---| OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------|---------|------|-------|-----------|-----------|------|-----------|-----------|------|---------|-----------|--------| | MEAN | 50.5 | 64.8 | 73.0 | 91.8 | 101 | 113 | 93.4 | 67.2 | 50.6 | 39.8 | 41.5 | 41.4 | | MAX | 365 | 315 | 157 | 313 | 295 | 324 | 256 | 173 | 294 | 129 | 260 | 168 | | (WY) | 1972 | 1986 | 1997 | 1978 | 1979 | 1993 | 1983 | 1978 | 1972 | 1989 | 1955 | 1979 | | MIN | 9.94 | 14.6 | 18.7 | 25.3 | 36.9 | 37.5 | 29.4 | 23.4 | 11.2 | 14.0 | 9.02 | 6.67 | | (WY) | 1971 | 1970 | 1966 | 1966 | 1968 | 1981 | 1967 | 1969 | 1970 | 1970 | 1977 | 1970 | | | | | | | | | | | | | | | | SUMMARY | STATIST | ICS | FOR : | 1997 CALE | NDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER Y | EARS 1947 | - 1998 | | ANIMITAT TOTAT | | | 22720 | | | | 24000 | | | | | | | ANNUAL TOTAL | 22738 | 34088 | | |--------------------------|------------|----------|----------------------| | ANNUAL MEAN | 62.3 | 93.4 | 68.9 | | HIGHEST ANNUAL MEAN | | | 134 1972 | | LOWEST ANNUAL MEAN | | | 28.5 1970 | | HIGHEST DAILY MEAN | 710 Apr 29 | 1210 Jan | 28 4940 Aug 18 1955 | | LOWEST DAILY MEAN | 12 aSep 6 | 14 bSep | 12 e2.7 cOct 7 1970 | | ANNUAL SEVEN-DAY MINIMUM | 13 dSep 1 | 14 fSep | 10 2.9 Oct 4 1970 | | INSTANTANEOUS PEAK FLOW | | 1650 Mar | 19 9160 Jun 21 1972 | | INSTANTANEOUS PEAK STAGE | | 7.86 Mar | 19 12.38 Jun 21 1972 | | INSTANTANEOUS LOW FLOW | | 14 gSep | 14 (h) (j) | | ANNUAL RUNOFF (CFSM) | .89 | 1.34 | .99 | | ANNUAL RUNOFF (INCHES) | 12.14 | 18.19 | 13.43 | | 10 PERCENT EXCEEDS | 109 | 223 | 121 | | 50 PERCENT EXCEEDS | 46 | 50 | 44 | | 90 PERCENT EXCEEDS | 17 | 17 | 18 | a Also Sept. 7, 1997. b Also Sept. 13-16, 1998. c Also Oct. 8, 1970. d Also Sept. 2, 1997. e Estimated. f Also Sept. 11, 12, 1998. g Also Sept. 15, 1998. h Not determined. j Probably occurred Oct. 7, 8, 1970. DAY #### JAMES RIVER BASIN # 02039500 APPOMATTOX RIVER AT FARMVILLE, VA LOCATION.--Lat 37°18'25", long 78°23'20", Cumberland County, Hydrologic Unit 02080207, on left bank at downstream side of bridge on State Highway 45 at north town limits of Farmville and 1.1 mi downstream from Buffalo Creek. DRAINAGE AREA. -- 303 mi². PERIOD OF RECORD. -- March 1926 to current year. REVISED RECORDS.--WSP 972: 1927-37, 1938(M). WSP 1303: 1927(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 281.93 ft above sea level. Prior to Nov. 29, 1928, nonrecording gage at same site and datum. REMARKS.--No estimated daily discharges. Records good. Maximum discharge, 33,100 ft³/s, from rating curve extended above 12,000 ft³/s on basis of contracted-opening measurement of peak flow. Diurnal fluctuation at low flow caused by Prince Edward Mill 0.2 mi upstream. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,900 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 24 | 1400 | 3,720 | 14.86 | Mar. 21 | 2130 | 5,070 | 16.21 | | Jan. 29 | 0230 | *8,710 | *18.87 | Apr. 5 | 0930 | 4,390 | 15.59 | | Feb. 5 | 1200 | 5,970 | 16.93 | Apr. 18 | 0830 | 3,760 | 14.91 | | Feb. 18 | 1130 | 5,990 | 16.95 | May 5 | 2300 | 2,320 | 12.82 | | Mar. 10 | 0400 | 2,940 | 13.90 | May 9 | 0800 | 3,850 | 15.01 | | Mar 20 | 0030 | 5.070 | 16 21 | - | | • | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 AUG SEP Minimum discharge, 57
ft³/s, Sept. 15-18. DAILY MEAN VALUES OCT NOV DEC JAN FEB MAR APR MAY JUN JUL | 1 | 80 | 114 | 180 | 210 | 711 | 420 | 380 | 362 | 217 | 143 | 84 | 77 | |--------|------|------|------|-------|-------|-------|-------|-------|------|------|------|------| | 2 | 71 | 225 | 185 | 188 | 559 | 478 | 417 | 469 | 203 | 133 | 80 | 75 | | 3 | 67 | 200 | 156 | 181 | 471 | 519 | 368 | 410 | 194 | 125 | 74 | 74 | | 3
4 | 67 | 155 | 180 | 183 | 1860 | 422 | 1550 | 383 | 192 | 122 | 70 | 80 | | 5 | 67 | 120 | 251 | 187 | 5150 | 382 | 3620 | 1680 | 196 | 123 | 67 | 81 | | | | | | | | | | | | | | | | 6 | 64 | 108 | 196 | 179 | 3140 | 357 | 1130 | 1130 | 197 | 123 | 66 | 75 | | 7 | 62 | 542 | 163 | 196 | 1860 | 342 | 678 | 543 | 194 | 117 | 65 | 73 | | 8 | 61 | 812 | 148 | 413 | 1010 | 879 | 544 | 2090 | 187 | 115 | 71 | 70 | | 9 | 61 | 457 | 146 | 690 | 707 | 2470 | 502 | 3240 | 185 | 132 | 512 | 68 | | 10 | 62 | 288 | 172 | 404 | 553 | 2240 | 529 | 1190 | 235 | 127 | 393 | 66 | | | | | | | | | | | | | | | | 11 | 61 | 226 | 221 | 283 | 487 | 844 | 461 | 779 | 254 | 124 | 200 | 62 | | 12 | 60 | 201 | 207 | 232 | 1110 | 587 | 411 | 626 | 231 | 113 | 155 | 62 | | 13 | 59 | 187 | 179 | 221 | 939 | 479 | 383 | 516 | 222 | 106 | 130 | 61 | | 14 | 60 | 226 | 164 | 220 | 600 | 430 | 369 | 415 | 211 | 103 | 117 | 60 | | 15 | 71 | 251 | 155 | 389 | 483 | 395 | 372 | 352 | 194 | 98 | 110 | 59 | | | | | | | | | | | | | | | | 16 | 89 | 211 | 147 | 1630 | 433 | 368 | 358 | 314 | 198 | 97 | 193 | 58 | | 17 | 91 | 181 | 143 | 1060 | 1720 | 355 | 1310 | 306 | 189 | 98 | 352 | 58 | | 18 | 364 | 153 | 139 | 587 | 5060 | 458 | 2870 | 305 | 176 | 116 | 237 | 58 | | 19 | 286 | 125 | 135 | 414 | 1860 | 3410 | 931 | 266 | 196 | 101 | 187 | 63 | | 20 | 167 | 120 | 133 | 360 | 887 | 3730 | 1260 | 244 | 275 | 92 | 138 | 68 | | | | | | | | | | | | | | | | 21 | 125 | 121 | 130 | 301 | 711 | 4000 | 867 | 236 | 215 | 87 | 116 | 68 | | 22 | 99 | 211 | 137 | 259 | 554 | 3160 | 596 | 227 | 187 | 89 | 108 | 79 | | 23 | 86 | 282 | 169 | 1220 | 768 | 1160 | 509 | 229 | 207 | 107 | 103 | 81 | | 24 | 80 | 204 | 179 | 3290 | 1220 | 822 | 513 | 263 | 216 | 116 | 99 | 73 | | 25 | 85 | 164 | 320 | 1610 | 727 | 652 | 449 | 264 | 190 | 109 | 96 | 68 | | | | | | | | | | | | | | | | 26 | 112 | 146 | 353 | 858 | 541 | 547 | 403 | 240 | 170 | 99 | 90 | 66 | | 27 | 210 | 137 | 270 | 713 | 465 | 492 | 374 | 263 | 159 | 95 | 88 | 67 | | 28 | 197 | 126 | 339 | 4750 | 433 | 449 | 356 | 358 | 148 | 100 | 88 | 74 | | 29 | 129 | 122 | 310 | 7470 | | 421 | 345 | 288 | 159 | 106 | 85 | 69 | | 30 | 106 | 141 | 281 | 2330 | | 399 | 334 | 251 | 159 | 94 | 81 | 64 | | 31 | 97 | | 252 | 965 | | 378 | | 227 | | 85 | 80 | | | TOTAL | 3296 | 6556 | 6140 | 31993 | 35019 | 32045 | 23189 | 18466 | 5956 | 3395 | 4335 | 2057 | | MEAN | 106 | 219 | 198 | 1032 | 1251 | 1034 | 773 | 596 | 199 | 110 | 140 | 68.6 | | MAX | 364 | 812 | 353 | 7470 | 5150 | 4000 | 3620 | 3240 | 275 | 143 | 512 | 81 | | MIN | 59 | 108 | 130 | 179 | 433 | 342 | 334 | 227 | 148 | 85 | 65 | 58 | | CFSM | .35 | .72 | .65 | 3.41 | 4.13 | 3.41 | 2.55 | 1.97 | .66 | .36 | .46 | . 23 | | IN. | .40 | .80 | .75 | 3.93 | 4.30 | 3.93 | 2.85 | 2.27 | .73 | . 42 | .53 | . 25 | | | | | | 3.23 | 1.55 | 3.23 | 2.00 | | | | | | # 02039500 APPOMATTOX RIVER AT FARMVILLE, VA--Continued | STATIST | TICS OF 1 | MONTHLY MEAN | DATA | FOR WATER | YEARS 1926 | - 1998, | BY WATE | ER YEAR (WY) | | | | | |---------|-----------|--------------|------|-----------|------------|---------|----------|--------------|------|---------|-----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 195 | 249 | 308 | 406 | 447 | 487 | 412 | 278 | 211 | 163 | 198 | 196 | | MAX | 1190 | 1287 | 961 | 1430 | 1402 | 1518 | 1155 | 872 | 1866 | 518 | 1783 | 1140 | | (WY) | 1972 | 1986 | 1997 | 1978 | 1979 | 1993 | 1983 | 1978 | 1972 | 1972 | 1940 | 1996 | | MIN | 30.3 | 51.0 | 61.6 | 96.3 | 114 | 126 | 107 | 95.2 | 29.5 | 40.5 | 19.6 | 16.7 | | (WY) | 1931 | 1932 | 1966 | 1966 | 1934 | 1981 | 1966 | 1969 | 1970 | 1966 | 1930 | 1968 | | | | | | | | | | | | | | | | SUMMAR | Y STATIS | rics | FOR | 1997 CAL | ENDAR YEAR | F | FOR 1998 | WATER YEAR | | WATER Y | EARS 1926 | - 1998 | | ANNUAL | TOTAL | | | 98123 | | | 172447 | | | | | | | ANNUAL | MEAN | | | 269 | | | 472 | | | 296 | | | | HIGHES | T ANNUAL | MEAN | | | | | | | | 584 | | 1972 | | LOWEST | ANNUAL I | MEAN | | | | | | | | 115 | | 1970 | | HIGHES | T DAILY N | MEAN | | 2210 | Apr 29 | | 7470 | Jan 29 | | 28000 | Jun | 22 1972 | | LOWEST | DAILY M | EAN | | 55 | Sep 7 | | 58 | aSep 16 | | 6.3 | Oct | 5 1968 | | ANNUAL | SEVEN-DA | MUMINIM YA | | 59 | Sep 2 | | 59 | Sep 12 | | 8.1 | Sep | 30 1968 | | INSTAN' | TANEOUS I | PEAK FLOW | | | | | 8710 | Jan 29 | | 33100 | Jun | 22 1972 | | INSTAN | TANEOUS I | PEAK STAGE | | | | | 18. | .87 Jan 29 | | b29.7 | 0 Jun | 22 1972 | | INSTAN | TANEOUS 1 | LOW FLOW | | | | | 57 | cSep 15 | | 3.8 | Sep | 25 1941 | | ANNUAL | RUNOFF | (CFSM) | | .: | 89 | | 1. | . 56 | | .9 | 8 | | | ANNUAL | RUNOFF | (INCHES) | | 12. | 05 | | 21. | . 17 | | 13.2 | 7 | | | 10 PER | CENT EXC | EEDS | | 520 | | | 983 | | | 534 | | | | 50 PER | CENT EXC | EEDS | | 196 | | | 207 | | | 168 | | | 71 62 76 90 PERCENT EXCEEDS a Also Sept. 17, 18, 1998. b From floodmarks. c Also Sept. 16-18, 1998. # 02040000 APPOMATTOX RIVER AT MATTOAX, VA LOCATION.--Lat 37°25'17", long 77°51'33", Amelia County, Hydrologic Unit 02080207, on right bank 75 ft upstream from Norfolk Southern Railway bridge at Mattoax, 0.3 mi upstream from Skinquarter Creek, and 3.7 mi upstream from Flat Creek. DRAINAGE AREA. -- 726 mi². PERIOD OF RECORD. -- August 1900 to December 1905, March 1926 to current year. REVISED RECORDS.--WSP 892: 1938. WSP 972: 1928, 1932, 1934-38. WSP 1303: 1901(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 174.51 ft above sea level. August 1900 to December 1905, non-recording gage at same site, different datum. March 1926 to October 1936, nonrecording gage at same site and datum. REMARKS.--Records good except those for periods of doubtful gage-height record, Oct. 14, and July 13, which are fair. National Weather Service gage-height telemeter at station. Maximum discharge, 35,000 ft³/s, from rating curve extended above 20,000 ft³/s on basis of records for stations at Farmville and near Petersburg. Minimum gage height, 3.52 ft, Oct. 2, 1930. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $4,000~\text{ft}^3/\text{s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 29 | 0330 | 5,390 | 20.85 | Mar. 12 | 1900 | 4,040 | 18.12 | | Feb. 1 | 0300 | 9,280 | 24.77 | Mar. 19 | 2400 | 5,130 | 20.35 | | Feb. 8 | 1100 | 7,440 | 23.39 | Mar. 22 | 2130 | *10,900 | *25.85 | | Feb. 21 | 1500 | 5,580 | 21.21 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 78 ft³/s, Sept. 16. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|--|--|---|--|--|-----------------------------------|---|---|---------------------------------| | 1 | 150 | 183 | 290 | 546 | 8810 | 985 | 747 | 626 | 441 | 257 | 146 | 103 | | 2 | 138 | 186 | 386 | 451 | 6320 | 914 | 751 | 800 | 405 | 248 | 135 | 99 | | 3 | 113 | 217 | 370 | 393 | 2530 | 946 | 734 | 908 | 377 | 239 | 130 | 95 | | 4 | 103 | 269 | 335 | 365 | 2420 | 967 | 1090 | 775 | 359 | 233 | 124 | 96 | | 5 | 98 | 239 | 345 | 346 | 4450 | 801 | 2580 | 699 | 352 | 222 | 115 | 95 | | 6 | 94 | 211 | 390 | 338 | 4910 | 706 | 3040 | 1650 | 350 | 215 | 109 | 101 | | 7 | 93 | 281 | 363 | 331 | 6000 | 647 | 3450 | 1650 | 346 | 212 | 105 | 102 | | 8 | 90 | 781 | 300 | 364 | 7290 | 866 | 3450 | 1760 | 333 | 211 | 102 | 99 | | 9 | 87 | 1340 | 265 | 637 | 6240 | 3100 | 1380 | 3240 | 318 | 208 | 107 | 93 | | 10 | 87 | 782 | 261 | 1070 | 4510 | 3700 | 1200 | 3430 | 337 | 207 | 313 | 88 | | 11 | 86 | 503 | 313 | 743 | 1610 | 3790 | 1100 | 3710 | 374 | 231 | 515 | 85 | | 12 | 87 | 378 | 382 | 542 | 1630 | 4000 | 964 | 3240 | 421 | 212 | 291 | 83 | | 13 | 89 | 323 | 368 | 463 | 2410 | 2310 | 851 | 1480 | 393 | e190 | 217 | 82 | | 14 | e85 | 332 | 319 | 487 | 2260 | 1110 | 784 | 1200 | 383 | 186 | 180 | 80 | | 15 | 89 | 407 | 296 | 549 | 1350 | 936 | 750 | 994 | 370 | 178 | 159 | 79 | | 16 | 90 | 437 | 279 | 1460 | 1020 | 815 | 728 | 860 | 345 | 174 | 150 | 82 | | 17 | 102 | 367 | 267 | 2440 | 1970 | 734 | 1590 | 766 | 329 | 169 | 147 | 133 | | 18 | 133 | 309 | 259 | 2610 | 3820 | 881 | 2820 | 711 | 327 | 172 | 313 | 155 | | 19 | 222 | 281 | 251 | 1490 | 3990 | 3840 | 3190 | 665 | 346 | 172 | 269 | 152 | | 20 | 388 | 252 | 246 | 1050 | 4600 | 5080 | 3660 | 591 | 361 | 180 | 236 | 146 | | 21 | 261 | 240 | 243 | 917 | 5450 | 6420 | 3730 | 541 | 411 | 163 | 188 | 149 | | 22 | 212 | 292 | 242 | 769 | 4410 | 10100 | 2250 | 508 | 385 | 153 | 158 | 157 | | 23 | 181 | 434 | 260 | 1430 | 1830 | 10200 | 1380 | 482 | 332 | 147 | 142 | 158 | | 24 | 158 | 530 | 295 | 3400
 3070 | 8320 | 1160 | 482 | 368 | 148 | 134 | 163 | | 25 | 149 | 415 | 402 | 3610 | 3170 | 6220 | 1050 | 513 | 383 | 167 | 126 | 157 | | 26
27
28
29
30
31 | 150
179
243
284
226
196 | 333
293
272
259
254 | 667
703
744
893
755
637 | 3900
4160
4870
5320
5590
7980 | 2370
1370
1120
 | 3600
1370
1150
999
892
809 | 909
798
720
668
635 | 507
498
585
681
573
491 | 335
301
275
260
256 | 174
165
157
154
157 | 121
120
119
117
113
107 | 148
140
137
137
147 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 4663
150
388
85
.21
.24 | 11400
380
1340
183
.52
.58 | 12126
391
893
242
.54
.62 | 58621
1891
7980
331
2.60
3.00 | 100930
3605
8810
1020
4.97
5.17 | 87208
2813
10200
647
3.87
4.47 | 48159
1605
3730
635
2.21
2.47 | 35616
1149
3710
482
1.58
1.82 | 10573
352
441
256
.49 | 5858
189
257
147
.26
.30 | 5308
171
515
102
.24
.27 | 3541
118
163
79
.16 | e Estimated. # 02040000 APPOMATTOX RIVER AT MATTOAX, VA--Continued | STATISTICS | OF. | MON.I.HTA | MEAN | DAT'A | FOR | WA:I:ER | YEARS | 1926 | - | 1998, | ВY | WA.I.F.K | YEAR | (WY) | | |------------|-----|-----------|------|-------|-----|---------|-------|------|---|-------|----|----------|------|------|--| OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|--------------------|------|------|------------|-----------|------|-----------|-----------|------|---------|-----------|--------| | MEAN | 476 | 548 | 746 | 1029 | 1149 | 1249 | 1067 | 671 | 488 | 378 | 432 | 393 | | MAX | 3932 | 2728 | 2620 | 3650 | 3605 | 3566 | 2975 | 1889 | 4369 | 1918 | 4566 | 2294 | | (WY) | 1972 | 1986 | 1994 | 1978 | 1998 | 1993 | 1983 | 1978 | 1972 | 1938 | 1940 | 1975 | | MIN | 32.7 | 107 | 123 | 207 | 248 | 309 | 273 | 208 | 95.0 | 56.5 | 35.6 | 30.0 | | (WY) | 1931 | 1931 | 1966 | 1966 | 1931 | 1981 | 1966 | 1926 | 1970 | 1966 | 1930 | 1932 | | | | | | | | | | | | | | | | SUMMARY | SUMMARY STATISTICS | | | 1997 CALEI | NDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER Y | EARS 1926 | - 1998 | | 501111111111111111111111111111111111111 | 1010 1997 01122112 | | | 1011 1330 | ********** | 12111 | WIII 211 121. | 10 100 | • | 1,,,, | | |---|--------------------|-----|---|-----------|------------|-------|---------------|--------|----|-------|--| | ANNUAL TOTAL | 207939 | | | 384003 | | | | | | | | | ANNUAL MEAN | 570 | | | 1052 | | | 719 | | | | | | HIGHEST ANNUAL MEAN | | | | | | | 1553 | | | 1972 | | | LOWEST ANNUAL MEAN | | | | | | | 285 | | | 1981 | | | HIGHEST DAILY MEAN | 3900 | May | 2 | 10200 | M | ar 23 | e34300 | Aug | 18 | 1940 | | | LOWEST DAILY MEAN | 77 | Sep | 8 | 79 | S | ep 15 | 13 | Oct | 2 | 1930 | | | ANNUAL SEVEN-DAY MINIMUM | e80 | Sep | 3 | 83 | S | ep 10 | 16 | Aug | 28 | 1932 | | | INSTANTANEOUS PEAK FLOW | | | | 10900 | aM | ar 22 | 35000 | Aug | 18 | 1940 | | | INSTANTANEOUS PEAK STAGE | | | | 25 | .85 aM | ar 22 | b35.30 | Aug | 18 | 1940 | | | INSTANTANEOUS LOW FLOW | | | | 78 | S | ep 16 | 11 | Oct | 2 | 1930 | | | ANNUAL RUNOFF (CFSM) | .78 | | | 1 | . 45 | | .99 | | | | | | ANNUAL RUNOFF (INCHES) | 10.65 | | | 19 | .68 | | 13.45 | | | | | | 10 PERCENT EXCEEDS | 1120 | | | 3440 | | | 1610 | | | | | | 50 PERCENT EXCEEDS | 359 | | | 367 | | | 387 | | | | | | 90 PERCENT EXCEEDS | 105 | | | 113 | | | 116 | | | | | a Also Mar. 23, 1998. b From floodmark in gage house. Estimated. DAY TOTAL 17.9 3.8 .11 .13 MEAN MAX MIN IN. CFSM OCT #### JAMES RIVER BASIN #### 02041000 DEEP CREEK NEAR MANNBORO, VA LOCATION.--Lat 37°16'59", long 77°52'12", Amelia County, Hydrologic Unit 02080207, on left bank 300 ft upstream from bridge on State Highway 153, 0.9 mi upstream from Sweathouse Creek, 3.4 mi northwest of Mannboro, and 7.5 mi southeast of Amelia. DRAINAGE AREA. -- 158 mi². PERIOD OF RECORD. -- September 1946 to current year. REVISED RECORDS.--WSP 1203: 1948 (calendar year figures only). WSP 2104: Drainage area. WDR VA-79-1: 1973-76(P), 1978. GAGE.--Water-stage recorder. Datum of gage is 177.20 ft above sea level. Prior to Sept. 2, 1949, nonrecording gage at same site and datum. REMARKS.--No estimated daily discharges. Records good. Maximum discharge, $15,000 \, \mathrm{ft}^3/\mathrm{s}$, from rating curve extended above 3,900 ft^3/s . Minimum gage height, 0.29 ft, Aug. 9-12, 1957. Several measurements of water temperature were made during the year. Water-quality records for some periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1940 reached a stage of 14.8 ft, from information by local resident. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,200 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 24 | 2330 | 2,160 | 8.67 | Feb. 20 | 0600 | 1,600 | 7.99 | | Jan. 29 | 0730 | 3,490 | 9.95 | Mar. 10 | 0730 | 1,700 | 8.13 | | Feb. 5 | 1630 | 2,960 | 9.47 | Mar. 20 | 0400 | *6,900 | *12.82 | | Feb. 18 | 1830 | 2,090 | 8.60 | Mar. 22 | 0300 | 3,260 | 9.74 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES APR MAY JUN 59.2 . 37 .42 14.2 .09 .10 .79 .91 JUL AUG 120.3 3.88 6.8 .02 .03 123.3 4.11 .03 .03 SEP MAR Minimum discharge, 1.2 ft³/s, Sept. 2, 3. DEC 93.8 . 59 .68 .76 .85 2.84 3.27 3.34 3.48 JAN FEB NOV 6.8 1.4 8.0 5.8 1.3 7.6 6 9 4 9 2.0 2.7 4.5 6.3 7 5.8 73 3.4 4.5 5.5 2.8 8.3 4 9 3 5 4.6 3.6 4.2 4 3 4 2 3 5 4.9 4.2 2.8 4.2 2.3 3 8 4 8 2 0 1.8 4.3 4.8 6 5 4 6 1 6 8.3 5.0 1.5 5.4 1.6 4 6 3 2 4.8 9 0 3 5 7 0 8.0 6.8 3.3 6.2 3.0 5.7 6.2 7.0 2.2 5.2 4.5 8.7 2.1 29 8.4 2.3 3.7 8.0 2.5 3.0 ---7.6 2.7 ---7.3 2.0 4.15 4.79 1.83 2.04 # 02041000 DEEP CREEK NEAR MANNBORO, VA--Continued | STATIST | TICS OF M | ONTHLY MEAN | DATA | FOR WATER | YEARS 1947 | - 1998, | BY WATER | YEAR (WY) | | | | | |---------|-----------|-------------|------|-----------|------------|---------|------------|-----------|------|----------|----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 104 | 140 | 156 | 221 | 257 | 283 | 216 | 133 | 83.5 | 67.2 | 59.0 | 72.8 | | MAX | 859 | 821 | 453 | 800 | 793 | 718 | 632 | 406 | 449 | 301 | 309 | 1002 | | (WY) | 1973 | 1986 | 1997 | 1978 | 1979 | 1993 | 1987 | 1971 | 1972 | 1975 | 1978 | 1979 | | MIN | 3.55 | 26.0 | 26.4 | 48.5 | 52.4 | 74.8 | 51.2 | 36.4 | 15.4 | 7.26 | 3.43 | 2.19 | | (WY) | 1971 | 1966 | 1966 | 1966 | 1968 | 1981 | 1985 | 1985 | 1985 | 1991 | 1987 | 1968 | | SUMMAR | Y STATIST | ICS | FOR | 1997 CAL | ENDAR YEAR | F | OR 1998 WA | ATER YEAR | | WATER YE | ARS 1947 | - 1998 | | ANNUAL | TOTAL | | | 45968.2 | 2 | | 71063.4 | | | | | | | ANNUAL | MEAN | | | 126 | | | 195 | | | 149 | | | | HIGHEST | T ANNUAL | MEAN | | | | | | | | 319 | | 1979 | | LOWEST | ANNUAL M | EAN | | | | | | | | 67.5 | | 1981 | | HIGHEST | T DAILY M | EAN | | 2620 | Apr 29 | | 5050 | Mar 20 | | 12000 | Oct | 6 1972 | | LOWEST | DAILY ME | AN | | 3.8 | 3 Oct 14 | | 1.3 | Sep 3 | | .04 | Oct | 4 1968 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 4.3 | 3 Oct 9 | | 1.9 | Aug 29 | | .16 | Oct | 13 1970 | | INSTANT | TANEOUS P | EAK FLOW | | | | | 6900 | Mar 20 | | 15000 | Oct | 6 1972 | | | | EAK STAGE | | | | | 12.82 | | | a24.04 | | 6 1972 | | | TANEOUS L | | | | | | | bSep 2 | | .03 | | 4 1968 | | | RUNOFF (| | | . 8 | | | 1.23 | | | .94 | | | | | RUNOFF (| | | 10.8 | 32 | | 16.73 | 3 | | 12.79 | | | | | CENT EXCE | | | 245 | | | 349 | | | 289 | | | | | CENT EXCE | | | 76 | | | 73 | | | 75 | | | | 90 PER | CENT EXCE | EDS | | 7.6 | 5 | | 4.2 | | | 16 | | | a From floodmarks. b Also Sept. 3, 1998. c Also Oct. 5, 1968. #### 02041650 APPOMATTOX RIVER AT MATOACA, VA LOCATION.--Lat 37°13'28", long 77°28'32", Chesterfield County, Hydrologic Unit 02080207, on left bank at upstream side of bridge on State Highway 600, 0.2 mi south of Matoaca, 2.0 mi upstream from Rohoic Creek, 2.8 mi downstream from Lake Chesdin, 3.5 mi west of Petersburg, and at mile 15.9. DRAINAGE AREA. -- 1,344 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1969 to current year. GAGE.--Water-stage recorder. Datum of gage is 68.30 ft above sea level. REMARKS.--Records good except those for period of no gage-height record, Oct. 19, 20, which are fair. Flow regulated by Appomattox Water Authority at Lake Chesdin, capacity, 36,000 acre-ft, 2.8 mi upstream from which an average of 36.3 ft³/s is diverted for industrial and municipal use. Records do not include flow of Upper Appomattox Canal of city of Petersburg which diverts around station. National Weather Service gage-height telemeter at station. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.—Maximum discharge, 14,100 ${\rm ft}^3/{\rm s}$, Mar. 21, gage height, 11.97 ${\rm ft}$; minimum, 64 ${\rm ft}^3/{\rm s}$, Sept. 11, result of regulation; minimum daily, 69 ${\rm ft}^3/{\rm s}$, Sept. 18, result of regulation. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e100 2.0 e108 TOTAL MEAN 94.7 MAX MTN (†) CAL YR 1997 TOTAL MEAN MAX MIN (†) MIN (†) TOTAL MEAN MAX WTR YR 1998 [†] Total diversion, in cubic feet per second, at Lake
Chesdin, provided by Appomattox Water Authority. e Estimated. JAMES RIVER BASIN # 02041650 APPOMATTOX RIVER AT MATOACA, VA--Continued | ST | ATISTI | CS OF I | MONTHLY MEAN | DATA | FOR WATER | YEARS 1 | 970 | - 1998, | BY WATER | R YEAR (WY) | [REGUI | ATED, UNA | DJUSTED] | | |-----|--------|---------|--------------|------|------------|----------|-----|---------|-----------|-------------|--------|-----------|-----------|---------| | | | OCT | NOV | DEC | JAN | FEB | 3 | MAR | APR | MAY | JUN | JUL | AUG | SEP | | ME | | 1099 | 1115 | 1454 | 2098 | 2325 | | 2619 | 2140 | 1363 | 925 | 570 | 499 | 711 | | MA | X | 6869 | 5648 | 3857 | 5868 | 6532 | | 6098 | 5003 | 4452 | 5293 | 2123 | 1818 | 5312 | | (W | Y) | 1973 | 1986 | 1997 | 1978 | 1998 | | 1993 | 1983 | 1978 | 1972 | 1995 | 1978 | 1979 | | MΙ | N | 87.8 | 200 | 398 | 384 | 889 | | 478 | 498 | 411 | 161 | 99.2 | 84.5 | 85.1 | | (W | Υ) | 1994 | 1970 | 1981 | 1981 | 1977 | ' | 1981 | 1985 | 1985 | 1970 | 1986 | 1987 | 1993 | | SU | MMARY | STATIS | rics | FOF | R 1997 CAL | ENDAR YE | AR | Ŧ | OR 1998 W | NATER YEAR | | WATER Y | EARS 1970 | - 1998 | | AN | NUAL T | OTAL | | | 367556 | | | | 694697 | | | | | | | AN | NUAL M | EAN | | | 1007 | | | | 1903 | | | 1405 | | | | ΗI | GHEST | ANNUAL | MEAN | | | | | | | | | 2559 | | 1973 | | LO | WEST A | NNUAL I | MEAN | | | | | | | | | 460 | | 1981 | | ΗI | GHEST | DAILY I | MEAN | | 7190 | May | 1 | | 13600 | Mar 21 | | 39400 | Oct | 7 1972 | | LO | WEST D | AILY M | EAN | | a60 | Sep | 7 | | a69 | Sep 18 | | a32 | Aug : | 31 1993 | | AN | NUAL S | EVEN-D | AY MINIMUM | | a70 | Sep | 5 | | a79 | Sep 15 | | a48 | Aug | 25 1980 | | IN | STANTA | NEOUS 1 | PEAK FLOW | | | | | | 14100 | Mar 21 | | 40800 | | 7 1972 | | IN | STANTA | NEOUS 1 | PEAK STAGE | | | | | | 11.9 | | | 18.3 | | 7 1972 | | IN | STANTA | NEOUS 1 | LOW FLOW | | | | | | a64 | Sep 11 | | a26 | Aug | 31 1993 | | AN | NUAL R | UNOFF | (CFSM) | | | 75 | | | 1.4 | - | | 1.0 | _ | | | AN | NUAL R | UNOFF | (INCHES) | | 10. | 17 | | | 19.2 | 23 | | 14.2 | 0 | | | | | NT EXC | | | 2080 | | | | 6230 | | | 3500 | | | | 50 | PERCE | NT EXC | EEDS | | 612 | | | | 699 | | | 703 | | | | 90 | PERCE | NT EXC | EEDS | | 104 | | | | 101 | | | 161 | | | a Result of regulation. # 02041650 APPOMATTOX RIVER AT MATOACA, VA--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1978 to current year. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1991 to September 1993. WATER TEMPERATURE: October 1991 to September 1993. COOPERATION.--Chemical data as noted were provided by the Virginia Division of Consolidated Laboratory Services (VDCLS) and reviewed by the U.S. Geological Survey. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |-----------|--------------|---|---|---|---|---|---|---|---|--| | OCT 1997 | | | | | | | | | | | | 07 | 1200 | 104 | 103 | 6.9 | 30.0 | 22.0 | 772 | VDCLS | 2.7 | 9.2 | | 21 | 1045 | 279 | 101 | 6.7 | 11.5 | 16.0 | 768 | VDCLS | 8.4 | 9.3 | | NOV | | | | | | | | | | | | 06 | 1015 | 665 | 99 | 6.7 | 11.0 | 14.0 | 773 | VDCLS | 14 | 10.4 | | 10 | 1230
1200 | 1760
629 | 99
97 | 6.9
7.2 | 15.0
9.5 | 24.0
10.0 | 762
774 | VDCLS | 14
4.9 | 10.3 | | 18
DEC | 1200 | 629 | 97 | 1.2 | 9.5 | 10.0 | //4 | VDCLS | 4.9 | 11.7 | | 02 | 1215 | 653 | 95 | 7.1 | 9.0 | 9.0 | 770 | VDCLS | 4.8 | 12.1 | | *02 | 1230 | 653 | 95 | 7.1 | 9.0 | 9.0 | 770 | VDCLS | 5.6 | 12.1 | | 16 | 1045 | 617 | 91 | 7.1 | 6.5 | 7.0 | 769 | VDCLS | 12 | 12.0 | | JAN 1998 | | | | | | | | | | | | 07 | 1045 | 795 | 90 | 6.7 | 19.0 | 7.0 | 766 | VDCLS | 15 | 12.2 | | 18 | 0945 | 4060 | 88 | 7.2 | 8.0 | 8.0 | 768 | VDCLS | 24 | 11.9 | | 21 | 1030
1230 | 2000
6030 | 79
74 | 6.8
7.1 | .00
11.0 | 6.0
6.0 | 774
760 | VDCLS
VDCLS | 29
36 | 13.6
12.7 | | 24
26 | 1330 | 7030 | 66 | 7.1 | 10.0 | 6.0 | 774 | VDCLS | 43 | 13.0 | | *26 | 1345 | 7020 | 66 | 7.8 | 10.0 | 6.0 | 774 | VDCLS | 42 | 13.0 | | 29 | 1015 | 9790 | 59 | 6.3 | 9.5 | 5.0 | 762 | VDCLS | 51 | 14.0 | | FEB | | | | | | | | | | | | 01 | 0930 | 9110 | 47 | 7.1 | 4.0 | 5.5 | 773 | VDCLS | 73 | 13.0 | | 07 | 0930 | 9280 | 47 | 6.3 | 4.5 | 5.0 | 762 | VDCLS | 70 | 14.5 | | 18 | 1315 | 6800 | 61 | 6.9 | 19.0 | 7.5 | 756 | VDCLS | 40 | 12.2 | | 28
MAR | 0915 | 2650 | 55 | 6.0 | 9.5 | 9.5 | 763 | VDCLS | 34 | 12.3 | | 05 | 1045 | 1810 | 58 | 6.9 | 9.0 | 10.0 | 766 | VDCLS | 25 | 11.6 | | 17 | 1145 | 1470 | 54 | 7.0 | 8.0 | 8.5 | 772 | VDCLS | 33 | 11.9 | | 20 | 1100 | 10700 | 59 | 6.7 | 14.5 | 9.0 | 759 | VDCLS | 33 | 12.0 | | *20 | 1115 | 10700 | 59 | 6.7 | 14.5 | 9.0 | 759 | USGS | | 12.0 | | 21 | 0830 | 13800 | 41 | 6.6 | 10.0 | 8.7 | 723 | VDCLS | 41 | 12.6 | | 22 | 1015 | 13400 | 37 | 6.7 | 8.8 | 9.0 | 728 | VDCLS | 83 | 12.5 | | APR | 0000 | 1.650 | 50 | 6.0 | 10 5 | 15 0 | 740 | TID OT O | 0.0 | 0 0 | | 02
05 | 0800
0900 | 1650
4120 | 50
59 | 6.9
5.4 | 18.5
7.0 | 15.8
16.0 | 740 | VDCLS
VDCLS | 22
16 | 9.8
10.2 | | 19 | 0930 | 5170 | 71 | 7.1 | 16.5 | 16.4 | 757 | VDCLS | 9.4 | | | 20 | 1100 | 5860 | 66 | 6.8 | 17.0 | 17.0 | 766 | VDCLS | 18 | 8.5 | | *20 | 1115 | 5860 | 66 | 6.8 | 17.0 | 17.0 | 766 | VDCLS | 17 | 8.5 | | 21 | 1145 | 5470 | 63 | 6.9 | 23.5 | 17.4 | 760 | VDCLS | 49 | 10.2 | | MAY | | | | | | | | | | | | 04 | 1000 | 1830 | 66 | 6.5 | 17.0 | 18.0 | 759 | VDCLS | 9.6 | 9.2 | | 09
19 | 0900
1045 | 5200
774 | 73
62 | 6.2
7.5 | 18.0
27.0 | 18.0
20.0 | 758
767 | VDCLS
VDCLS | 8.7 | 9.2
9.6 | | *19 | 1045 | 772 | 62 | 7.5 | 27.0 | 20.0 | 767 | USGS | | 9.6 | | JUN | 1050 | 772 | 02 | 7.5 | 27.0 | 20.0 | , , , | 0000 | | 5.0 | | 08 | 1215 | 617 | 77 | 7.6 | 24.0 | 24.0 | 770 | VDCLS | 4.8 | 9.4 | | 14 | 1000 | 795 | 83 | 6.4 | 25.0 | 23.5 | 757 | VDCLS | 3.7 | 7.8 | | 19 | 0945 | 429 | 84 | 6.2 | 24.0 | 25.0 | 764 | VDCLS | 3.0 | 7.0 | | *19 | 1000 | 434 | 84 | 6.2 | 24.0 | 25.0 | 764 | USGS | | 7.0 | | 23 | 1130 | 594 | 84 | 6.4 | 32.0 | 26.0 | 769 | VDCLS | 3.1 | 7.9
7.2 | | 24
JUL | 1030 | 924 | 82 | 7.3 | 24.0 | 26.0 | 768 | VDCLS | 6.8 | 1.2 | | 07 | 0945 | 261 | 87 | 7.1 | 25.0 | 27.0 | 768 | VDCLS | 4.3 | 7.2 | | 21 | 1130 | 123 | 99 | 6.4 | 34.5 | 26.0 | 755 | VDCLS | 4.3 | 6.8 | | AUG | | - | | | | | | | | | | 04 | 0915 | 102 | 102 | 7.1 | 23.5 | 23.0 | 758 | VDCLS | 4.2 | 7.0 | | 18 | 1100 | 125 | 103 | 6.7 | 34.0 | 26.5 | 753 | VDCLS | 4.7 | 6.9 | | SEP | 1000 | 0.0 | 101 | - A | | 05.0 | 5.45 | | 1.0 | | | 08 | 1000 | 93 | 101 | 7.4 | 22.0 | 25.0 | 745 | VDCLS | 12
2.9 | 7.1 | | 22 | 1130 | 100 | 96 | 6.3 | 26.5 | 25.0 | 748 | VDCLS | 2.9 | 7.3 | ^{*} Replicate sample. JAMES RIVER BASIN # 02041650 APPOMATTOX RIVER AT MATOACA, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530)
** | RESIDUE
FIXED
NON
FILTER-
ABLE
(MG/L)
(00540)
** | RESIDUE
VOLA-
TILE,
SUS-
PENDED
(MG/L)
(00535)
** | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | |-----------|---|--|--|---|--|--|--|--|--|--| | OCT 1997 | | | | | | | | | | | | 07 | 104 | 11 | <3 | <3 | <3 | .337 | .130 | .002 | .130 | .070 | | 21 | 93 | 18 | 5 | <3 | 3 | .381 | .145 | .004 | .149 | .016 | | NOV | | | | | | | | | | | | 06
10 | 99 | 19 | 14
18 | 11
14 | 3
4 | .371 | .110 | .004 | .114 | .021 | | 18 | 122
102 | 18
18 | 18 | <3 | <3 | .332 | .075
.087 | .004 | .079
.090 | .058 | | DEC | 102 | 10 | 3 | ~3 | \3 | .302 | .007 | .003 | .000 | .050 | | 02 | 104 | 19 | <3 | <3 | <3 | .392 | .159 | < .002 | .159 | .032 | | *02 | 104 | 19 | <3 | <3 | <3 | .374 | .159 | < .002 | .159 | .025 | | 16 | 98 | 19 | 5 | 4 | <3 | .437 | .168 | < .002 | .168 | .031 | | JAN 1998 | | | | | | | | | | | | 07 | 100 | 18 | 6 | 4 | < 3 | .538 | .191 | <.002 |
.191 | .010 | | 18
21 | 100 | 17 | 22 | 18 | 4 |
.564 | .177 | .002 | .179 | .210 | | 24 | 108
102 | 16
15 | 15
29 | 11
23 | 6 | .580 | .208
.211 | .002 | .210
.215 | .018
.014 | | 26 | 103 | 13 | 27 | 21 | 6 | .550 | .213 | .002 | .215 | .026 | | *26 | 103 | 13 | 26 | 21 | 5 | .501 | .215 | .002 | .217 | .024 | | 29 | 110 | 12 | 24 | 19 | 5 | .481 | .173 | < .002 | .173 | .012 | | FEB | | | | | | | | | | | | 01 | 102 | 9.1 | 23 | 18 | 5 | .416 | .155 | .002 | .157 | .010 | | 07 | 113 | 9.5 | 23 | 18 | 5 | .417 | .164 | .003 | .167 | .021 | | 18
28 | 103
107 | 14
11 | 3
16 | 3
13 | <3
3 | .375
.436 | .192
.157 | <.002 | .192
.159 | .018 | | MAR | 107 | 11 | 10 | 13 | 3 | .430 | .15/ | .002 | .139 | .010 | | 05 | 102 | 13 | 10 | 8 | <3 | .564 | .158 | <.002 | .158 | .019 | | 17 | 100 | 12 | 9 | 7 | <3 | .494 | .130 | <.002 | .130 | .025 | | 20 | 104 | 12 | 18 | 15 | 3 | .418 | .157 | < .002 | .157 | .015 | | *20 | 104 | 11 | 224 | 221 | 3 | .34 | | | .11 | .015 | | 21 | 114 | 8.1 | 34 | 28 | 6 | .447 | .133 | .002 | .135 | .024 | | 22 | 113 | 7.5 | 35 | 29 | 6 | .496 | .144 | .003 | .147 | .024 | | APR
02 | 102 | 11 | 15 | 10 | 5 | .326 | .075 | .002 | .077 | .024 | | 05 | 103 | 11 | 11 | 8 | <3 | .268 | .047 | <.002 | .047 | .024 | | 19 | | 2.5 | | | | .337 | .061 | <.002 | .061 | .022 | | 20 | 87 | 2.4 | 10 | <3 | 10 | .486 | .124 | .003 | .127 | .037 | | *20 | 87 | 2.4 | | | | .400 | .124 | .003 | .127 | .040 | | 21 | 107 | 12 | | | | .516 | .152 | .003 | .155 | .046 | | MAY | 0.0 | 1.0 | 0 | _ | . 3 | 215 | 0.4.4 | . 000 | 0.4.4 | 015 | | 04
09 | 98
98 | 13
15 | 8
9 | 6
6 | <3
<3 | .317 | .044 | <.002
<.002 | .044 | .015
.026 | | 19 | 105 | 2.6 | 8 | 5 | <3 | .354 | .092 | .002 | .094 | .020 | | *19 | 105 | 12 | 7 | | <1 | .53 | | | .071 | .013 | | JUN | | | | | | | | | | | | 08 | 111 | 16 | 3 | <3 | <3 | .348 | .059 | .003 | .062 | .010 | | 14 | 92 | 17 | <3 | <3 | <3 | .342 | .082 | .005 | .087 | .034 | | 19 | 85 | 18 | 6 | <3 | 5 | .355 | .090 | .005 | .095 | .027 | | *19 | 85 | 17 | 1
4 | | 7 | .33 |
077 | | .061 | .029 | | 23
24 | 97
88 | 18
18 | 6 | <3
3 | <3
3 | .335
.293 | .077
.058 | .004 | .081
.062 | .023
.026 | | JUL | 00 | 10 | U | ٠ | ی | . 433 | .000 | .004 | .002 | .020 | | 07 | 90 | 19 | 4 | <3 | <3 | .386 | .089 | .003 | .092 | .022 | | 21 | 85 | 18 | <3 | <3 | <3 | .591 | .303 | .017 | .320 | .025 | | AUG | | | | | | | | | | | | 04 | 82 | 20 | <3 | <3 | <3 | .562 | .370 | .010 | .380 | .018 | | 18 | 87 | 20 | <3 | <3 | <3 | .607 | .371 | .016 | .387 | .041 | | SEP
08 | 88 | 19 | <3 | -2 | <3 | F76 | 252 | 0.00 | 261 | 014 | | 22 | 90 | 19 | <3
<3 | <3
<3 | <3
<3 | .576
.527 | .352
.218 | .009
.005 | .361
.223 | .014 | | 22 | 20 | 10 | \3 | 13 | \ 3 | . 221 | .210 | .005 | . 223 | | ^{*} Replicate sample. ** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies. < Actual value is known to be less than the value shown. # 02041650 APPOMATTOX RIVER AT MATOACA, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | OCT 1997 07008018 .011 21062030 .015 NOV 06061016 .009 10019016 .009 18019012 .016 DEC 02027020 .016 *02028020 .009 | .005 .42
.007 .66
.013 .99 | |--|----------------------------------| | 07008018 .013 21062030 .015 NOV 06061016 .009 18019012 .019 DEC 02027020 .010 | .005 .42
.007 .66
.013 .99 | | NOV 06061016 .009 10019012 .019 DEC 02027020 .016 | .007 .66
.013 .99 | | 06061016 .009 10099016 .009 18019012 .019 DEC 02027020 .010 | .013 .99 | | 10099016 .009 18019012 .019 DEC 02027020 .010 | .013 .99 | | 18019012 .019
DEC
02027020 .010 | | | DEC 02027020 .010 | .004 .23 | | 02027020 .010 | | | | .009 2.24 | | UZUZOUZU .UUS | | | 16040010 .016 | | | JAN 1998 | | | 07058020 .007 | | | 18099250 .010 | | | 21073027 .012 | | | 24145035 .012
26122024 .016 | | | 26122024 .016
*26126024 .015 | | | 29 121036 .013 | | | FEB | .010 1.05 | | 01182030 .015 | .066 1.35 | | 07133023 .023 | .055 1.13 | | 18072020 .010 | | | 28086025 .014 | .038 .87 | | MAR 05059023 .004 | 0.21 47 | | 05059023 .004
1706020 .012 | | | 2008020 .010 | | | *203 .203 <.01 .009 | | | 2117030 .021 | | | 22170027 .019 | .068 1.33 | | APR | | | 02092040 .007 | | | 05121014 .006
19112019 .006 | | | 19112019 .006
20117022 .010 | | | *20122021 .011 | | | 21083029 .014 | | | MAY | | | 04103014 .006 | | | 09116012 .006 | | | 19078016 .011
*196 .503 <.01 .009 | | | *196 .503 <.01 .005 | · | | 08055014 .012 | .011 .35 | | 14062011 .009 | | | 19049013 .005 | .012 .34 | | *193 .3 <.01 <.01 .007 | ' | | 23062013 .010 | | | 24094014 .004 | .022 .61 | | JUL 07042026 .011 | 011 21 | | 07042026 .011
21024044 .032 | | | AUG024044 .032 | 2 .007 .20 | | 04009049 .038 | .006 .11 | | 18170045 .035 | | | SEP | | | 08018036 .026 | | | 22015021 .012 | .005 .11 | ^{*} Replicate sample. ** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies. < Actual value is known to be less than the value shown. THIS IS A BLANK PAGE # 02044500 NOTTOWAY RIVER NEAR RAWLINGS, VA LOCATION.--Lat 36°59'00", long 77°48'00", Brunswick County, Hydrologic Unit 03010201, on right bank at downstream side of bridge on State Highway 612 at Harpers Bridge, 0.1 mi upstream from Beaver Pond Creek, and 2.6 mi northwest of Rawlings. DRAINAGE AREA. -- 309 mi². PERIOD OF RECORD. -- October 1950 to current year. REVISED RECORDS. -- WSP 2104: Drainage area. GAGE. -- Water-stage recorder. Datum of gage is 184.88 ft above sea level. REMARKS.--Records good except for period of no gage-height record, Mar. 30, 31, which is fair. Maximum discharge, 29,900 ft³s, from rating curve extended above 16,000 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 1.83 ft, Oct. 15, 1954. Several measurements of water temperature were made during the year. Water-quality records for some periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in August 1940 reached a stage of 20.8 ft, discharge, about $19,000 \text{ ft}^3/\text{s}$, from information by local resident. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,500 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 25 | 0830 | 2,610 | 7.77 | Feb. 19 | 0030 | 3,640 | 9.25 | | Jan. 29 | 2030 | 3,940 | 9.64 | Mar. 10 | 0500 | 3,290 | 8.76 | | Feb. 5 | 2400 | 4,680 | 10.59 | Mar. 20 | 1030 | *10,100 | *15.26 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 22 ft³/s, Sept. 16-18. | | | | | | Di | AILY MEAN | VALUES | | | | | | |-------|------|------|------|-------|-------|-----------|--------|-------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 59 | 71 | 172 | 254 | 530 | 417 | 390 | 322 | 190 | 90 | 40 | 28 | | 2 | 51 | 75 | 189 | 216 | 439 | 397 | 435 | 498 | 170 | 79 | 38 | 26 | | 3 | 45 | 78 | 178 | 193 | 391 | 390 | 403 | 507 | 158 | 72 | 35 | 24 | | 4 | 41 | 73 | 164 | 180 | 1050 | 369 | 627 | 412 | 154 | 68 | 32 | 81 | | 5 | 40 | 69 | 162 | 169 | 3450 | 340 | 1440 | 361 | 155 | 65 | 29 | 284 | | 6 | 39 | 65 | 157 | 159 | 3700 | 318 | 1080 | 329 | 150 | 63 | 26 | 148 | | 7 | 37 | 94 | 143 | 162 | 1410 | 308 | 599 | 309 | 142 | 60 | 25 | 81 | | 8 | 35 | 304 | 130 | 259 | 801 | 419 | 514 | 699 | 129 | 58 | 26 | 60 | | 9 | 34 | 297 | 123 | 490 | 605 | 2240 | 504 | 1300 | 115 | 59 | 48 | 49 | | 10 | 33 | 192 | 126 | 455 | 503 | 3050 | 640 | 659 | 125 | 60 | 66 | 37 | | 11 | 33 | 141 | 138 | 305 | 444 | 1300 | 582 | 444 | 142 | 67 | 88 | 30 | | 12 | 32 | 113 | 147 | 239 | 454 | 613 | 485 | 379 | 143 | 66 | 68 | 27 | | 13 | 32 | 101 | 142 | 215 | 478 | 510 | 429 | 367 | 136 | 58 | 53 | 25 | | 14 | 33 | 134 | 131 | 218 | 421 | 456 | 399 | 334 | 127 | 53 | 44 | 24 | | 15 | 41 | 252 | 124 | 278 | 370 | 415 | 390 | 292 | 136 | 49 | 40 | 23 | | 16 | 66 | 229 | 119 | 825 | 342 | 385 | 374 | 265 | 154 | 53 | 50 | 22 | | 17 | 74 | 150 | 116 | 1070 | 733 | 363 | 520 | 248 | 142 | 53 | 192 | 22 | | 18 | 72 | 119 | 115 | 566 | 2700 | 660 | 1570 | 235 | 128 | 52 | 151 | 23 | | 19 | 74 | 103 | 113 | 423 | 2780 | 3900 | 1620 | 217 | 134 | 52 | 81 | 38 | | 20 | 90 | 96 | 111 | 392 | 770 | 9140 | 998 | 200 | 187 | 47 | 57 | 43 | | 21 | 92 | 92 | 110 | 367 | 575 | 5310 | 901 | 197 | 180 | 44 | 46 | 41 | | 22 | 79 | 254 | 111 | 315 | 486 | 4290 | 614 | 188 | 143 | 41 | 39 | 38 | | 23 | 70 | 942 | 135 | 427 | 549 | 1990 | 530 | 182 | 126 | 38 | 36 | 45 | | 24 | 61 | 443 | 158 | 1570 | 1150 | 790 | 485 | 200 | 164 | 36 | 33 | 47 | | 25 | 60 | 259 | 181 | 2310 | 1040 | 635 | 443 | 217 | 151 | 35 | 30 | 39 | | 26 | 66 | 195 | 226 | 787 | 602 | 562 | 397 | 223 | 123 | 39 | 28 | 35 | | 27 | 123 | 168 | 246 | 532 | 498 | 518 | 362 | 252 | 106 | 45 | 28 | 33 | | 28 | 165 | 148 | 467 | 1410 | 448 | 485 | 343 | 355 | 95 | 47 | 34 | 32 | | 29 | 117 | 134 | 514 | 3300 | | 451 | 330 | 314 | 96 | 46 | 33 | 31 | | 30 | 86 | 136 | 377 | 2860 | | e423 | 317 | 246 | 101 | 43 | 31 | 30 | | 31 | 72 | | 301 | 777 | | e403 | | 212 | | 42 | 28 | | | TOTAL | 1952 | 5527 | 5626 | 21723 | 27719 | 41847 | 18721 | 10963 | 4202 | 1680 | 1555 | 1466 | | MEAN | 63.0 | 184 | 181 | 701 | 990 | 1350 | 624 | 354 | 140 | 54.2 | 50.2 | 48.9 | | MAX | 165 | 942 | 514 |
3300 | 3700 | 9140 | 1620 | 1300 | 190 | 90 | 192 | 284 | | MIN | 32 | 65 | 110 | 159 | 342 | 308 | 317 | 182 | 95 | 35 | 25 | 22 | | CFSM | .20 | .60 | .59 | 2.27 | 3.20 | 4.37 | 2.02 | 1.14 | . 45 | .18 | .16 | .16 | | IN. | .23 | .67 | .68 | 2.62 | 3.34 | 5.04 | 2.25 | 1.32 | .51 | .20 | .19 | .18 | e Estimated. # 02044500 NOTTOWAY RIVER NEAR RAWLINGS, VA--Continued | STATIST | CS OF | MONTHLY MEAN | N DATA | FOR WATER | YEARS 1 | 951 | - 1998, | BY WATE | R YEAR (WY) | | | | | |---------|----------|--------------|--------|-----------|----------|-----|---------|---------|-------------|------|----------|-----------|---------| | | OCT | NOV | DEC | JAN | FEB | | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 232 | 251 | 297 | 422 | 503 | | 564 | 466 | 304 | 211 | 154 | 132 | 151 | | MAX | 2024 | 1560 | 893 | 1289 | 1248 | | 1350 | 1201 | 893 | 1359 | 965 | 650 | 1436 | | (WY) | 1973 | 1986 | 1958 | 1978 | 1979 | | 1998 | 1987 | 1958 | 1972 | 1975 | 1955 | 1979 | | MIN | 13.0 | 50.5 | 65.0 | 95.0 | 123 | | 126 | 124 | 98.3 | 55.8 | 25.2 | 8.60 | 3.62 | | (WY) | 1964 | 1968 | 1966 | 1966 | 1968 | | 1981 | 1966 | 1991 | 1964 | 1966 | 1963 | 1954 | | SUMMARY | STATIS | TICS | FOR | 1997 CAL | ENDAR YE | AR | F | OR 1998 | WATER YEAR | | WATER YE | CARS 1951 | - 1998 | | ANNUAL | TOTAL | | | 105621 | | | | 142981 | | | | | | | ANNUAL | MEAN | | | 289 | | | | 392 | | | 306 | | | | HIGHEST | ' ANNUAI | MEAN | | | | | | | | | 619 | | 1973 | | LOWEST | ANNUAL | MEAN | | | | | | | | | 144 | | 1981 | | HIGHEST | DAILY | MEAN | | 5660 | Apr | 30 | | 9140 | Mar 20 | | 27400 | Oct | 6 1972 | | LOWEST | DAILY M | IEAN | | 29 | Sep | 9 | | 22 | aSep 16 | | .40 | Oct | 14 1954 | | ANNUAL | SEVEN-D | MUMINIM YA | | 32 | Sep | 4 | | 24 | Sep 12 | | 1.0 | Oct | 9 1954 | | INSTANT | ANEOUS | PEAK FLOW | | | | | | 10100 | Mar 20 | | 29900 | Oct | 6 1972 | | INSTANT | ANEOUS | PEAK STAGE | | | | | | 15. | 26 Mar 20 | | 23.25 | 0ct | 6 1972 | | INSTANT | 'ANEOUS | LOW FLOW | | | | | | 22 | bSep 16 | | .40 | cOct | 14 1954 | | ANNUAL | RUNOFF | (CFSM) | | . 9 | 94 | | | 1. | 27 | | .99 |) | | | ANNUAL | RUNOFF | (INCHES) | | 12. | 72 | | | 17. | 21 | | 13.47 | 7 | | | 10 PERC | ENT EXC | CEEDS | | 525 | | | | 748 | | | 581 | | | | 50 PERC | ENT EXC | CEEDS | | 198 | | | | 158 | | | 174 | | | | 90 PERC | ENT EXC | EEDS | | 44 | | | | 35 | | | 44 | | | a Also Sept. 17, 1998. b Also Sept. 17, 18, 1998. c Also Oct. 15, 1954. # 02045500 NOTTOWAY RIVER NEAR STONY CREEK, VA LOCATION.--Lat 36°54'00", long 77°24'00", Sussex County, Hydrologic Unit 03010201, on left bank 15 ft downstream from bridge on U.S. Highway 301, 1.8 mi upstream from Island Swamp, 3.3 mi south of town of Stony Creek, and 4.4 mi upstream from Stony Creek. DRAINAGE AREA. -- 579 mi². PERIOD OF RECORD. --October 1929 to current year. Monthly discharge only for some periods, published in WSP 1303. REVISED RECORDS.--WSP 802: 1935(M). WSP 972: 1931(M), 1932, 1934-35, 1939. WSP 2104: Drainage area. WDR VA-74-1: 1972. GAGE.--Water-stage recorder. Datum of gage is 58.42 ft above sea level. Prior to Oct. 11, 1934, nonrecording gage at same site and datum. REMARKS.--Records good except those for periods of doubtful or no gage-height record, Dec. 4-9, Mar. 31, and July 15 to Sept. 1, which are fair. Diurnal fluctuation at low flow caused by Baskerville Mill, 33 mi upstream. Maximum discharge, 25,200 ft³/s, from rating curve extended above 13,000 ft³/s. Minimum gage height, 0.62 ft, Sept. 2, 5, 1932. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,500 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 29 | 1530 | 5,540 | 15.81 | Mar. 10 | 1500 | 7,110 | 16.90 | | Feb. 6 | 0200 | 6,400 | 16.43 | Mar. 22 | 0645 | *12,100 | *19.28 | | Feb. 20 | 0830 | 3,830 | 14.04 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 30 ft³/s, Oct. 14, 15, Sept. 17, 30. | DAILY MEAN VALUES | | | | | | | | | | | | | |-------------------|------|------|------|-------|-------|-------|-------|-------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 80 | 117 | 318 | 495 | 1970 | 754 | 693 | 438 | 338 | 151 | e63 | e39 | | 2 | 76 | 122 | 387 | 396 | 1030 | 706 | 717 | 509 | 279 | 135 | e59 | 47 | | 3 | 66 | 132 | 343 | 339 | 864 | 671 | 735 | 760 | 238 | 120 | e54 | 43 | | 4 | 57 | 133 | e300 | 305 | 2150 | 635 | 1210 | 692 | 226 | 112 | e49 | 70 | | 5 | 51 | 120 | e280 | 279 | 5440 | 585 | 2370 | 584 | 213 | 107 | e46 | 174 | | 6 | 46 | 111 | e270 | 261 | 6290 | 534 | 2430 | 492 | 210 | 101 | e43 | 415 | | 7 | 43 | 135 | e240 | 249 | 6090 | 509 | 1430 | 428 | 206 | 96 | e41 | 240 | | 8 | 41 | 241 | e220 | 340 | 3980 | 843 | 969 | 1420 | 192 | 90 | e45 | 151 | | 9 | 40 | 511 | e200 | 1080 | 1530 | 3980 | 867 | 2690 | 178 | 86 | e61 | 108 | | 10 | 39 | 413 | 191 | 1050 | 1060 | 6860 | 986 | 2160 | 174 | 86 | e80 | 84 | | 11 | 37 | 285 | 207 | 731 | 887 | 6340 | 1070 | 1090 | 189 | 85 | e110 | 67 | | 12 | 35 | 212 | 232 | 499 | 870 | 3310 | 874 | 785 | 213 | 86 | e130 | 53 | | 13 | 34 | 179 | 225 | 402 | 874 | 1200 | 729 | 714 | 211 | 94 | e100 | 44 | | 14 | 32 | 255 | 212 | 379 | 804 | 933 | 647 | 660 | 194 | 82 | e70 | 38 | | 15 | 35 | 396 | 194 | 419 | 694 | 817 | 621 | 577 | 187 | e73 | e57 | 37 | | 16 | 43 | 443 | 182 | 1580 | 624 | 725 | 593 | 499 | 221 | e80 | e94 | 33 | | 17 | 66 | 348 | 175 | 2370 | 1070 | 667 | 732 | 443 | 248 | e85 | e130 | 31 | | 18 | 94 | 242 | 169 | 1780 | 3010 | 1850 | 1790 | 406 | 206 | e82 | e175 | 32 | | 19 | 101 | 192 | 166 | 966 | 3550 | 4020 | 2490 | 367 | 239 | e80 | e145 | 36 | | 20 | 112 | 167 | 163 | 816 | 3590 | 7530 | 2480 | 328 | 453 | e77 | e105 | 33 | | 21 | 131 | 157 | 160 | 725 | 1440 | 10100 | 1840 | 303 | 353 | e70 | e73 | 57 | | 22 | 130 | 247 | 162 | 619 | 948 | 11700 | 1310 | 291 | 274 | e64 | e61 | 60 | | 23 | 117 | 853 | 185 | 702 | 970 | 8900 | 985 | 271 | 211 | e59 | e55 | 53 | | 24 | 103 | 1180 | 226 | 2480 | 2090 | 5790 | 852 | 272 | 404 | e57 | e47 | 47 | | 25 | 92 | 552 | 275 | 3090 | 2270 | 1950 | 747 | 306 | 384 | e55 | e45 | 53 | | 26 | 88 | 356 | 344 | 3030 | 1450 | 1230 | 645 | 342 | 270 | e56 | e43 | 51 | | 27 | 107 | 280 | 385 | 1320 | 977 | 1070 | 566 | 412 | 204 | e74 | e44 | 44 | | 28 | 183 | 238 | 637 | 3220 | 831 | 971 | 510 | 489 | 169 | e80 | e50 | 39 | | 29 | 215 | 207 | 910 | 5330 | | 894 | 473 | 533 | 156 | e87 | e55 | 35 | | 30 | 164 | 204 | 840 | 5190 | | 819 | 453 | 444 | 152 | e73 | e59 | 32 | | 31 | 129 | | 657 | 4660 | | e732 | | 400 | | e69 | e45 | | | TOTAL | 2587 | 9028 | 9455 | 45102 | 57353 | 87625 | 32814 | 20105 | 7192 | 2652 | 2234 | 2246 | | MEAN | 83.5 | 301 | 305 | 1455 | 2048 | 2827 | 1094 | 649 | 240 | 85.5 | 72.1 | 74.9 | | MAX | 215 | 1180 | 910 | 5330 | 6290 | 11700 | 2490 | 2690 | 453 | 151 | 175 | 415 | | MIN | 32 | 111 | 160 | 249 | 624 | 509 | 453 | 271 | 152 | 55 | 41 | 31 | | CFSM | .14 | .52 | .53 | 2.51 | 3.54 | 4.88 | 1.89 | 1.12 | . 41 | .15 | .12 | .13 | | IN. | .17 | .58 | .61 | 2.90 | 3.68 | 5.63 | 2.11 | 1.29 | .46 | .17 | .14 | .14 | e Estimated. # 02045500 NOTTOWAY RIVER NEAR STONY CREEK, VA --Continued | STATIST | CICS OF 1 | MONTHLY MEAN | DATA | FOR WATER | YEARS 1 | 931 | - 1998, | BY WATER | YEAR (WY) | | | | | |---------|-----------|--------------|------|-----------|----------|-----|---------|------------|-----------|------|-----------|---------|---------| | | OCT | NOV | DEC | JAN | FEB | 3 | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 313 | 410 | 521 | 831 | 948 | | 1047 | 860 | 540 | 334 | 352 | 304 | 269 | | MAX | 2666 | 2800 | 1783 | 2578 | 2355 | | 2827 | 2261 | 1878 | 1612 | 2423 | 3057 | 2191 | | (WY) | 1973 | 1986 | 1958 | 1936 | 1979 | 1 | 1998 | 1987 | 1958 | 1938 | 1938 | 1940 | 1979 | | MIN | 14.0 | 43.1 | 65.7 | 109 | 176 | | 196 | 192 | 129 | 74.6 | 46.6 | 14.9 | 9.40 | | (WY) | 1931 | 1942 | 1966 | 1966 | 1931 | | 1981 | 1966 | 1942 | 1942 | 1966 | 1963 | 1932 | | SUMMARY | STATIS | rics | FOR | 1997 CALI | ENDAR YE | AR | F | OR 1998 W. | ATER YEAR | | WATER YEA | RS 1931 | - 1998 | | ANNUAL | TOTAL | | | 189255 | | | | 278393 | | | | | | | ANNUAL | MEAN | | | 519 | | | | 763 | | | 559 | | | | HIGHEST | ANNUAL | MEAN | | | | | | | | | 1100 | | 1973 | | LOWEST | ANNUAL N | MEAN | | | | | | | | | 191 | | 1942 | | HIGHEST | DAILY N | MEAN | | 7000 | May | 2 | | 11700 | Mar 22 | | 24000 | Aug | 17 1940 | | LOWEST | DAILY M | EAN | | 30 | aSep | 2 | | 31 | Sep 17 | | 4.3 | Aug | 15 1977 | | ANNUAL | SEVEN-DA | AY MINIMUM | | 32 | Sep | 5 | | 34 | Sep 14 | | 6.0 | Aug | 30 1932 | | INSTANT | CANEOUS I | PEAK FLOW | | | | | | 12100 | Mar 22 | | 25200 | Aug | 17 1940 | | INSTANT | CANEOUS I | PEAK STAGE | | | | | | 19.2 | 8 Mar 22 | | 23.66 | Aug | 17 1940 | | INSTANT | CANEOUS 1 | LOW FLOW | | | | | | 30 | bOct 14 | | 3.4 | cAug | 15 1977 | | ANNUAL | RUNOFF | (CFSM) | | . 9 | 90 | | | 1.3 | 2 | | .97 | | | | ANNUAL | RUNOFF | (INCHES) | | 12. | 16 | | | 17.8 | 19 | | 13.11 | | | | 10 PERC | CENT EXC | EEDS | | 1050 | | | | 1890 | | | 1170 | | | | 50 PERC | CENT EXC | EEDS | | 280 | | | | 261 | | | 303 | | | | 90 PERC | CENT EXC | EEDS | | 51 | | | | 48 | | | 61 | | | a Also Sept. 7, 8, 10, 1997. b Also Oct. 15, 1997 and Sept. 17, 30, 1998. c Also Aug. 16, 1977. # 02046000 STONY CREEK NEAR DINWIDDIE, VA LOCATION.--Lat 37°04'01", long 77°36'10", Dinwiddie County, Hydrologic Unit 03010201, on
right bank at upstream side of upstream bridge on U.S. Highway 1, 1.2 mi southwest of Dinwiddie, 1.7 mi downstream from Chamberlains Bed Creek, and 5.7 mi downstream from confluence of White Oak and Butterwood Creeks. DRAINAGE AREA. -- 112 mi². PERIOD OF RECORD.--September 1946 to current year. Published as "at Dinwiddie" September 1946 to September 1947 and October 1949 to September 1950. REVISED RECORDS.--WSP 1303: 1947(M). WSP 1433: 1951(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 129.94 ft above sea level. Prior to June 12, 1957, nonrecording gage and crest-stage gage at same site and datum. REMARKS.--Records good except those for periods of doubtful or no gage-height record, Dec. 25 to Feb. 9, and Mar. 19-22, which are fair. Maximum discharge, 11,400 ft³/s, from rating curve extended above 5,800 ft³/s on basis of contracted-opening measurement of peak flow. No flow part of Oct. 13, 1954. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,200 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-------------------|--------------------|-----------------------------------|---------------------|--------------------|--------------------|-----------------------------------|---------------------| | Jan. 29
Feb. 6 | Unknown
Unknown | Unknown
Unknown | Unknown
Unknown | Mar. 20
Mar. 22 | Unknown
Unknown | *4,010
Unknown | a*13.13
Unknown | | Max 0 | 2220 | 1 0/10 | 0 00 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 a From high-water mark in well. Minimum discharge, 0.74 ft³/s, Sept. 17. | | | | | | Di | AILY MEAN | VALUES | | | | | | |--|--|--|--|--|---|--|--|---|---|--|-----------------------------------|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.7
1.6
1.6
1.5 | 2.1
2.8
2.8
2.4
2.1 | 67
59
47
41
40 | e85
e72
e65
e60
e57 | e220
e185
e160
e355
e1100 | 148
138
128
114
105 | 118
126
120
442
619 | 81
117
170
138
114 | 56
43
36
33
31 | 16
13
11
11 | 2.8
2.6
2.4
2.2
2.1 | 1.2
1.1
1.0
4.3
7.0 | | 6
7
8
9
10 | 1.3
1.2
1.1
1.0 | 1.9
41
75
58
51 | 34
29
26
26
27 | e53
e50
e115
e185
e160 | e1250
e590
e330
e265
198 | 98
96
206
1050
1600 | 389
232
175
181
265 | 92
80
556
1060
522 | 30
27
25
23
28 | 9.0
8.0
7.5
7.5
7.3 | 1.9
1.8
1.9
2.4
2.5 | 7.7
5.9
4.7
3.4
2.5 | | 11
12
13
14
15 | .98
1.0
.94
.97
1.7 | 32
24
21
78
90 | 31
30
28
27
25 | e105
e80
e70
e76
e130 | 168
183
171
146
122 | 690
310
218
184
158 | 215
155
126
113
110 | 240
168
150
132
109 | 30
30
29
27
35 | 6.7
6.1
5.8
5.3
4.9 | 2.4
2.1
2.2
2.2
1.9 | 1.9
1.5
1.2
1.0 | | 16
17
18
19
20 | 1.8
2.1
2.2
2.6
3.2 | 57
38
29
25
22 | 23
23
21
21
21 | e315
e390
e185
e150
e130 | 111
423
861
656
337 | 137
125
564
e1350
e3700 | 101
290
834
569
692 | 91
81
72
63
55 | 37
31
25
94
136 | 5.2
6.2
6.8
6.1
5.5 | 2.0
2.2
3.2
2.4
2.2 | .88
.80
1.1
1.2
1.1 | | 21
22
23
24
25 | 2.9
2.4
2.1
1.7 | 20
97
119
82
57 | 20
21
31
38
e40 | e120
e100
e250
e520
e730 | 227
172
348
726
486 | e1650
e1850
744
412
291 | 527
274
219
182
146 | 52
44
42
47
49 | 91
58
47
170
92 | 4.8
4.3
4.6
7.8
5.7 | 1.9
1.6
1.4
1.2 | 1.2
1.6
1.6
1.9
2.5 | | 26
27
28
29
30
31 | 2.2
5.1
4.2
3.1
2.4
2.1 | 44
37
30
27
30 | e55
e90
e135
e170
e130
e100 | e300
e200
e510
e980
e850
e460 | 275
200
167
 | 234
198
174
156
139
124 | 121
104
95
87
82 | 46
79
143
105
79
96 | 72
40
27
22
19 | 4.8
4.3
4.0
3.7
3.4
3.1 | 1.1
1.4
2.0
1.7
1.7 | 2.4
2.3
2.1
1.9
1.6 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 60.89
1.96
5.1
.94
.02 | 1198.1
39.9
119
1.9
.36
.40 | 1476
47.6
170
20
.43
.49 | 7553
244
980
50
2.18
2.51 | 10432
373
1250
111
3.33
3.46 | 17091
551
3700
96
4.92
5.68 | 7709
257
834
82
2.29
2.56 | 4873
157
1060
42
1.40
1.62 | 1444
48.1
170
19
.43
.48 | 209.4
6.75
16
3.1
.06 | 61.9
2.00
3.2
1.1
.02 | 69.53
2.32
7.7
.80
.02 | e Estimated. # 02046000 STONY CREEK NEAR DINWIDDIE, VA--Continued | STATIST | TICS OF M | ONTHLY MEAN | DATA | FOR WATER | YEARS 1947 | - 1998, | BY WATER | YEAR (WY) | | | | | |---------|-----------|-------------|------|-------------|------------|---------|------------|-----------|------|-----------|---------|----------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 69.7 | 88.6 | 108 | 168 | 200 | 220 | 165 | 96.3 | 59.7 | 47.9 | 46.0 | 52.8 | | MAX | 554 | 510 | 426 | 549 | 541 | 551 | 377 | 351 | 156 | 560 | 288 | 774 | | (WY) | 1973 | 1986 | 1958 | 1978 | 1979 | 1998 | 1952 | 1958 | 1981 | 1975 | 1955 | 1979 | | MIN | .12 | 2.99 | 5.68 | 15.5 | 37.5 | 27.7 | 27.0 | 20.9 | 14.1 | 2.62 | .97 | .18 | | (WY) | 1955 | 1966 | 1966 | 1966 | 1968 | 1981 | 1966 | 1991 | 1994 | 1986 | 1963 | 1954 | | | | | | | | | | | | | | | | SUMMAR | Y STATIST | ICS | FOR | 2 1997 CALE | NDAR YEAR | F | OR 1998 WA | TER YEAR | | WATER YEA | RS 1947 | 7 - 1998 | | ANNUAL | TOTAL | | | 34550.4 | 3 | | 52177.82 | | | | | | | ANNUAL | MEAN | | | 94.7 | | | 143 | | | 110 | | | | HIGHEST | T ANNUAL | MEAN | | | | | | | | 231 | | 1979 | | LOWEST | ANNUAL M | EAN | | | | | | | | 34.1 | | 1981 | | HIGHES' | T DAILY M | EAN | | 1990 | Apr 29 | | e3700 | Mar 20 | | 7050 | Oct | 6 1972 | | LOWEST | DAILY ME | AN | | .8 | 2 Sep 8 | | .80 | Sep 17 | | e.04 | a0ct | 7 1993 | | ANNUAL | SEVEN-DA | Y MINIMUM | | .9 | 2 Sep 4 | | 1.0 | Sep 14 | | e.05 | b0ct | 6 1993 | | INSTAN | TANEOUS P | EAK FLOW | | | | | 4010 | Mar 20 | | 11400 | Oct | 6 1972 | | INSTAN | TANEOUS P | EAK STAGE | | | | | 13.13 | Mar 20 | | 20.84 | Oct | 6 1972 | | INSTAN | TANEOUS L | OW FLOW | | | | | .74 | Sep 17 | | c.00 | Oct | 13 1954 | | ANNUAL | RUNOFF (| CFSM) | | .8 | 5 | | 1.28 | | | .98 | | | | ANNUAL | RUNOFF (| INCHES) | | 11.4 | 8 | | 17.33 | | | 13.30 | | | | 10 PER | CENT EXCE | EDS | | 215 | | | 351 | | | 244 | | | | | | | | | | | | | | | | | 41 1.7 49 5.3 39 1.6 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Oct. 8, 9, 1993. b Also Oct. 7, 8, 1998. c Observed. e Estimated. #### 02047500 BLACKWATER RIVER NEAR DENDRON, VA LOCATION.--Lat 37°01'30", long 76°52'30", Surry County, Hydrologic Unit 03010202, on left bank 10 ft upstream from Walls Bridge on State Highway 617, 1.2 mi downstream from Cypress Swamp, and 3.5 mi southeast of Dendron. DRAINAGE AREA. -- 294 mi². PERIOD OF RECORD. -- October 1941 to December 1986, July 1988 to current year. REVISED RECORDS.--WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 30.99 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to Aug. 13, 1980, at site 25 ft upstream at same datum. REMARKS.--Records good except those for periods of no gage-height record, Nov. 19 to Dec. 8, Feb. 10-17, Feb. 24 to Mar. 16, and May 30 to June 4, which are fair. Maximum discharge, 5,850 ${\rm ft}^3/{\rm s}$, from rating curve extended above 4,900 ${\rm ft}^3/{\rm s}$. No flow at times most years. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in August 1940 reached a stage of 13.1 ft, from U.S. Army Corps of Engineers floodmarks, discharge, $10,000 \text{ ft}^3/\text{s}$, from rating curve extended above 4,900 ft $^3/\text{s}$. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,030 ft³/s, Feb. 6, gage height, 7.81 ft; no flow part or all of each day Oct. 1 to Nov. 4, Aug. 8 to Sept. 2, and Sept. 20-30. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT NOV JAN FEB APR MAY JUL .00 .00 e255 511 3250 e810 530 313 e235 3.6 16 .00 2 .00 .00 e300 504 2580 e710 479 295 e190 1.7 6.1 .00 3 .00 e345 474 1880 265 .00 e620 432 e160 1.8 2.0 1.5 e320 1740 e530 268 .48 21 4 .00 1.8 439 531 e140 .75 5 18 e305 398 3030 e480 784 248 99 3.6 .09 41 .00 6 .00 26 e288 363 3910 e440 993 223 78 3.2 .04 44 .00 e269 329 3390 e400 992 203 62 1.7 .02 51 47 8 e263 303 3200 e575 986 275 .82 0.0
137 51 0.0 36 .00 9 420 251 334 2790 e850 1040 588 44 . 62 .00 2.5 1.0 790 7 4 0.0 626 247 395 e2200 e1400 1000 50 0.0 15 11 .00 527 247 428 e1770 e1800 852 778 49 7.0 .00 8.5 .00 .00 12 441 230 399 e1500 e2300 715 713 50 3 9 5 2 13 .00 331 211 365 e1200 e2050 596 844 46 1.5 .00 2.8 .32 14 .00 304 197 348 e980 e1700 532 932 42 .00 1.3 15 .00 284 188 379 e800 e1350 503 865 51 .09 .00 .37 e940 435 16 .00 273 177 623 e1050 721 55 16 .00 .12 17 .00 311 164 903 e1100 855 404 574 54 48 .00 .07 18 .00 355 152 1090 1250 1090 412 455 46 30 .00 .04 19 .00 e310 142 1030 1470 1950 494 357 42 8.5 .00 .02 20 .00 e270 134 934 1400 2990 608 288 42 3.5 .00 .00 21 .00 127 675 .00 e240 852 1180 3140 233 33 .81 .00 22 .00 e309 127 834 1100 3200 756 186 26 .11 .00 .00 3.0 23 .00 e425 141 1090 3200 764 154 21 .00 .00 2.4 .00 e560 145 949 e1050 2680 716 130 16 15 .00 .00 .00 e500 e1000 2050 672 106 8.1 .00 .00 26 .00 e445 170 1020 e950 1620 611 88 34 4.5 .00 .00 27 .00 e360 198 989 e890 1300 538 91 22 2.4 .00 .00 28 276 1070 474 112 .58 e305 1560 e860 13 .00 .00 .00 e255 3130 407 9.7 29 .00 336 879 134 .00 .00 .10 ---726 1.2 30 e225 442 3470 e195 6.5 .00 348 .00 .00 31 .00 503 3360 ---616 --e290 25 .00 ---0.00 8309.80 28553 48500 44431 19279 11714 1789.2 204.80 24.73 TOTAL 7311 248.92 .80 MEAN 000 277 236 921 1732 1433 643 378 59 6 6 61 8 30 3470 932 235 47 MAX .00 626 503 3910 3200 1040 48 16 .09 MTN .00 .00 127 303 800 400 348 88 6.5 .00 .00 .80 .20 .02 .00 4 88 1 29 .03 CESM 94 3 13 5.89 2 19 0.0 TN. .00 1.05 . 93 3.61 6.14 5.62 2.44 1.48 . 23 . 03 .00 .03 e Estimated. #### 02047500 BLACKWATER RIVER NEAR DENDRON, VA--Continued | STATIST | rics of | MONTHLY MEAN | DATA | FOR WATER | YEARS 194 | 2 - 1986, | 1989 - | 1998, BY | WATER YEAR | (WY) | | | |---------|----------|--------------|------|-------------|------------|-----------|---------|----------|------------|---------|------------|----------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 151 | 207 | 318 | 499 | 584 | 662 | 456 | 265 | 145 | 141 | 168 | 138 | | MAX | 1128 | 1108 | 1240 | 1473 | 1732 | 1501 | 1271 | 879 | 988 | 1364 | 912 | 1329 | | (WY) | 1973 | 1980 | 1958 | 1978 | 1998 | 1975 | 1989 | 1958 | 1963 | 1945 | 1969 | 1979 | | MIN | .000 | .000 | 2.65 | 21.1 | 70.8 | 79.5 | 87.2 | 25.8 | 2.62 | .32 | .000 | .000 | | (WY) | (a) | (b) | 1981 | 1981 | 1942 | 1981 | 1981 | 1991 | 1944 | 1957 | (c) | (d) | | SUMMARY | Y STATIS | TICS | FOF | R 1997 CALE | ENDAR YEAR | F | OR 1998 | WATER YE | AR | WATER Y | YEARS 1942 | 2 - 1986 | | | | | | | | _ | | | | | | 9 - 1998 | | | | | | | | | | | | | | | | ANNUAL | TOTAL | | | 99439.5 | 52 | | 170365 | .45 | | | | | | ANNUAL | MEAN | | | 272 | | | 467 | | | 311 | | | | HIGHEST | r annual | MEAN | | | | | | | | 622 | | 1958 | | LOWEST | ANNUAL | MEAN | | | | | | | | 57.5 | 5 | 1981 | | HIGHEST | r DAILY | MEAN | | 1950 | May 3 | | 3910 | Feb | 6 | 5540 | Sep | 28 1985 | | LOWEST | DAILY M | EAN | | . (| 00 fJul 1 | | | .00 gOct | 1 | . (| 0.0 | (h) | | ANNUAL | SEVEN-D | AY MINIMUM | | . (| 00 jJul 1 | | | .00 kOct | 1 | . (| 00 | (h) | | INSTANT | FANEOUS | PEAK FLOW | | | | | 4030 | Feb | 6 | 5850 | Sep | 28 1985 | | INSTANT | FANEOUS | PEAK STAGE | | | | | 7 | .81 Feb | 6 | 9.3 | 11 Sep | 28 1985 | | INSTANT | raneous | LOW FLOW | | | | | | .00 (| m) | . (| 0.0 | (h) | | | RUNOFF | , , | | . 9 | 93 | | 1 | .59 | | 1.0 | | | | ANNUAL | RUNOFF | (INCHES) | | 12.5 | 8 | | 21 | .56 | | 14.3 | 36 | | | 10 PERC | CENT EXC | EEDS | | 620 | | | 1130 | | | 785 | | | | 50 PERC | CENT EXC | EEDS | | 164 | | | 198 | | | 160 | | | | 90 PERC | CENT EXC | EEDS | | . (| 00 | | | .00 | | 1.8 | 8 | | a Monthly mean flow is 0.0 ft³/s in 1955, 1969, 1981, 1984, 1994, 1998. b Monthly mean flow is 0.0 ft³/s in 1955, 1981. c Monthly mean flow is 0.0 ft³/s in 1976, 1980, 1993. d Monthly mean flow is 0.0 ft³/s in 1944, 1954, 1980, 1983, 1993, 1995, 1997. f Also July 2-16, Aug. 28 to Nov. 3, 1997. g Also Oct. 2 to Nov. 3, 1997, Aug. 8 to Sept. 2, Sept. 20-30, 1998. h No flow at times most years. j Also July 2-10, Aug. 28 to Oct. 28, 1997. k Also Oct. 2-28, 1997, Aug. 8-27, Sept. 20-24, 1998. m No flow part or all of each day Oct. 1 to Nov. 3, 1997, Aug. 8 to Sept. 2, Sept. 20-30, 1998. #### 02051000 NORTH MEHERRIN RIVER NEAR LUNENBURG, VA LOCATION.--Lat 36°59'53", long 78°21'03", Lunenburg County, Hydrologic Unit 03010204, on right bank at upstream side of bridge on State Highway 40, 0.5 mi downstream from Tusekiah Creek, 4.6 mi upstream from Juniper Creek, and 5.2 mi northwest of Lunenburg. DRAINAGE AREA. -- 55.6 mi². PERIOD OF RECORD. -- August 1946 to September 1980, October 1981 to current year. REVISED RECORDS.--WSP 1303: 1947(M), 1949(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 333.7 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to July 5, 1951, nonrecording gage at same site and datum. July 5, 1951, to July 11, 1980, water-stage recorder at site 20 ft downstream at same datum. REMARKS.--Records good except those for periods of doubtful or no gage height record, Jan. 15-17, 23-25, 27-29, Feb. 4, 5, and Apr. 16 to May 20, which are fair. Maximum discharge, $14,400 \text{ ft}^3/\text{s}$, from rating curve extended above 2,320 ft^3/s on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1940 reached a stage of 48 ft, from information by local resident. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,200 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|---------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Feb. 4 | Unknown | Unknown | Unknown | Mar. 19 | 0930 | *4,240 | *19.34 | | Feb. 17 | 1400 | 2,450 | 13.45 | Mar. 21 | 0400 | 3,170 | 16.06 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 0.53 ft³/s, Sept. 16-18. | | DAILY MEAN VALUES | | | | | | | | | | | | | | |--|--|---|------------------------------------|--|---|---|---|--|--|--|--|------------------------------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1
2
3
4
5 | 3.7
2.8
2.6
2.7
2.7 | 7.5
11
10
8.2
7.0 | 33
24
18
21
24 | 29
25
23
22
21 | 50
42
39
e1500
e560 | 45
43
43
37
35 | 40
42
36
518
158 | e37
e67
e73
e52
e42 | 18
17
16
17
16 | 8.4
7.2
6.9
6.7
7.2 | 2.9
2.5
2.0
1.8
1.6 | 1.9
1.6
1.4
4.3
4.5 | | | | 6
7
8
9
10 | 2.6
2.4
2.3
2.4
2.4 | 6.3
72
39
20
13 | 18
16
15
15
16 | 20
21
130
94
42 | 260
152
87
64
54 | 33
33
371
598
141 | 76
58
51
62
62 | e33
e75
e270
e150
e80 | 16
15
14
14 | 6.7
6.0
5.8
6.7
8.9 | 1.5
1.4
67
75
20 | 2.8
2.1
1.8
1.3 | | | | 11
12
13
14
15 | 2.6
2.6
2.7
3.2
5.7 | 11
9.5
9.0
59
28 | 23
19
17
16
15 | 32
29
28
30
e120 | 49
126
69
54
46 | 71
57
48
46
41 | 53
45
41
39
39 | e58
e50
e46
e41
e37 | 17
16
15
16
15 | 7.4
5.8
4.9
4.7
4.3 | 19
11
5.7
5.0
4.8 | 1.0
.90
.86
.79
.72 | | | | 16
17
18
19
20 | 6.1
5.3
10
9.5
9.2 | 15
10
10
9.7
9.5 | 15
14
14
14
13 | e300
e140
64
59
69 | 44
952
280
99
74 | 38
37
221
2480
432 | e135
e350
e230
e165
e135 | e33
e27
e23
e22
e20 | 15
18
14
15
18 | 4.3
4.3
4.5
4.0
3.8 | 9.6
12
7.5
5.6
4.5 | .66
.64
.71
.79 | | | | 21
22
23
24
25 | 6.8
5.3
4.3
3.8
4.7 | 10
161
42
24
19 | 13
15
26
21
53 | 45
37
e200
e420
e170 | 62
53
300
178
79 | 1250
228
100
75
61 | e100
e75
e65
e58
e53 | 21
19
21
25
24 | 13
13
12
14
12 | 3.4
2.9
3.1
3.6
3.1 | 4.1
3.9
3.7
3.3
3.1 | 1.1
3.3
2.5
1.4 | | | | 26
27
28
29
30
31 | 17
45
10
7.7
6.5
5.9 | 17
16
15
14
16 | 34
115
105
53
42
39 | 71
e180
e580
e230
104
63 | 60
53
49
 | 54
51
47
44
41
39 | e49
e44
e41
e39
e38 | 21
43
35
25
22
20 | 11
9.7
8.7
10
9.7 | 4.2
4.5
4.6
4.3
3.6
3.0 | 2.8
2.6
3.0
2.9
2.6
2.2 | 1.4
1.4
1.3
1.0
.82 | | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 200.5
6.47
45
2.3
.12
.13 | 698.7
23.3
161
6.3
.42
.47 | 876
28.3
115
13
.51 | 3398
110
580
20
1.97
2.27 | 5435
194
1500
39
3.49
3.64 | 6840
221
2480
33
3.97
4.58 | 2897
96.6
518
36
1.74
1.94 |
1512
48.8
270
19
.88
1.01 | 432.1
14.4
18
8.7
.26
.29 | 158.8
5.12
8.9
2.9
.09 | 294.6
9.50
75
1.4
.17
.20 | 46.29
1.54
4.5
.64
.03 | | | e Estimated. aSep 5 1954 Oct 23 1971 Oct 23 1971 aSep 5 1954 #### CHOWAN RIVER BASIN # 02051000 NORTH MEHERRIN RIVER NEAR LUNENBURG, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1947 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|-----|---| OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|--------------------|------|-------|------------|-----------|------|--------------------|-----------|------|----------|-----------|---------| | MEAN | 33.8 | 46.2 | 54.0 | 71.9 | 91.7 | 97.7 | 77.6 | 46.2 | 27.6 | 20.7 | 19.4 | 26.9 | | MAX | 442 | 299 | 186 | 194 | 249 | 293 | 223 | 161 | 154 | 98.6 | 138 | 292 | | (WY) | 1972 | 1986 | 1949 | 1978 | 1979 | 1975 | 1978 | 1971 | 1968 | 1975 | 1955 | 1979 | | MIN | 1.70 | 4.37 | 7.22 | 12.7 | 18.7 | 32.8 | 15.3 | 11.2 | 3.97 | 2.72 | 1.83 | .16 | | (WY) | 1994 | 1992 | 1966 | 1955 | 1968 | 1985 | 1995 | 1964 | 1964 | 1957 | 1977 | 1954 | | SUMMARY | STATIST: | ICS | FOR : | 1997 CALEN | IDAR YEAR | F | OR 1998 W <i>I</i> | ATER YEAR | | WATER YI | EARS 1947 | - 1998 | | ANNUAL | TOTAL | | | 16740.5 | | | 22788.99 |) | | | | | | ANNUAL | MEAN | | | 45.9 | | | 62.4 | | | 50.9 | | | | HIGHEST | C ANNUAL 1 | MEAN | | | | | | | | 98.8 | | 1972 | | LOWEST | LOWEST ANNUAL MEAN | | | | | | | | | 21.2 | | 1992 | | HIGHEST | C DAILY M | EAN | | e1380 | Apr 28 | | 2480 | Mar 19 | | 6710 | Oct : | 23 1971 | | LOWEST | DAILY ME | AN | | 1.4 | Sep 9 | | .64 | 1 Sep 17 | | .00 |) aSep | 5 1954 | LOWEST DAILY MEAN .64 Sep 17 Sep ANNUAL SEVEN-DAY MINIMUM 1.8 Sep Sep 13 .00 INSTANTANEOUS PEAK FLOW 4240 Mar 19 14400 INSTANTANEOUS PEAK STAGE 19.34 Mar 19 28.30 INSTANTANEOUS LOW FLOW .53 bSep 16 .00 ANNUAL RUNOFF (CFSM) .82 1.12 .92 11.20 ANNUAL RUNOFF (INCHES) 15.25 12.44 10 PERCENT EXCEEDS 91 122 94 50 PERCENT EXCEEDS 20 18 20 90 PERCENT EXCEEDS 3.8 2.9 2.5 a Also Sept. 6-21 and Oct. 8-14, 1954. b Also Slept. 17, 18, 1998. # 02052000 MEHERRIN RIVER AT EMPORIA, VA LOCATION.--Lat $36^{\circ}41^{\circ}24^{\circ}$, long $77^{\circ}32^{\circ}27^{\circ}$, Emporia City, Hydrologic Unit 03010204, on left bank at downstream side of bridge on U.S. Highway 301 and 1.2 mi upstream from Falling Run. DRAINAGE AREA. -- 747 mi². PERIOD OF RECORD. -- January 1951 to current year. REVISED RECORDS.--WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 67.17 ft above sea level (levels by U.S. Army Corps of Engineers). REMARKS.--Records good except for period of no gage-height record, Apr. 21 to May 19, which is fair. Prior to November 1965 and since April 1986, low and medium flow regulated by powerplant 0.8 mi upstream from station. Minimum discharge, 5.0 ft³/s, Nov. 11, 1954, gage height, 1.00 ft, result of regulation. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1940 reached a stage of 31.5 ft, from floodmarks, discharge, about 40,000 ft³/s, from rating curve extended above 18,000 ft³/s on basis of record for station near Lawrenceville. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 16,000 $\rm ft^3/s$, Mar. 22, gage height, 24.96 $\rm ft$; minimum, 8.0 $\rm ft^3/s$, Sept. 24, result of regulation; minimum daily, 9.6 $\rm ft^3/s$, Sept. 24. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | | | , | | E | DAILY MEAN | VALUES | | | | | | |-------|------|-------|-------|-------|-------|------------|--------|-------|------|------|------|--------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 142 | 167 | 512 | 591 | 1830 | 832 | 839 | e570 | 445 | 184 | 113 | 60 | | 2 | 123 | 187 | 548 | 527 | 1090 | 789 | 805 | e760 | 375 | 165 | 57 | 59 | | 3 | 106 | 186 | 504 | 443 | 894 | 715 | 838 | e860 | 327 | 145 | 80 | 93 | | 4 | 98 | 184 | 438 | 402 | 2610 | 614 | 1150 | e710 | 306 | 162 | 100 | 164 | | 5 | 97 | 160 | 406 | 379 | 7620 | 646 | 2970 | e630 | 298 | 177 | 84 | 229 | | 6 | 84 | 160 | 371 | 373 | 9200 | 560 | 2980 | e560 | 291 | 189 | 34 | 392 | | 7 | 99 | 178 | 341 | 358 | 9170 | 529 | 1430 | e520 | 292 | 153 | 67 | 146 | | 8 | 89 | 259 | 311 | 529 | 4330 | 919 | 1050 | e1700 | 270 | 151 | 48 | 126 | | 9 | 88 | 511 | 314 | 1680 | 2020 | 5780 | 955 | e3300 | 267 | 136 | 112 | 83 | | 10 | 88 | 330 | 296 | 1930 | 1320 | 9010 | 1240 | e1450 | 260 | 154 | 246 | 85 | | 11 | 88 | 280 | 343 | 1020 | 1040 | 7800 | 1440 | e970 | 274 | 214 | 371 | 68 | | 12 | 59 | 242 | 344 | 664 | 978 | 3220 | 1080 | e800 | 283 | 153 | 242 | 68 | | 13 | 85 | 216 | 296 | 531 | 993 | 1450 | 889 | e730 | 295 | 153 | 155 | 47 | | 14 | 89 | 431 | 300 | 482 | 1060 | 1090 | 786 | e650 | 293 | 142 | 110 | 63 | | 15 | 100 | 430 | 337 | 551 | 848 | 922 | 733 | e580 | 314 | 120 | 102 | 57 | | 16 | 146 | 672 | 271 | 2300 | 708 | 838 | 711 | e520 | 317 | 152 | 70 | 44 | | 17 | 185 | 332 | 263 | 5140 | 1100 | 724 | 882 | e470 | 328 | 133 | 122 | 29 | | 18 | 171 | 292 | 220 | 3050 | 4460 | 2250 | 3320 | e430 | 295 | 102 | 166 | 82 | | 19 | 199 | 250 | 283 | 1380 | 6800 | 6480 | 4200 | e375 | 275 | 97 | 159 | 54 | | 20 | 207 | 231 | 172 | 1090 | 5700 | 9900 | 2520 | 346 | 283 | 169 | 113 | 31 | | 21 | 223 | 222 | 232 | 1030 | 2000 | 14100 | e1800 | 374 | 298 | 123 | 88 | 64 | | 22 | 216 | 347 | 322 | 868 | 1190 | 15200 | e1300 | 460 | 303 | 85 | 61 | 57 | | 23 | 172 | 2210 | 302 | 837 | 1080 | 12500 | e1050 | 304 | 245 | 109 | 74 | 56 | | 24 | 155 | 1430 | 376 | 3550 | 2410 | 6670 | e900 | 338 | 207 | 124 | 69 | 9.6 | | 25 | 153 | 611 | 380 | 5850 | 2990 | 2430 | e820 | 384 | 214 | 42 | 118 | 59 | | 26 | 164 | 418 | 527 | 3630 | 1540 | 1490 | e740 | 566 | 178 | 159 | 56 | 44 | | 27 | 195 | 354 | 556 | 1640 | 1080 | 1220 | e660 | 543 | 186 | 149 | 80 | 30 | | 28 | 227 | 312 | 838 | 4430 | 906 | 1090 | e640 | 511 | 195 | 125 | 63 | 50 | | 29 | 251 | 285 | 1450 | 7420 | | 995 | e600 | 509 | 188 | 138 | 65 | 14 | | 30 | 241 | 315 | 1080 | 7930 | | 918 | e580 | 447 | 198 | 88 | 44 | 67 | | 31 | 201 | | 836 | 5030 | | 872 | | 389 | | 147 | 86 | | | TOTAL | 4541 | 12202 | 13769 | 65635 | 76967 | 112553 | 39908 | 21756 | 8300 | 4340 | 3355 | 2430.6 | | MEAN | 146 | 407 | 444 | 2117 | 2749 | 3631 | 1330 | 702 | 277 | 140 | 108 | 81.0 | | MAX | 251 | 2210 | 1450 | 7930 | 9200 | 15200 | 4200 | 3300 | 445 | 214 | 371 | 392 | | MIN | 59 | 160 | 172 | 358 | 708 | 529 | 580 | 304 | 178 | 42 | 34 | 9.6 | | CFSM | .20 | .54 | .59 | 2.83 | 3.68 | 4.86 | 1.78 | .94 | .37 | .19 | .14 | .11 | | IN. | .23 | .61 | .69 | 3.27 | 3.83 | 5.61 | 1.99 | 1.08 | .41 | .22 | .17 | .12 | e Estimated. # 02052000 MEHERRIN RIVER AT EMPORIA, VA--Continued | STATIST | rics of M | ONTHLY MEAN | N DATA F | OR WATER | YEARS 1952 | - 1998, | BY WATER Y | YEAR (WY) | | | | | | |---------|-----------------------------|-------------|----------|-----------|------------|---------|-------------|-----------|------|-----------|----------|------|-----| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | | SEP | | MEAN | 421 | 538 | 677 | 1070 | 1256 | 1387 | 1065 | 665 | 428 | 345 | 299 | | 282 | | MAX | 3057 | 3711 | 1772 | 3063 | 2749 | 3631 | 3077 | 2244 | 1399 | 2647 | 1536 | 1 | 810 | | (WY) | 1973 | 1986 | 1973 | 1978 | 1998 | 1998 | 1987 | 1958 | 1972 | 1975 | 1955 | 1 | 979 | | MIN | 37.7 | 60.0 | 89.9 | 159 | 298 | 261 | 221 | 256 | 137 | 62.9 | 46.3 | 1 | 8.7 | | (WY) | 1969 | 1955 | 1966 | 1966 | 1968 | 1981 | 1995 | 1995 | 1986 | 1954 | 1995 | 1 | 954 | | SUMMARY | SUMMARY STATISTICS | | | 1997 CALE | NDAR YEAR | FC | OR 1998 WAT | TER YEAR | | WATER YE. | ARS 1952 | - 1 | 998 | | ANNUAL | ANNUAL TOTAL
ANNUAL MEAN | | | 253408 | | | 365756.6 | | | | | | | | ANNUAL | ANNUAL MEAN | | | 694 | | | 1002 | | | 700 | | | | | HIGHEST | r annual i | MEAN | | | | | | | | 1297 | | 1 | 973 | | LOWEST | ANNUAL M | EAN | | | | | | | | 248 | | 1 | 981 | | HIGHEST | r daily M | EAN | | 9570 | May 1 | | 15200 | Mar 22 | | 20700 | Oct | 8 1 | 972 | | LOWEST | DAILY ME. | AN | | 59 | Oct 12 | | a9.6 | Sep 24 | | a7.1 | Jul | 20 1 | 986 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 84 | Oct 8 | | 38 | Sep 23 | | a9.1 | Nov | 4 1 | 954 | | INSTANT | TANEOUS P | EAK FLOW | | | | | 16000 | Mar 22 | | 21100 | Oct | 8 1 | 972 | | INSTANT | TANEOUS P | EAK STAGE | | | | | 24.96 | Mar 22 | | 27.38 | Oct | 8 1 | 972 | | INSTANT | TANEOUS L | OW FLOW | | | | | a8.0 | Sep 24 | | a5.0 | Nov | 11 1 | 954 | | ANNUAL | ANNUAL RUNOFF (CFSM) | | | .9 | 3 | | 1.34 | | | .94 | | | | | ANNUAL | ANNUAL RUNOFF (INCHES) | | | | 2 | | 18.21 | | | 12.73 | | | | | 10 PERG | 10 PERCENT EXCEEDS | | | 1360 | | | 2340 | | | 1440 | | | | | 50 PERG | 50 PERCENT EXCEEDS | | | 398 | | | 332 | | | 360 | | | | | 90 PERG | CENT EXCE | EDS | | 112 | | | 80 | | | 71 | | | | a Result of regulation. # 02053800 SOUTH FORK ROANOKE RIVER NEAR SHAWSVILLE, VA LOCATION.--Lat 37°08'24", long 80°16'00", Montgomery County, Hydrologic Unit 03010101, on right bank 95 ft downstream from bridge on State Highway 637, 0.3 mi downstream from Georges Run, 1.3 mi downstream from Elliott Creek, and 2.0 mi southwest of Shawsville. DRAINAGE AREA. -- 110 mi². PERIOD OF RECORD. -- October 1960 to current year. REVISED RECORDS. -- WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,361.87 ft above sea level. Prior to Aug. 26, 1974, water-stage recorder, and Aug. 26, 1974, to July 24, 1975, nonrecording gage at site 95 ft upstream at same datum. REMARKS.--Records good except
for period with ice effect, Jan. 1, 2, which is fair. Virginia Department of Emergency Services gage-height radio transmitter at station. Maximum discharge, 14,200 ft³/s, from rating curve extended above 3,700 ft³/s on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location by the Virginia Department of Environmental Quality - Water Division. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 30, 1959, reached a stage of 9.89 ft, from information by local resident. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 800 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 0500 | 3,750 | 5.56 | Mar. 20 | 1830 | *4,030 | *6.39 | | Feb. 4 | 1430 | 2,300 | 4.65 | Apr. 19 | 2000 | 1,650 | 3.86 | | Feb. 17 | 1730 | 3,050 | 5.45 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES Minimum discharge, 20 ft³/s, Sept. 15, 16, 29. | DAILI MEAN VALUED | | | | | | | | | | | | | |-------------------|----------|----------|----------|------------|------------|-------------|------------|------------|----------|----------|----------|----------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 29 | 42 | 34 | e30 | 217 | 248 | 111 | 198 | 149 | 73 | 42 | 25 | | 2 | 28 | 58 | 32 | e33 | 188 | 209 | 103 | 195 | 227 | 63 | 39 | 24 | | 3 | 27 | 46 | 31 | 35 | 206 | 181 | 97 | 191 | 245 | 62 | 36 | 24 | | 4 | 27 | 38 | 34 | 40 | 1480 | 158 | 205 | 227 | 184 | 62 | 35 | 25 | | 5 | 27 | 34 | 34 | 56 | 1120 | 142 | 194 | 253 | 178 | 73 | 34 | 23 | | 6 | 27 | 33 | 32 | 88 | 905 | 129 | 159 | 215 | 167 | 59 | 32 | 22 | | 7 | 26 | 33 | 30 | 102 | 617 | 121 | 138 | 196 | 140 | 57 | 32 | 22 | | 8 | 26 | 34 | 29 | 1550 | 443 | 145 | 125 | 205 | 123 | 65 | 59 | 22 | | 9 | 26 | 33 | 31 | 392 | 365 | 230 | 177 | 177 | 117 | 70 | 55 | 23
23 | | 10 | 27 | 32 | 34 | 191 | 324 | 231 | 161 | 163 | 135 | 71 | 54 | | | 11 | 27 | 32 | 36 | 131 | 329 | 185 | 142 | 278 | 133 | 57 | 51 | 23 | | 12 | 27 | 31 | 33 | 111 | 459 | 157 | 125 | 248 | 153 | 53 | 41 | 22 | | 13 | 27 | 31 | 32 | 108 | 450 | 141 | 115 | 210 | 144 | 51 | 37 | 22 | | 14 | 28 | 36 | 31 | 91 | 345 | 135 | 112 | 180 | 119 | 51 | 35 | 22 | | 15 | 28 | 37 | 29 | 223 | 274 | 123 | 105 | 158 | 134 | 48 | 34 | 21 | | 16 | 28 | 34 | 29 | 415 | 245 | 115 | 101 | 148 | 111 | 47 | 53 | 21 | | 17 | 30 | 32 | 29 | 283 | 1650 | 108 | 283 | 137 | 101 | 46 | 56 | 22 | | 18 | 33 | 31 | 30 | 183 | 1250 | 116 | 240 | 122 | 91 | 44 | 44 | 24 | | 19
20 | 32
32 | 31
31 | 29
29 | 145
120 | 683
527 | 255
1330 | 633
933 | 113
107 | 88
85 | 46
44 | 40
34 | 24
23 | | | 34 | | 29 | | 547 | 1330 | | | | 44 | | | | 21 | 31 | 38 | 30 | 100 | 418 | 1920 | 508 | 105 | 79 | 41 | 32 | 27 | | 22 | 31 | 55 | 37 | 94 | 323 | 771 | 365 | 100 | 78 | 42 | 30 | 32 | | 23 | 31 | 43 | 37 | 139 | 379 | 458 | 296 | 136 | 74 | 46 | 29 | 26 | | 24 | 32 | 37 | 37 | 198 | 375 | 320 | 259 | 136 | 74 | 45 | 28 | 24 | | 25 | 38 | 35 | 49 | 188 | 318 | 242 | 214 | 144 | 73 | 44 | 27 | 23 | | 26 | 40 | 34 | 43 | 155 | 270 | 200 | 190 | 162 | 67 | 44 | 27 | 22 | | 27 | 49 | 33 | 44 | 143 | 247 | 174 | 175 | 372 | 64 | 44 | 26 | 22 | | 28 | 38 | 32 | 43 | 221 | 247 | 155 | 160 | 312 | 63 | 44 | 26 | 22 | | 29
30 | 34
32 | 32
34 | 37
39 | 283
305 | | 140
127 | 148
144 | 214
178 | 80
74 | 41
39 | 26
25 | 21
24 | | 31 | 32 | | 39 | 265 | | 117 | | 203 | | 40 | 25
25 | | | 31 | 32 | | 3 / | 205 | | 117 | | 203 | | 40 | 25 | | | TOTAL | 950 | 1082 | 1061 | 6418 | 14654 | 9083 | 6718 | 5783 | 3550 | 1612 | 1144 | 700 | | MEAN | 30.6 | 36.1 | 34.2 | 207 | 523 | 293 | 224 | 187 | 118 | 52.0 | 36.9 | 23.3 | | MAX | 49 | 58 | 49 | 1550 | 1650 | 1920 | 933 | 372 | 245 | 73 | 59 | 32 | | MIN | 26 | 31 | 29 | 30 | 188 | 108 | 97 | 100 | 63 | 39 | 25 | 21 | | CFSM | .28 | .33 | .31 | 1.88 | 4.76 | 2.66 | 2.04 | 1.70 | 1.08 | .47 | .34 | .21 | | IN. | .32 | .37 | .36 | 2.17 | 4.96 | 3.07 | 2.27 | 1.96 | 1.20 | .55 | .39 | .24 | e Estimated. # 02053800 SOUTH FORK ROANOKE RIVER NEAR SHAWSVILLE, VA--Continued | STATIST | TICS OF M | ONTHLY MEAN | N DATA F | OR WATER | YEARS 1 | 961 | - 1998, | BY WATER | YEAR (WY) | | | | | | |---------|--------------------|-------------|----------|-----------|---------|-----|---------|-----------|-----------|------|----------|----------|----|------| | | OCT | NOV | DEC | JAN | FEB | 3 | MAR | APR | MAY | JUN | JUL | AUG | | SEP | | MEAN | 74.2 | 92.9 | 102 | 141 | 171 | | 215 | 188 | 138 | 103 | 59.1 | 54.2 | | 61.3 | | MAX | 294 | 407 | 232 | 299 | 523 | | 571 | 750 | 334 | 483 | 205 | 174 | | 347 | | (WY) | 1972 | 1986 | 1973 | 1996 | 1998 | | 1993 | 1987 | 1978 | 1972 | 1972 | 1994 | | 1989 | | MIN | 21.4 | 24.4 | 22.1 | 18.9 | 70.1 | | 55.6 | 51.0 | 50.7 | 35.2 | 20.6 | 17.4 | | 17.8 | | (WY) | 1992 | 1982 | 1966 | 1966 | 1981 | | 1981 | 1966 | 1963 | 1966 | 1966 | 1963 | | 1968 | | | | | | | | | | | | | | | | | | SUMMARY | Y STATIST | ICS | FOR | 1997 CALE | NDAR YE | AR | F | OR 1998 W | ATER YEAR | | WATER YE | ARS 1961 | - | 1998 | | ANNUAL | TOTAL | | | 32294 | | | | 52755 | | | | | | | | ANNUAL | MEAN | | | 88.5 | | | | 145 | | | 116 | | | | | HIGHEST | T ANNUAL | MEAN | | | | | | | | | 205 | | | 1972 | | LOWEST | ANNUAL M | EAN | | | | | | | | | 46.5 | | | 1981 | | HIGHEST | T DAILY M | EAN | | 842 | Mar | 4 | | 1920 | Mar 21 | | 6840 | Jun | 21 | 1972 | | LOWEST | DAILY ME. | AN | | 22 | aSep | 6 | | 21 | bSep 15 | | 7.5 | Jul | 28 | 1966 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 23 | Sep | 3 | | 22 | Sep 11 | | 8.9 | Jul | 23 | 1966 | | INSTANT | TANEOUS P | EAK FLOW | | | - | | | 4030 | Mar 20 | | 14200 | Jun | 21 | 1972 | | INSTANT | TANEOUS P | EAK STAGE | | | | | | 6.3 | 9 Mar 20 | | c11.12 | Jun | 21 | 1972 | | INSTANT | TANEOUS L | OW FLOW | | | | | | 20 | bSep 15 | | 7.5 | dJul | 27 | 1966 | | ANNUAL | RUNOFF (| CFSM) | | .8 | 0 | | | 1.3 | 1 | | 1.06 | | | | | ANNUAL | RUNOFF (| INCHES) | | 10.9 | 2 | | | 17.8 | 4 | | 14.36 | | | | | 10 PERG | 10 PERCENT EXCEEDS | | | 194 | | | | 288 | | | 223 | | | | | 50 PERG | 50 PERCENT EXCEEDS | | | 58 | | | | 62 | | | 72 | | | | | 90 PERG | CENT EXCE | EDS | | 27 | | | | 27 | | | 29 | a Also Sept. 7, 8, 1997. b Also Sept. 16, 29, 1998. c From high-water mark in well. d Also July 28, 29, 1966. # 02054500 ROANOKE RIVER AT LAFAYETTE, VA LOCATION.--Lat 37°14'11", long 80°12'34", Montgomery County, Hydrologic Unit 03010101, on right bank 120 ft upstream from bridge on State Highway 603 at Lafayette, 0.4 mi downstream from confluence of North and South Forks, and 1.1 mi upstream from Cove Hollow. DRAINAGE AREA. -- 257 mi². PERIOD OF RECORD. -- September 1943 to current year. REVISED RECORDS. -- WSP 1333: 1944-47(M), 1948-49. GAGE.--Water-stage recorder. Datum of gage is 1,174.47 ft above sea level. Prior to July 30, 1949, nonrecording gage at same site and datum. REMARKS.--Records good except those for period with ice effect, Jan. 1, and periods of doubtful or no gage-height record, July 13-17, and July 23 to Aug. 18, which are fair. Occasional diurnal fluctuation caused by meat-processing plant upstream from station. Virginia Department of Emergency Services gage-height radio transmitter at station. Maximum discharge, 24,500 ft³/s, from rating curve extended above 12,000 ft³/s on basis of slope-area measurement of peak flow. Minimum discharge, 8.0 ft³/s, Jan. 19, 1959, gage height, 0.60 ft, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in August 1940 reached a stage of 12.2 ft, from information by local residents, discharge, 19,000 ${\rm ft}^3/{\rm s}$, from rating curve extended above 12,000 ${\rm ft}^3/{\rm s}$. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,500 ft³/s and maximum (*): | Date | Time | Discharge (ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|--------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 0900 | 7,340 | 8.93 | Mar. 20 | 2115 | *7,730 | *9.14 | | Feb. 4 | 1500 | 6,130 | 8.24 | Apr. 19 | 2130 | 4,700 | 7.33 | | Feb. 17 | 1930 | 4,530 | 7.21 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 39 ft³/s, Sept. 15, 16, 17. | | DAILY MEAN VALUES | | | | | | | | | | | | | |-------|-------------------|------|------|-------|-------|-------|-------|-------|------|------|------|------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 59 | 60 | 61 | e60 | 669 | 574 | 370 | 547 | 274 | 148 | e70 | 51 | | | 2 | 55 | 93 | 58 | 64 | 550 | 498 | 334 | 750 | 359 | 127 | e67 | 49 | | | 3 | 53 | 95 | 54 | 75 | 610 | 437 | 311 | 604 | 505 | 122 | e63 | 49 | | | 4 | 52 | 72 | 58 | 83 | 3980 | 382 | 690 | 838 | 327 | 115 | e59 | 50 | | | 5 | 51 | 63 | 58 | 107 | 3000 | 338 | 752 | 761 | 310 | 128 | e57 | 48 | | | 6 | 49 | 59 | 55 | 154 | 2450 | 304 | 592 | 574 | 290 | 112 | e55 | 47 | | | 7 | 48 | 57 | 52 | 161 | 1670 | 283 | 507 | 501 | 249 | 109 | e54 | 46 | | | 8
| 47 | 59 | 51 | 3220 | 1200 | 334 | 449 | 560 | 222 | 115 | e61 | 45 | | | 9 | 46 | 58 | 51 | 933 | 991 | 585 | 642 | 495 | 210 | 126 | e112 | 45 | | | 10 | 47 | 55 | 56 | 464 | 859 | 644 | 612 | 432 | 235 | 130 | e105 | 45 | | | 11 | 46 | 55 | 64 | 291 | 811 | 510 | 529 | 860 | 225 | 111 | e115 | 45 | | | 12 | 45 | 53 | 58 | 231 | 938 | 428 | 456 | 648 | 298 | 103 | e80 | 44 | | | 13 | 45 | 53 | 54 | 236 | 941 | 375 | 414 | 518 | 267 | e92 | e70 | 43 | | | 14 | 45 | 59 | 52 | 203 | 766 | 346 | 394 | 435 | 226 | e86 | e68 | 42 | | | 15 | 47 | 62 | 50 | 566 | 630 | 313 | 362 | 376 | 254 | e80 | e66 | 41 | | | 16 | 46 | 58 | 48 | 1080 | 553 | 288 | 338 | 333 | 218 | e83 | e135 | 40 | | | 17 | 48 | 54 | 49 | 691 | 2460 | 271 | 1260 | 308 | 194 | e82 | e165 | 41 | | | 18 | 52 | 52 | 50 | 451 | 2320 | 279 | 965 | 270 | 177 | 84 | e104 | 44 | | | 19 | 52 | 51 | 49 | 338 | 1320 | 1360 | 1870 | 246 | 169 | 82 | 89 | 44 | | | 20 | 49 | 51 | 48 | 277 | 1060 | 2930 | 2660 | 229 | 166 | 78 | 78 | 44 | | | 21 | 48 | 61 | 48 | 226 | 889 | 5040 | 1270 | 218 | 156 | 73 | 72 | 45 | | | 22 | 47 | 107 | 58 | 204 | 738 | 2050 | 868 | 208 | 154 | 72 | 68 | 69 | | | 23 | 45 | 88 | 70 | 357 | 905 | 1310 | 679 | 252 | 145 | e86 | 65 | 54 | | | 24 | 47 | 71 | 66 | 500 | 971 | 982 | 581 | 278 | 142 | e80 | 63 | 49 | | | 25 | 58 | 63 | 86 | 500 | 808 | 789 | 488 | 368 | 156 | e79 | 61 | 47 | | | 26 | 60 | 60 | 86 | 383 | 694 | 673 | 430 | 316 | 137 | e76 | 58 | 47 | | | 27 | 75 | 58 | 84 | 335 | 631 | 593 | 390 | 631 | 129 | e74 | 56 | 46 | | | 28 | 65 | 55 | 93 | 1360 | 591 | 529 | 356 | 583 | 126 | e76 | 56 | 44 | | | 29 | 56 | 54 | 83 | 1240 | | 476 | 322 | 413 | 191 | e72 | 53 | 44 | | | 30 | 51 | 55 | 80 | 1100 | | 430 | 308 | 326 | 148 | e68 | 52 | 48 | | | 31 | 50 | | 76 | 869 | | 394 | | 341 | | e67 | 51 | | | | TOTAL | 1584 | 1891 | 1906 | 16759 | 34005 | 24745 | 20199 | 14219 | 6659 | 2936 | 2328 | 1396 | | | MEAN | 51.1 | 63.0 | 61.5 | 541 | 1214 | 798 | 673 | 459 | 222 | 94.7 | 75.1 | 46.5 | | | MAX | 75 | 107 | 93 | 3220 | 3980 | 5040 | 2660 | 860 | 505 | 148 | 165 | 69 | | | MIN | 45 | 51 | 48 | 60 | 550 | 271 | 308 | 208 | 126 | 67 | 51 | 40 | | | CFSM | .20 | .25 | .24 | 2.10 | 4.73 | 3.11 | 2.62 | 1.78 | .86 | . 37 | .29 | .18 | | | IN. | .23 | .27 | .28 | 2.43 | 4.92 | 3.58 | 2.92 | 2.06 | .96 | .42 | .34 | .20 | | e Estimated. # 02054500 ROANOKE RIVER AT LAFAYETTE, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1944 - | 1997. | BY | WATER | YEAR | (WY) |) | |------------|----|---------|------|------|-----|-------|-------|--------|-------|----|-------|------|------|---| | | | | | | | | | | | | | | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|------|-------|-----------|-----------|------|-----------|-----------|------|---------|-----------|--------| | MEAN | 138 | 173 | 230 | 316 | 403 | 476 | 418 | 288 | 188 | 115 | 113 | 121 | | MAX | 603 | 770 | 913 | 682 | 1214 | 1309 | 1497 | 716 | 791 | 590 | 551 | 570 | | (WY) | 1977 | 1978 | 1949 | 1947 | 1998 | 1993 | 1987 | 1978 | 1972 | 1949 | 1948 | 1989 | | MIN | 36.7 | 44.1 | 47.0 | 52.0 | 83.4 | 103 | 102 | 99.1 | 61.6 | 43.2 | 37.0 | 29.4 | | (WY) | 1954 | 1954 | 1964 | 1981 | 1959 | 1981 | 1966 | 1963 | 1963 | 1963 | 1963 | 1954 | | | | | | | | | | | | | | | | SUMMAR | Y STATIST | ICS | FOR : | 1997 CALE | NDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER Y | EARS 1944 | - 1998 | | ANNUAL | TOTAL | | | 72851 | | | 128627 | | | | | | | ANNUAL | MEAN | | | 200 | | | 352 | | | 247 | | | | HIGHES' | T ANNUAL I | MEAN | | | | | | | | 442 | | 1949 | | | | | | | | | | | | 00 | | 1001 | | ANNUAL TOTAL | 72851 | | 128627 | | | | |--------------------------|----------|---|--------|---------|--------|--------------| | ANNUAL MEAN | 200 | | 352 | | 247 | | | HIGHEST ANNUAL MEAN | | | | | 442 | 1949 | | LOWEST ANNUAL MEAN | | | | | 87.0 | 1981 | | HIGHEST DAILY MEAN | 1640 Mar | 4 | 5040 | Mar 21 | 11700 | Jun 21 1972 | | LOWEST DAILY MEAN | 42 aSep | 7 | 40 | Sep 16 | 10 | bJan 14 1959 | | ANNUAL SEVEN-DAY MINIMUM | 45 Sep | 3 | 42 | Sep 12 | 11 | Jan 14 1959 | | INSTANTANEOUS PEAK FLOW | | | 7730 | Mar 20 | 24500 | Jun 21 1972 | | INSTANTANEOUS PEAK STAGE | | | 9.14 | Mar 20 | c15.60 | Jun 21 1972 | | INSTANTANEOUS LOW FLOW | | | 39 | dSep 15 | f8.0 | Jan 19 1959 | | ANNUAL RUNOFF (CFSM) | .78 | | 1.37 | | .96 | | | ANNUAL RUNOFF (INCHES) | 10.54 | | 18.62 | | 13.07 | | | 10 PERCENT EXCEEDS | 479 | | 846 | | 500 | | | 50 PERCENT EXCEEDS | 108 | | 126 | | 136 | | | 90 PERCENT EXCEEDS | 49 | | 48 | | 51 | | | | | | | | | | a Also Sept. 8, 1997. b Also Jan. 15, 18, 19, 1959. c From high-water mark in gage house. d Also Sept. 16, 17, 1998. f Result of freezeup. # 02054510 ROANOKE RIVER NEAR WABUN, VA LOCATION.--Lat 37°14'48", long 87°09'55", Roanoke County, Hydrologic Unit 03010101, on right bank 150 ft downstream from mouth of Dry Hollow, 0.7 mi downstream from bridge on State Highway 5800, 3 mi upstream from Dry Branch, and 5.9 mi southwest of Salem. DRAINAGE AREA. -- 273 mi². PERIOD OF RECORD. -- April 1994 to current year. GAGE.--Water-stage recorder. Elevation of gage is 1,140 ft above sea level, from topographic map. REMARKS.--Records good except those for periods of doubtful or no gage-height record, Oct. 23, Dec. 8, Mar. 14, 15, and period with ice effect, Dec. 30 to Jan. 1, which are fair. Water is withdrawn upstream for municipal use by Roanoke County, amount unknown. Roanoke County gage-height transmitter at station. Maximum discharge, 15,900 ft³/s, from rating curve extended above 1,660 ft³/s. Minimum discharge, 24 ft³/s, Dec. 30, 1995, gage height, 2.57 ft, result of freezeup. Several observations of water temperature were made during the year. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 21, 1992, reached a stage of 13.69 ft, from high-water marks in the gage vicinity, from information by local resident, discharge not determined. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,500 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 0930 | 10,400 | 10.12 | Mar. 20 | 2215 | *10,600 | *10.19 | | Feb. 4 | 1500 | 8,370 | 9.32 | Apr. 19 | 2245 | 6,170 | 8.34 | | Feb 17 | 1830 | 6 070 | 8 29 | = | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 41 ft³/s, Sept. 15-18. | | | | | | Di | AILY MEAN | VALUES | | | | | | |-------------|------------|-----------|------|------------|-------|-----------|-------------|-------|------|-------------|------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 62 | 62 | 72 | e69 | 623 | 495 | 302 | 511 | 257 | 167 | 71 | 49 | | 2 | 57 | 107 | 71 | 78 | 512 | 413 | 278 | 800 | 275 | 151 | 70 | 48 | | 3 | 53 | 126 | 67 | 95 | 545 | 363 | 256 | 605 | 564 | 139 | 65 | 47 | | 4 | 52 | 92 | 68 | 103 | 4850 | 322 | 558 | 840 | 350 | 130 | 61 | 47 | | 5 | 51 | 79 | 70 | 127 | 3630 | 285 | 641 | 772 | 328 | 146 | 58 | 47 | | 6 | 50 | 71 | 66 | 152 | 2700 | 255 | 482 | 576 | 311 | 111 | 57 | 45 | | 7 | 49 | 70 | 63 | 171 | 1690 | 257 | 410 | 492 | 267 | 100 | 56 | 44 | | 8 | 49 | 70 | e62 | 4020 | 1120 | 286 | 367 | 548 | 223 | 103 | 63 | 43 | | 9 | 47 | 70 | 61 | 962 | 902 | 474 | 510 | 495 | 205 | 118 | 116 | 43 | | 10 | 47 | 68 | 64 | 449 | 736 | 536 | 504 | 437 | 231 | 130 | 111 | 43 | | 11 | 47 | 66 | 73 | 286 | 686 | 419 | 452 | 841 | 215 | 121 | 120 | 43 | | 12 | 49 | 65 | 72 | 234 | 812 | 353 | 395 | 669 | 314 | 109 | 83 | 44 | | 13 | 49 | 63 | 66 | 226 | 840 | 316 | 347 | 539 | 281 | 91 | 71 | 44 | | 14 | 48 | 67 | 64 | 192 | 660 | e305 | 334 | 426 | 242 | 87 | 68 | 44 | | 15 | 49 | 74 | 62 | 490 | 528 | e275 | 312 | 371 | 263 | 81 | 66 | 43 | | 16 | 49 | 72 | 58 | 1060 | 484 | 238 | 294 | 344 | 225 | 83 | 148 | 41 | | 17 | 51 | 67 | 58 | 626 | 2940 | 218 | 1160 | 314 | 196 | 82 | 172 | 41 | | 18 | 56 | 65 | 60 | 410 | 2700 | 220 | 880 | 256 | 177 | 85 | 103 | 43 | | 19 | 57 | 63 | 59 | 352 | 1300 | 1250 | 1930 | 228 | 175 | 85 | 82 | 44 | | 20 | 54 | 62 | 59 | 270 | 985 | 3330 | 3140 | 211 | 177 | 84 | 72 | 45 | | 21 | 52 | 70 | 59 | 217 | 797 | 6740 | 1330 | 199 | 169 | 78 | 67 | 46 | | 22 | 52 | 136 | 64 | 192 | 640 | 2150 | 885 | 189 | 149 | 78 | 63 | 63 | | 23 | e50 | 122 | 86 | 324 | 806 | 1220 | 687 | 239 | 141 | 87 | 58 | 54 | | 24 | 52 | 76 | 81 | 476 | 882 | 860 | 588 | 277 | 133 | 81 | 56 | 50 | | 25 | 65 | 67 | 104 | 490 | 668 | 645 | 504 | 374 | 169 | 79 | 55 | 48 | | 26 | 68 | 72 | 113 | 385 | 574 | 542 | 440 | 316 | 154 | 78 | 54 | 47 | | 27 | 87 | 70 | 105 | 329 | 516 | 477 | 378 | 601 | 140 | 77 | 51 | 46 | | 28 | 81 | 68 | 121 | 1390 | 502 | 442 | 344 | 602 | 131 | 76 | 50 | 46 | | 29 | 67 | 66 | 91 | 1300 | | 396 | 309 | 425 | 197 | 73 | 50 | 44 | | 30 | 62 | 66 | e95 | 1120 | | 350 | 287 | 340 | 165 | 70 | 50 | 46 | | 31 | 59 | | e90 | 821 | | 321 | | 344 | | 68 | 50 | | | TOTAL | 1721 | 2292 | 2304 | 17416 | 34628 | 24753 | 19304 | 14181 | 6824 | 3048 | 2317 | 1378 | | MEAN | 55.5 | 76.4 | 74.3 | 562 | 1237 | 798 | 643 | 457 | 227 | 98.3 | 74.7 | 45.9 | | MAX | 55.5
87 | 136 | 121 | 4020 | 4850 | 6740 | 3140 | 841 | 564 | 98.3
167 | 172 | 45.9
63 | | | 8 /
47 | 136
62 | 58 | | 4850 | 218 | 3140
256 | 189 | 131 | 68 | 50 | | | MIN
CFSM | .20 | .28 | .27 | 69
2.06 | 4.53 | 2.92 | 2.36 | 1.68 | .83 | .36 | .27 | 41
.17 | | | | | | 2.06 | | | | | | | | | | IN. | .23 | .31 | .31 | 2.37 | 4.72 | 3.37 | 2.63 | 1.93 | .93 | .42 | .32 | .19 | e Estimated. # 02054510 ROANOKE RIVER NEAR WABUN,
VA--Continued | STATIS | TICS OF M | ONTHLY MEAN | מדמת ז | FOR WATER | VEAR 19 | 94 . | _ 1998 | BY WATER | YEAR (WAZ) | | | | | | |---------|------------|----------------|----------|-------------|---|------------|--------|------------|--------------|------|----------|-----------|------|------| | 0111110 | 1100 01 11 | OIVIIIDI PIDIN | . DIIIII | TOIC WITTER | 111111111111111111111111111111111111111 | <i>-</i> 1 | 1000 | , DI WILLE | C ILIIC (Wy) | | | | | | | | OCT | NOV | DEC | JAN | FEE | } | MAR | APR | MAY | JUN | JUL | AUG | | SEP | | | | | | | | | | | | | | | | | | MEAN | 98.2 | 156 | 256 | 550 | 647 | | 510 | 307 | 266 | 269 | 131 | 157 | | 169 | | MAX | 165 | 352 | 679 | 747 | 1237 | | 798 | 643 | 457 | 373 | 183 | 289 | | 599 | | (WY) | 1997 | 1997 | 1997 | 1996 | 1998 | | 1998 | 1998 | 1998 | 1995 | 1995 | 1996 | | .996 | | MIN | 55.5 | 76.4 | 74.3 | 392 | 335 | | 288 | 104 | 135 | 112 | 86.6 | 62.8 | 4 | 15.9 | | (WY) | 1998 | 1998 | 1998 | 1997 | 1995 | | 1995 | 1995 | 1995 | 1994 | 1997 | 1997 | 1 | 998 | | SUMMAR | Y STATIST | ICS | FOR | 1997 CAL | ENDAR YE | AR | | FOR 1998 | WATER YEAR | | WATER YE | EARS 1994 | - 1 | .998 | | ANNUAL | TOTAL | | | 74096 | | | | 130166 | | | | | | | | ANNUAL | MEAN | | | 203 | | | | 357 | | | 293 | | | | | HIGHES | T ANNUAL | MEAN | | | | | | | | | 357 | | 1 | 998 | | LOWEST | ANNUAL M | EAN | | | | | | | | | 192 | | 1 | 995 | | HIGHES | T DAILY M | EAN | | 1830 | Mar | 4 | | 6740 | Mar 21 | | 7790 | Jan | 19 1 | 996 | | LOWEST | DAILY ME. | AN | | 44 | aSep | 6 | | 41 | bSep 16 | | 41 | bSep | 16 1 | 998 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 47 | Sep | | | 43 | cSep 11 | | 43 | cSep | | | | INSTAN | TANEOUS P | EAK FLOW | | | | | | 10600 | Mar 20 | | 15900 | Sep | | | | INSTAN | TANEOUS P | EAK STAGE | | | | | | 10 | .19 Mar 20 | | 12.45 | _ | | | | INSTAN | TANEOUS L | OW FLOW | | | | | | 41 | dSep 15 | | 24 | fDec | | | | ANNUAL | RUNOFF (| CFSM) | | | 74 | | | 1. | - | | 1.07 | 7 | | | | | RUNOFF (| | | 10. | 10 | | | 17 | | | 14.60 |) | | | | | CENT EXCE | | | 460 | - | | | 798 | | | 531 | - | | | | | CENT EXCE | | | 113 | | | | 131 | | | 149 | | | | | 90 PER | CENT EXCE | EDS | | 52 | | | | 49 | | | 63 | | | | a Also Sept. 7, 9, 1997. b Also Sept. 17, 1998. c Also Sept. 12, 13, 1998. d Also Sept. 16, 17, 18, 1998. f Result of freezeup. # 02054530 ROANOKE RIVER AT GLENVAR, VA LOCATION.--Lat 37°16'04", long 80°08'23", Roanoke County, Hydrologic Unit 03010101, on left bank 150 ft downstream from bridge on State Highway 1154, 0.2 mi downstream from mouth of Callahan Branch, 0.3 mi south of Glenvar, and 2.5 mi upstream from mouth of Mill Creek. DRAINAGE AREA. -- 284 mi². PERIOD OF RECORD. -- December 1991 to current year. GAGE.--Water-stage recorder. Elevation of gage is 1,100 ft above sea level, from topographic map. REMARKS.--Records good except those for periods with ice effect, Jan. 1, Mar. 14, and periods of doubtful gage-height record, July 6, 7, and Aug. 17, which are fair. Water is withdrawn upstream for municipal use by Roanoke County, amount unknown. Roanoke County gage-height transmitter at station. Maximum discharge, 19,800 ft³/s, from rating curve extended above 10,900 ft³/s. Several observations of water temperature were made during the year. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of June 21, 1972, reached a stage of about 20.2 ft, from information by local resident, discharge, about 25,000 $\rm ft^3/s$, from rating curve extended above 10,900 $\rm ft^3/s$. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,500 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1015 | 10,200 | 12.25 | Mar. 20 | 2330 | *11,400 | *12.93 | | Feb. 4 | 1730 | 9,030 | 11.55 | Apr. 19 | 2245 | 6,240 | 9.75 | | Feb. 17 | 2015 | 6.770 | 10 12 | = | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 40 ft³/s, Sept. 16, 17. | | | | | | Di | AILY MEAN | VALUES | | | | | | |-------|------|------|------|-------|-------|-----------|--------|-------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 67 | 66 | 73 | e69 | 678 | 552 | 338 | 537 | 293 | 162 | 77 | 52 | | 2 | 60 | 99 | 72 | 76 | 547 | 464 | 314 | 905 | 255 | 138 | 74 | 51 | | 3 | 57 | 117 | 68 | 92 | 563 | 409 | 291 | 655 | 643 | 130 | 68 | 50 | | 4 | 55 | 90 | 70 | 98 | 5340 | 365 | 586 | 921 | 367 | 125 | 65 | 51 | | 5 | 53 | 78 | 72 | 120 | 4170 | 329 | 703 | 848 | 349 | 138 | 63 | 49 | | 6 | 52 | 73 | 68 | 146 | 3060 | 298 | 521 | 634 | 331 | e108 | 62 | 48 | | 7 | 51 | 71 | 65 | 171 | 1950 | 296 | 447 | 538 | 285 | e100 | 60 | 47 | | 8 | 51 | 72 | 63 | 4240 | 1270 | 326 | 401 | 601 | 237 | 105 | 67 | 46 | | 9 | 50 | 73 | 63 | 1080 | 1010 | 524 | 543 | 541 | 217 | 119 | 121 | 45 | | 10 | 50 | 69 | 67 | 482 | 821 | 614 | 541 | 477 | 247 | 129 | 114 | 46 | | 11 | 50 | 67 | 75 | 310 | 760 | 477 | 485 | 914 | 230 | 118 | 127 | 45 | | 12 | 50 | 66 | 73 | 254 | 890 | 403 | 426 | 746 | 330 | 108 | 93 | 45 | | 13 | 50 | 65 | 68 | 244 | 936 | 359 | 372 | 595 | 303 | 93 | 80 | 44 | | 14 | 49 | 70 | 65 | 214 | 742 | e345 | 356 | 477 | 258 | 90 | 77 | 43 | | 15 | 51 | 75 | 63 | 470 | 585 | 326 | 336 | 414 | 280 | 87 | 75 | 42 | | 16 | 51 | 74 | 60 | 1150 | 533 | 282 | 321 | 379 | 240 | 90 | 145 | 41 | | 17 | 53 | 69 | 61 | 682 | 3420 | 263 | 1230 | 353 | 205 | 88 | e181 | 41 | | 18 | 58 | 66 | 62 | 443 | 3190 | 264 | 975 | 296 | 181 | 91 | 116 | 43 | | 19 | 61 | 65 | 61 | 371 | 1520 | 1340 | 1930 | 265 | 182 | 89 | 95 | 46 | | 20 | 58 | 64 | 60 | 295 | 1120 | 3430 | 3550 | 247 | 185 | 91 | 83 | 46 | | 21 | 54 | 71 | 60 | 242 | 904 | 7690 | 1520 | 234 | 169 | 84 | 76 | 46 | | 22 | 54 | 119 | 67 | 216 | 722 | 2500 | 982 | 222 | 151 | 83 | 71 | 65 | | 23 | 52 | 113 | 83 | 337 | 899 | 1400 | 759 | 268 | 139 | 93 | 68 | 57 | | 24 | 54 | 79 | 80 | 501 | 1010 | 969 | 647 | 314 | 132 | 87 | 65 | 50 | | 25 | 66 | 69 | 96 | 521 | 763 | 727 | 548 | 409 | 169 | 86 | 63 | 48 | | 26 | 72 | 74 | 107 | 416 | 651 | 603 | 480 | 349 | 146 | 84 | 61 | 48 | | 27 | 84 | 72 | 102 | 352 | 579 | 528 | 416 | 635 | 136 | 81 | 59 | 47 | | 28 | 81 | 69 | 113 | 1500 | 562 | 487 | 379 | 672 | 132 | 84 | 57 | 45 | | 29 | 69 | 67 | 93 | 1460 | | 445 | 345 | 469 | 201 | 78 | 55 | 44 | | 30 | 63 | 67 | 98 | 1250 | | 389 | 327 | 372 | 163 | 74 | 53 | 47 | | 31 | 60 | | 94 | 901 | | 358 | | 375 | | 73 | 52 | | | TOTAL | 1786 | 2289 | 2322 | 18703 | 39195 | 27762 | 21069 | 15662 | 7156 | 3106 | 2523 | 1418 | | MEAN | 57.6 | 76.3 | 74.9 | 603 | 1400 | 896 | 702 | 505 | 239 | 100 | 81.4 | 47.3 | | MAX | 84 | 119 | 113 | 4240 | 5340 | 7690 | 3550 | 921 | 643 | 162 | 181 | 65 | | MIN | 49 | 64 | 60 | 69 | 533 | 263 | 291 | 222 | 132 | 73 | 52 | 41 | | CFSM | .20 | .27 | .26 | 2.12 | 4.93 | 3.15 | 2.47 | 1.78 | .84 | .35 | .29 | .17 | | IN. | .23 | .30 | .30 | 2.45 | 5.13 | 3.64 | 2.76 | 2.05 | .94 | .41 | .33 | .19 | e Estimated. # 02054530 ROANOKE RIVER AT GLENVAR, VA--Continued | STATIST | TICS OF M | ONTHLY MEAN | DATA | FOR WATER | YEAR 19 | 92 | - 1998, | BY WATE | R YE | CAR (WY) | | | | | |---------|-----------|-------------|------|-----------|----------|----|---------|----------|------|----------|------|---------|-----------|---------| | | OCT | NOV | DEC | JAN | FEB | | MAR | APR | | MAY | JUN | JUL | AUG | SEP | | MEAN | 90.2 | 153 | 284 | 545 | 651 | | 742 | 468 | | 334 | 324 | 142 | 141 | 144 | | MAX | 170 | 355 | 715 | 784 | 1400 | | 1667 | 839 | | 610 | 660 | 195 | 295 | 586 | | (WY) | 1997 | 1997 | 1997 | 1996 | 1998 | | 1993 | 1992 | | 1992 | 1992 | 1995 | 1996 | 1996 | | MIN | 57.6 | 76.3 | 74.9 | 410 | 339 | | 313 | 120 | | 154 | 116 | 90.7 | 65.5 | 47.3 | | (WY) | 1998 | 1998 | 1998 | 1997 | 1992 | | 1995 | 1995 | | 1995 | 1994 | 1997 | 1997 | 1998 | | SUMMAR | Y STATIST | ICS | FOR | 1997 CAL | ENDAR YE | AR | | FOR 1998 | WAT | ER YEAR | | WATER Y | EARS 1992 | - 1998 | | ANNUAL | TOTAL | | | 78308 | | | | 142991 | | | | | | | | ANNUAL | MEAN | | | 215 | | | | 392 | | | | 330 | | | | HIGHES | T ANNUAL | MEAN | | | | | | | | | | 392 | | 1998 | | LOWEST | ANNUAL M | EAN | | | | | | | | | | 209 | | 1995 | | HIGHEST | T DAILY M | EAN | | 2050 | Mar | 4 | | 7690 | | Mar 21 | | 8380 | Apr : | 22 1992 | | LOWEST | DAILY ME. | AN | | 47 | Sep | 7 | | 41 | | aSep 16 | | 41 | aSep : | 16 1998 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 50 | b0ct | 8 | | 43 | | cSep 12 | | 43 | cSep : | 12 1998 | | INSTAN | TANEOUS P | EAK FLOW | | | | | | 11400 | | Mar 20 | | 19800 | Apr | 21 1992 | | INSTAN | TANEOUS P | EAK STAGE | | | | | | 12 | .93 | Mar 20 | | 17.7 | 3 Apr | 21 1992 | | INSTAN | TANEOUS L | OW FLOW | | | | | | 40 | | aSep 16 | | d40 | fDec | 30 1995 | | ANNUAL | RUNOFF (| CFSM) | | - ' | 76 | | | 1 | .38 | | | 1.1 | б | | | ANNUAL | RUNOFF (| INCHES) | | 10. | 26 | | | 18 | .73 | | | 15.8 | 0 | | | 10 PER | CENT EXCE | EDS | | 476 | | | | 894 | | | | 647 | | | | 50 PER | CENT EXCE | EDS | | 113 | | | | 129 | | | | 167 | | | | 90 PER | CENT EXCE | EDS | | 55 | | | | 51 | | | | 67 | | | a Also Sept. 17, 1998. b Also Oct. 9, 1997. c Also Sept. 13, 14, 1998. d Also Sept. 16, 17, 1998. f Result of freezeup. # 02056900 BLACKWATER RIVER NEAR ROCKY MOUNT, VA LOCATION.--Lat 37°02'42", long 79°50'40", Franklin County, Hydrologic Unit 03010101, on right bank 45 ft downstream from bridge on State Highway 122, 3.0 mi northeast of Rocky Mount, and 4.1 mi upstream from Maggodee Creek. DRAINAGE AREA. -- 115 mi². PERIOD OF RECORD. -- October 1976 to current year. GAGE.--Water-stage recorder.
Datum of gage is 876.45 ft above sea level. REMARKS.--Records good except those for period with ice effect, Jan. 1-3, and periods of doubtful gage-height record, Mar. 23 and Sept. 20, which are fair. American Electric Power gage-height transmitter at station with recorder at Roanoke. Maximum discharge, 20,800 ft³/s, from rating curve extended above 7,000 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 1.13 ft, July 21, 1986. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location by the Virginia Department of Environmental Quality - Water Division. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,500 ${\rm ft}^3/{\rm s}$ and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-------------------|--------------|-----------------------------------|---------------------|--------------------|--------------|-----------------------------------|---------------------| | Jan. 8
Jan. 28 | 1230
0400 | 2,630
2,770 | 8.00
8.26 | Feb. 17
Mar. 21 | 1530
0100 | 2,270
2,550 | 7.37
7.87 | | Feb. 4 | 1600 | *4,850 | *11.63 | Mar. 21
Apr. 19 | 2300 | 1,660 | 6.22 | Minimum discharge, 18 ft³/s, Sept. 9-15, 29. | | | | | | DA | ILY MEAN | VALUES | | | | | | |-------|------|------|------|------|-------|----------|--------|------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 41 | 60 | 49 | e49 | 230 | 225 | 191 | 247 | 112 | 66 | 38 | 25 | | 2 | 37 | 108 | 47 | e52 | 195 | 208 | 179 | 329 | 105 | 62 | 37 | 25 | | 3 | 36 | 84 | 45 | e60 | 184 | 193 | 168 | 198 | 111 | 61 | 33 | 25 | | 4 | 36 | 59 | 48 | 62 | 2390 | 182 | 259 | 188 | 104 | 61 | 30 | 28 | | 5 | 35 | 52 | 49 | 66 | 1190 | 174 | 236 | 190 | 114 | 64 | 28 | 29 | | 6 | 33 | 49 | 46 | 68 | 708 | 166 | 195 | 173 | 117 | 60 | 27 | 26 | | 7 | 32 | 56 | 44 | 86 | 506 | 161 | 182 | 171 | 107 | 57 | 25 | 25 | | 8 | 31 | 57 | 42 | 1110 | 389 | 275 | 175 | 227 | 99 | 58 | 141 | 23 | | 9 | 31 | 54 | 43 | 593 | 312 | 667 | 251 | 183 | 96 | 65 | 154 | 21 | | 10 | 32 | 50 | 46 | 249 | 264 | 396 | 233 | 168 | 109 | 70 | 62 | 20 | | 11 | 32 | 48 | 49 | 160 | 246 | 284 | 197 | 260 | 106 | 58 | 57 | 21 | | 12 | 33 | 46 | 48 | 130 | 352 | 241 | 180 | 212 | 136 | 55 | 49 | 21 | | 13 | 33 | 46 | 45 | 131 | 266 | 217 | 171 | 185 | 109 | 52 | 44 | 21 | | 14 | 35 | 55 | 44 | 111 | 237 | 204 | 168 | 170 | 97 | 50 | 42 | 20 | | 15 | 45 | 61 | 44 | 164 | 213 | 191 | 164 | 159 | 99 | 48 | 42 | 21 | | 16 | 44 | 53 | 43 | 361 | 205 | 180 | 158 | 155 | 99 | 47 | 55 | 23 | | 17 | 38 | 49 | 43 | 199 | 1290 | 175 | 468 | 156 | 107 | 111 | 94 | 25 | | 18 | 38 | 47 | 43 | 151 | 912 | 182 | 275 | 137 | 88 | 65 | 68 | 27 | | 19 | 43 | 46 | 42 | 135 | 527 | 232 | 568 | 129 | 84 | 52 | 50 | 31 | | 20 | 43 | 47 | 42 | 121 | 415 | 618 | 809 | 123 | 86 | 50 | 44 | e28 | | 21 | 38 | 47 | 42 | 104 | 341 | 1400 | 419 | 120 | 78 | 44 | 41 | 43 | | 22 | 36 | 66 | 47 | 98 | 287 | 624 | 324 | 116 | 77 | 41 | 39 | 90 | | 23 | 36 | 70 | 59 | 335 | 579 | e430 | 282 | 125 | 75 | 47 | 38 | 39 | | 24 | 36 | 56 | 55 | 258 | 479 | 352 | 264 | 146 | 72 | 45 | 35 | 30 | | 25 | 47 | 49 | 83 | 217 | 350 | 298 | 226 | 152 | 73 | 42 | 34 | 28 | | 26 | 58 | 48 | 77 | 162 | 296 | 266 | 206 | 131 | 70 | 41 | 32 | 27 | | 27 | 82 | 48 | 67 | 288 | 265 | 244 | 193 | 180 | 66 | 41 | 31 | 27 | | 28 | 57 | 46 | 86 | 2050 | 245 | 226 | 187 | 182 | 63 | 46 | 30 | 24 | | 29 | 47 | 46 | 74 | 702 | | 210 | 175 | 142 | 76 | 42 | 29 | 22 | | 30 | 44 | 47 | 71 | 397 | | 198 | 171 | 127 | 75 | 36 | 27 | 23 | | 31 | 43 | | 62 | 291 | | 188 | | 122 | | 34 | 26 | | | TOTAL | 1252 | 1650 | 1625 | 8960 | 13873 | 9607 | 7674 | 5303 | 2810 | 1671 | 1482 | 838 | | MEAN | 40.4 | 55.0 | 52.4 | 289 | 495 | 310 | 256 | 171 | 93.7 | 53.9 | 47.8 | 27.9 | | MAX | 82 | 108 | 86 | 2050 | 2390 | 1400 | 809 | 329 | 136 | 111 | 154 | 90 | | MIN | 31 | 46 | 42 | 49 | 184 | 161 | 158 | 116 | 63 | 34 | 25 | 20 | | CFSM | .35 | .48 | .46 | 2.51 | 4.31 | 2.69 | 2.22 | 1.49 | .81 | .47 | .42 | .24 | | IN. | .40 | .53 | .53 | 2.90 | 4.49 | 3.11 | 2.48 | 1.72 | .91 | .54 | .48 | . 27 | e Estimated. # 02056900 BLACKWATER RIVER NEAR ROCKY MOUNT, VA--Continued | STATIS | TICS OF M | ONTHLY MEAN | DATA F | OR WATER | YEARS 1977 | - 1998, | BY WATER | YEAR (WY) | | | | | |---------|------------|-------------|--------|-----------|------------|---------|-----------|-----------|------|-----------|----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 104 | 120 | 116 | 166 | 177 | 235 | 249 | 145 | 132 | 86.5 | 70.4 | 96.6 | | MAX | 544 | 584 | 272 | 349 | 495 | 585 | 821 | 346 | 416 | 261 | 205 | 375 | | (WY) | 1977 | 1986 | 1997 | 1996 | 1998 | 1993 | 1987 | 1978 | 1992 | 1989 | 1985 | 1979 | | MIN | 26.5 | 29.1 | 47.9 | 47.0 | 66.1 | 60.1 | 65.3 | 53.6 | 38.2 | 24.6 | 12.4 | 23.0 | | (WY) | 1992 | 1982 | 1982 | 1981 | 1989 | 1981 | 1981 | 1981 | 1981 | 1977 | 1981 | 1983 | | SUMMAR | Y STATIST | ICS | FOR | 1997 CALE | NDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER YEA | ARS 1977 | - 1998 | | ANNUAL | TOTAL | | | 40721 | | | 56745 | | | | | | | ANNUAL | MEAN | | | 112 | | | 155 | | | 141 | | | | HIGHES | T ANNUAL I | MEAN | | | | | | | | 234 | | 1987 | | LOWEST | ANNUAL M | EAN | | | | | | | | 46.1 | | 1981 | | HIGHES | T DAILY M | EAN | | 632 | Jun 2 | | 2390 | Feb 4 | | 5410 | Nov | 5 1985 | | LOWEST | DAILY ME. | AN | | 24 | Aug 31 | | 20 | aSep 10 | | 7.4 | bAug | 28 1981 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 28 | Sep 3 | | 21 | Sep 9 | | 7.8 | Aug | 25 1981 | | INSTAN | TANEOUS P | EAK FLOW | | | | | 4850 | Feb 4 | | 20800 | Nov | 5 1985 | | INSTAN | TANEOUS P | EAK STAGE | | | | | 11.6 | 3 Feb 4 | | 21.92 | Nov | 5 1985 | | INSTAN | TANEOUS L | OW FLOW | | | | | 18 | cSep 9 | | 6.6 | Jul | 21 1986 | | ANNUAL | RUNOFF (| CFSM) | | .9 | 7 | | 1.3 | 5 | | 1.23 | | | | ANNUAL | RUNOFF (| INCHES) | | 13.1 | 7 | | 18.3 | 6 | | 16.69 | | | | 10 PERG | CENT EXCE | EDS | | 200 | | | 297 | | | 240 | | | | 50 PER | CENT EXCE | EDS | | 88 | | | 73 | | | 92 | | | | 90 PER | CENT EXCE | EDS | | 35 | | | 31 | | | 38 | | | a Also Sept. 14, 1998. b Also Aug. 29, 1981. c Also Sept. 10-15, 29, 1998. # 02059500 GOOSE CREEK NEAR HUDDLESTON, VA LOCATION.--Lat 37°10'23", long 79°31'14", Bedford County, Hydrologic Unit 03010101, on left bank 0.3 mi upstream from Haden Bridge on State Highway 732, 0.4 mi upstream from Rockcastle Creek, and 3.5 mi northwest of Huddleston. DRAINAGE AREA. -- 188 mi². PERIOD OF RECORD. -- March 1925 to August 1928 (gage heights only), September 1930 to current year. REVISED RECORDS.--WSP 892: 1933, 1935(M), 1939. WSP 972: 1931-32(M), 1934(M), 1935-38, 1940, 1941(M). WSP 1082: 1940(P). WSP 1142: 1938-40(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 592.91 ft above sea level. Mar. 15, 1925, to Aug. 4, 1928, nonrecording gage at site 1,300 ft downstream at different datum. REMARKS.--Records good except those for period with ice effect, Jan. 1-3, and periods of doubtful gage-height record, Mar. 29 to Apr. 20, Aug. 20-24, which are fair. Prior to October 1954, diurnal fluctuation at low flow caused by mill upstream from station. American Electric Power gage-height transmitter at station with recorder at Roanoke. Maximum discharge, 53,200 ft³/s, from rating curve extended above 11,000 ft³/s on basis of slope-area measurements at gage heights 19.25 ft, 24.1 ft, 24.89 ft, and 37.49 ft. Minimum discharge, 3.0 ft³/s, Aug. 31, 1932, and Jan. 30, 1934, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 0945 | 5,520 | 8.28 | Feb. 17 | 1615 | 3,830 | 6.56 | | Jan. 28 | 0530 | *11,400 | *13.06 | Mar. 21 | 0345 | 6,970 | 9.57 | | Feb. 4 | 1900 | 11,300 | 12.97 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 31 ft³/s, Sept. 14-17. | DAILY MEAN VALUES | | | | | | | | | | | | | |----------------------------------|---|----------------------------------|---|--|---|---|---|---|---------------------------------|---|---|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4 | 57
54
53
55 | 156
199
112
83 | 75
70
66
81 | e75
e86
e98
101 | 383
288
258
5400 | 251
235
219
205 | e218
e218
e206
e495 | 250
377
273
296 | 122
115
114
110 | 92
86
87
86 | 63
55
51
48 | 43
42
42
45 | | 5 | 54 | 71 | 80 | 109 | 3100 | 195 | e458 | 288 | 118 | 114 | 46 | 43 | | 6
7
8
9 | 53
53
51
51
51 | 71
134
110
86
78 | 72
68
69
69
72 | 112
137
1740
664
340 |
1340
969
612
444
352 | 185
180
327
810
533 | e317
e285
e261
e399
e451 | 252
233
305
251
210 | 118
109
104
104
129 | 94
88
90
100
97 | 45
44
149
229
83 | 40
41
41
36
35 | | 11
12
13
14
15 | 50
49
50
54
66 | 73
70
69
83
88 | 80
72
70
67
66 | 207
164
166
144
413 | 328
618
427
325
269 | 344
274
238
226
211 | e303
e278
e260
e257
e245 | 374
387
276
232
207 | 121
163
133
113
143 | 81
75
75
73
69 | 112
81
67
62
63 | 34
34
32
31
33 | | 16
17
18
19
20 | 60
58
64
63
60 | 74
70
68
67
68 | 69
72
65
62
63 | 783
400
251
207
197 | 245
2090
1140
586
443 | 197
191
199
291
1100 | e260
e1760
e726
e1640
e1850 | 187
182
173
154
145 | 147
158
121
119
124 | 76
127
84
81
95 | 85
196
100
76
e70 | 31
31
35
43
40 | | 21
22
23
24
25 | 56
54
54
55
76 | 70
113
99
82
74 | 62
70
80
76
112 | 165
152
692
575
466 | 350
284
617
668
471 | 3700
1010
561
412
327 | 767
544
443
372
301 | 141
131
155
184
179 | 109
108
107
120
103 | 73
71
74
90
75 | e66
e64
e61
e59
54 | 42
63
44
37
37 | | 26
27
28
29
30
31 | 89
100
75
63
62
60 | 71
72
67
67
70 | 102
98
137
116
118
97 | 300
792
6020
1550
800
552 | 371
316
281
 | 284
261
240
e225
e237
e218 | 265
237
221
203
198 | 153
216
202
154
136
125 | 97
91
93
128
111 | 74
73
76
68
62
58 | 52
51
49
48
46
44 | 38
37
36
35
36 | | TOTAL MEAN MAX MIN CFSM IN. | 1850
59.7
100
49
.32
.37 | 2615
87.2
199
67
.46 | 2476
79.9
137
62
.42
.49 | 18458
595
6020
75
3.17
3.65 | 22975
821
5400
245
4.36
4.55 | 13886
448
3700
180
2.38
2.75 | 14438
481
1850
198
2.56
2.86 | 6828
220
387
125
1.17
1.35 | 3552
118
163
91
.63 | 2564
82.7
127
58
.44
.51 | 2319
74.8
229
44
.40
.46 | 1157
38.6
63
31
.21 | e Estimated. # 02059500 GOOSE CREEK NEAR HUDDLESTON, VA--Continued | STATISTICS OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1931 | - | 1998, | BY | WATER | YEAR | (WY) | | |---------------|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------|--| | | | | | | | | | | | | | | | | .77 10.42 261 112 50 | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------------------------|------------|-----------|-----------|-----------|--------|-----------|-----------|----------|-----------|---------|--------|---------| | MEAN | 134 | 138 | 174 | 232 | 253 | 291 | 266 | 201 | 154 | 116 | 134 | 130 | | MAX | 719 | 642 | 616 | 772 | 821 | 909 | 1320 | 780 | 802 | 466 | 822 | 1229 | | (WY) | 1938 | 1986 | 1949 | 1936 | 1998 | 1975 | 1987 | 1989 | 1995 | 1949 | 1940 | 1987 | | MIN | 27.9 | 32.9 | 45.2 | 46.6 | 48.5 | 80.1 | 73.2 | 56.8 | 50.7 | 26.3 | 22.9 | 28.8 | | (WY) | 1932 | 1932 | 1966 | 1966 | 1934 | 1981 | 1942 | 1981 | 1932 | 1966 | 1932 | 1933 | | | | | | | | | | | | | | | | SUMMARY STATISTICS | | FOR : | 1997 CALE | NDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER YEA | RS 1931 | - 1998 | | | ANNUAL | TOTAL | | | 52661 | | | 93118 | | | | | | | ANNUAL MEAN | | | 144 | | | 255 | | | 185 | | | | | HIGHEST ANNUAL MEAN | | | | | | | | | 393 | | 1987 | | | LOWEST ANNUAL MEAN | | | | | | | | | | 66.8 | | 1981 | | HIGHEST DAILY MEAN | | | | 901 | Feb 15 | | 6020 | Jan 28 | | e26000 | Sep | 8 1987 | | LOWEST DAILY MEAN | | | | 36 | aSep 5 | | 31 | bSep 14 | | 6.0 | Aug : | 28 1932 | | ANNUAL SEVEN-DAY MINIMUM | | | | 38 | Sep 3 | | 32 | Sep 11 | | 9.4 | Aug : | 25 1932 | | INSTANTANEOUS PEAK FLOW | | | | | | | 11400 | Jan 28 | | 53200 | Sep | 8 1987 | | INSTANT | TANEOUS PI | EAK STAGE | | | | | 13.06 | 6 Jan 28 | | c37.49 | Sep | 8 1987 | | | | | | | | | | | | | | | 31 dSep 14 1.36 18.43 461 109 49 3.0 13.36 325 113 48 .98 fAug 31 1932 INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) ANNUAL RUNOFF (CFSM) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Sept. 7, 1997. b Also Sept.16, 17, 1998. c From floodmarks. d Also Sept. 15-17, 1998. e Estimated. f Also Jan. 30, 1934, result of freezeup. # 02061500 BIG OTTER RIVER NEAR EVINGTON, VA LOCATION.--Lat 37°12'30", long 79°18'14", Campbell County, Hydrologic Unit 03010101, on right bank 60 ft upstream from bridge on State Highway 682, 2.0 mi southwest of Evington, and 2.1 mi upstream from Flat Creek. DRAINAGE AREA. -- 320 mi². PERIOD OF RECORD.--October 1936 to current year. Monthly discharge only for some periods, published in WSP 1303. Prior to October 1965, published as Otter River near Evington. REVISED RECORDS.--WSP 852: 1937. WSP 892: 1938-39(M). WSP 972: 1937-39. WSP 1032: 1940. WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 544.02 ft above sea level. REMARKS.--Records good except those for periods with doubtful or no gage-height record, Oct. 4-6, Dec. 1, Feb. 18, and period with ice effect, Jan. 1, 2, which are fair. Maximum discharge, 65,600 ft³/s, from rating curve extended above 24,000 ft³/s on basis of slope-area measurements of 24.96 ft and 29.93 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.—Floods in October 1937 and August 1939 reached a stage of 23.1 ft, discharge, $27,500 \, \mathrm{ft}^3/\mathrm{s}$, from rating curve extended above $7,000 \, \mathrm{ft}^3/\mathrm{s}$ on basis of unit hydrograph and flood-routing studies by U.S. Army Corps of Engineers, and records for other stations in Roanoke River Basin. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $4,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 9 | 0300 | 5,380 | 11.90 | Mar. 21 | 0300 | 5,830 | 12.77 | | Jan. 28 | 1200 | *8,260 | *15.78 | Apr. 17 | 1200 | 4,890 | 10.92 | | Feb. 4 | 2100 | 7,480 | 15.11 | Apr. 20 | 0100 | 5,390 | 11.91 | | Feb. 17 | 1900 | 5,300 | 11.73 | _ | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge 42 ft^3/s , Sept. 17. | | DAILY MEAN VALUES | | | | | | | | | | | | | |-------|-------------------|------|------|-------|-------|-------|-------|-------|-------|------|------|------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 74 | 178 | e134 | e140 | 720 | 637 | 575 | 614 | 310 | 172 | 102 | 63 | | | 2 | 68 | 456 | 125 | e155 | 639 | 615 | 575 | 942 | 281 | 157 | 97 | 62 | | | 3 | 66 | 218 | 118 | 197 | 606 | 596 | 565 | 624 | 276 | 149 | 89 | 60 | | | 4 | e71 | 135 | 160 | 208 | 3730 | 581 | 1160 | 608 | 269 | 149 | 85 | 62 | | | 5 | e69 | 113 | 172 | 216 | 3160 | 566 | 1010 | 645 | 277 | 285 | 82 | 60 | | | 6 | e66 | 105 | 137 | 242 | 1660 | 533 | 735 | 517 | 278 | 186 | 80 | 56 | | | 7 | 66 | 370 | 126 | 541 | 1340 | 515 | 654 | 509 | 262 | 156 | 78 | 55 | | | 8 | 65 | 280 | 119 | 3160 | 1020 | 821 | 612 | 750 | 244 | 157 | 222 | 52 | | | 9 | 65 | 186 | 122 | 2940 | 839 | 2120 | 816 | 720 | 241 | 169 | 578 | 49 | | | 10 | 66 | 148 | 130 | 900 | 741 | 1110 | 907 | 595 | 306 | 153 | 185 | 47 | | | 11 | 64 | 130 | 154 | 598 | 697 | 823 | 728 | 681 | 287 | 140 | 156 | 48 | | | 12 | 63 | 120 | 137 | 475 | 1090 | 730 | 655 | 705 | 303 | 130 | 124 | 49 | | | 13 | 64 | 115 | 126 | 451 | 819 | 674 | 607 | 602 | 279 | 127 | 105 | 47 | | | 14 | 65 | 136 | 122 | 425 | 729 | 642 | 599 | 546 | 247 | 125 | 138 | 45 | | | 15 | 70 | 152 | 117 | 401 | 662 | 601 | 586 | 507 | 268 | 123 | 153 | 45 | | | 16 | 73 | 127 | 116 | 1910 | 622 | 582 | 562 | 471 | 285 | 120 | 122 | 44 | | | 17 | 72 | 118 | 118 | 877 | 2730 | 579 | 2730 | 494 | 256 | 164 | 199 | 43 | | | 18 | 78 | 112 | 118 | 615 | e1800 | 594 | 1290 | 468 | 223 | 136 | 166 | 70 | | | 19 | 85 | 109 | 114 | 516 | 1150 | 731 | 1580 | 415 | 221 | 117 | 123 | 73 | | | 20 | 81 | 108 | 113 | 509 | 953 | 1310 | 2880 | 386 | 240 | 115 | 104 | 61 | | | 21 | 75 | 111 | 112 | 443 | 849 | 3910 | 1210 | 370 | 217 | 111 | 95 | 65 | | | 22 | 72 | 200 | 121 | 399 | 759 | 1510 | 950 | 355 | 216 | 109 | 91 | 140 | | | 23 | 69 | 198 | 151 | 1310 | 1150 | 1030 | 846 | 386 | 224 | 123 | 87 | 92 | | | 24 | 69 | 149 | 143 | 1160 | 1170 | 878 | 752 | 455 | 209 | 131 | 83 | 87 | | | 25 | 84 | 130 | 234 | 893 | 849 | 781 | 680 | 457 | 189 | 126 | 81 | 85 | | | 26 | 103 | 124 | 223 | 650 | 751 | 723 | 625 | 391 | 189 | 118 | 77 | 87 | | | 27 | 162 | 120 | 195 | 972 | 707 | 682 | 583 | 447 | 185 | 124 | 74 | 81 | | | 28 | 119 | 114 | 279 | 6850 | 678 | 650 | 559 | 493 | 177 | 134 | 72 | 74 | | | 29 | 95 | 113 | 242 | 2240 | | 617 | 536 | 391 | 268 | 122 | 70 | 70 | | | 30 | 89 | 117 | 239 | 1140 | | 592 | 513 | 356 | 230 | 109 | 67 | 72 | | | 31 | 86 | | 198 | 860 | | 578 | | 384 | | 102 | 65 | | | | TOTAL | 2414 | 4792 | 4715 | 32393 | 32620 | 27311 | 27080 | 16284 | 7457 | 4339 | 3850 | 1944 | | | MEAN | 77.9 | 160 | 152 | 1045 | 1165 | 881 | 903 | 525 | 249 | 140 | 124 | 64.8 | | | MAX | 162 | 456 | 279 | 6850 | 3730 |
3910 | 2880 | 942 | 310 | 285 | 578 | 140 | | | MIN | 63 | 105 | 112 | 140 | 606 | 515 | 513 | 355 | 177 | 102 | 65 | 43 | | | CFSM | . 24 | .50 | .48 | 3.27 | 3.64 | 2.75 | 2.82 | 1.64 | .78 | .44 | .39 | .20 | | | IN. | .28 | .56 | .55 | 3.77 | 3.79 | 3.17 | 3.15 | 1.89 | .87 | .50 | .45 | .23 | | | TIN. | . 40 | . 50 | | 3.11 | 3.19 | 3.1/ | 3.13 | 1.00 | . 0 / | . 50 | . 40 | . 43 | | e Estimated. # 02061500 BIG OTTER RIVER NEAR EVINGTON, VA--Continued | STATIST | rics of M | ONTHLY MEAN | DATA E | FOR WATER | YEARS 1937 | - 1998, | BY WATER | YEAR (WY) | | | | | | |---------|------------|-------------|--------|-----------|------------|---------|------------|-----------|------|----------|-----------|---------|--| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | MEAN | 232 | 258 | 340 | 421 | 497 | 550 | 491 | 382 | 314 | 216 | 241 | 205 | | | MAX | 1163 | 1200 | 1192 | 1045 | 1165 | 1332 | 2062 | 1335 | 2124 | 925 | 1412 | 1150 | | | (WY) | 1991 | 1986 | 1949 | 1998 | 1998 | 1993 | 1987 | 1989 | 1995 | 1949 | 1940 | 1996 | | | MIN | 52.5 | 68.7 | 68.6 | 95.7 | 193 | 153 | 127 | 106 | 71.0 | 27.9 | 33.3 | 29.9 | | | (WY) | 1964 | 1966 | 1966 | 1966 | 1968 | 1981 | 1966 | 1981 | 1966 | 1966 | 1963 | 1968 | | | SUMMARY | Y STATIST | ICS | FOR | 1997 CALE | ENDAR YEAR | F | OR 1998 WA | TER YEAR | | WATER YE | EARS 1937 | - 1998 | | | ANNUAL | TOTAL | | | 100496 | | | 165199 | | | | | | | | ANNUAL | MEAN | | | 275 | | | 453 | | | 345 | | | | | HIGHEST | r annual i | MEAN | | | | | | | | 635 | | 1949 | | | LOWEST | ANNUAL M | EAN | | | | | | | | 139 | | 1981 | | | HIGHEST | r DAILY M | EAN | | 1790 | Feb 15 | | 6850 | Jan 28 | | 35700 | Jun | 23 1995 | | | LOWEST | DAILY ME | AN | | 55 | Sep 8 | | 43 | Sep 17 | | 12 | aJul | 28 1966 | | | ANNUAL | SEVEN-DA | Y MINIMUM | | 60 | Sep 3 | | 46 | Sep 11 | | 13 | Sep | 7 1966 | | | INSTANT | TANEOUS P | EAK FLOW | | | | | 8260 | Jan 28 | | 65600 | Jun | 23 1995 | | | INSTANT | TANEOUS P | EAK STAGE | | | | | 15.78 | Jan 28 | | 29.93 | 3 Jun | 23 1995 | | | INSTANT | TANEOUS LO | OW FLOW | | | | | 42 | Sep 17 | | 12 | bJul | 28 1966 | | | ANNUAL | RUNOFF (| CFSM) | | . 8 | 36 | | 1.41 | | | 1.08 | 3 | | | | ANNUAL | RUNOFF (| INCHES) | | 11.6 | 58 | | 19.20 | | | 14.63 | 3 | | | | 10 PERG | CENT EXCE | EDS | | 557 | | | 921 | | | 630 | | | | | 50 PERG | CENT EXCE | EDS | | 198 | | | 216 | | | 220 | | | | | 90 PERG | CENT EXCE | EDS | | 72 | | | 70 | | | 82 | | | | a Also Sept. 12, 13, 1966. b Also Sept. 12-14, 1966. # 02064000 FALLING RIVER NEAR NARUNA, VA LOCATION.--Lat 37°07'36", long 78°57'36", Campbell County, Hydrologic Unit 03010102, on left bank at upstream side of bridge on State Highway 643, 2.7 mi northeast of Naruna, and 3.2 mi upstream from Little Falling River. DRAINAGE AREA. -- 173 mi². PERIOD OF RECORD.--July 1929 to January 1935, September 1941 to current year. REVISED RECORDS.--WSP 1333: 1930, 1931-34(M), 1935. WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 412.32 ft above sea level. Prior to Jan. 15, 1935, nonrecording gage at same site and datum. REMARKS.--Records good except those for period with ice effect, Jan. 1, 2, and periods of doubtful gage-height record, Mar. 23-27, May 14, 15, and Aug. 18, which are fair. Small diurnal fluctuation caused by gristmill at Spring Mills. Maximum discharge, 62,800 ft³/s, from rating curve extended above 7,100 ft³/s on basis of slope-area measurements at gage heights 23.9 ft, 26.5 ft, 29.2 ft, and 36.1 ft. Minimum gage height, 2.18 ft, Oct. 9, 1932. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1940 reached a stage of 26.5 ft, from floodmarks, discharge, $22,000~{\rm ft}^3/{\rm s}$, by slope-area measurement. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,300 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 28 | 0515 | 4,280 | 13.21 | Mar. 21 | 0015 | *6,470 | *16.36 | | Feb. 4 | 1815 | 3,600 | 11.94 | Apr. 17 | 1200 | 3,210 | 11.15 | | Feb. 17 | 1930 | 3,470 | 11.68 | May 8 | 0100 | 2,720 | 10.10 | | Mar. 9 | 1130 | 2,360 | 9.28 | May 8 | 1445 | 3,290 | 11.32 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum daily discharge, $39 \text{ ft}^3/\text{s}$, Sept. 17. | | | DISCIE | AKGE, IN | CODIC FEE | | AILY MEAN | | JOBER 199 | / IO DEFI | יככו אם מחים | 5 | | |-------|------|--------|----------|-----------|-------|-----------|-------|-----------|-----------|--------------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 55 | 278 | 131 | e92 | 367 | 251 | 204 | 237 | 167 | 89 | 67 | 54 | | 2 | 51 | 287 | 98 | e102 | 330 | 240 | 204 | 342 | 154 | 83 | 60 | 53 | | 3 | 52 | 201 | 86 | 118 | 321 | 228 | 185 | 237 | 152 | 79 | 55 | 53 | | 4 | 52 | 123 | 168 | 140 | 1930 | 209 | 892 | 242 | 155 | 83 | 52 | 59 | | 5 | 51 | 97 | 154 | 135 | 1300 | 200 | 603 | 763 | 164 | 108 | 50 | 53 | | 6 | 49 | 92 | 114 | 127 | 868 | 192 | 325 | 329 | 155 | 86 | 47 | 49 | | 7 | 48 | 477 | 97 | 169 | 585 | 188 | 261 | 614 | 150 | 80 | 47 | 48 | | 8 | 48 | 250 | 89 | 994 | 384 | 654 | 236 | 2270 | 144 | 78 | 111 | 46 | | 9 | 48 | 162 | 87 | 541 | 301 | 1550 | 253 | 791 | 142 | 100 | 464 | 44 | | 10 | 48 | 120 | 97 | 285 | 257 | 618 | 265 | 427 | 186 | 195 | 164 | 43 | | 11 | 48 | 100 | 118 | 213 | 257 | 360 | 223 | 297 | 165 | 107 | 111 | 44 | | 12 | 47 | 90 | 98 | 180 | 961 | 291 | 202 | 260 | 164 | 92 | 84 | 43 | | 13 | 48 | 85 | 89 | 191 | 420 | 254 | 192 | 240 | 157 | 88 | 73 | 42 | | 14 | 50 | 110 | 87 | 182 | 308 | 240 | 193 | e215 | 143 | 86 | 69 | 41 | | 15 | 73 | 111 | 152 | 547 | 257 | 218 | 193 | e194 | 158 | 82 | 68 | 40 | | 16 | 66 | 92 | 80 | 997 | 240 | 206 | 182 | 175 | 153 | 79 | 89 | 40 | | 17 | 73 | 82 | 77 | 415 | 1800 | 201 | 1790 | 861 | 136 | 90 | 198 | 39 | | 18 | 213 | 79 | 75 | 285 | 1200 | 242 | 681 | 269 | 125 | 86 | e160 | 41 | | 19 | 109 | 76 | 73 | 238 | 519 | 916 | 536 | 200 | 151 | 74 | 100 | 52 | | 20 | 83 | 74 | 72 | 226 | 376 | 1320 | 1100 | 180 | 171 | 72 | 79 | 50 | | 21 | 69 | 77 | 73 | 191 | 328 | 4010 | 453 | 174 | 133 | 67 | 73 | 48 | | 22 | 63 | 154 | 79 | 174 | 277 | 1080 | 331 | 162 | 120 | 64 | 70 | 81 | | 23 | 57 | 132 | 97 | 1110 | 503 | e560 | 291 | 187 | 116 | 66 | 67 | 59 | | 24 | 56 | 102 | 91 | 780 | 515 | e430 | 261 | 222 | 128 | 84 | 64 | 47 | | 25 | 68 | 88 | 195 | 557 | 332 | e365 | 238 | 206 | 111 | 72 | 63 | 45 | | 26 | 128 | 83 | 158 | 331 | 278 | e295 | 224 | 179 | 102 | 67 | 60 | 45 | | 27 | 187 | 81 | 143 | 666 | 255 | e240 | 213 | 225 | 95 | 85 | 60 | 44 | | 28 | 105 | 76 | 185 | 3880 | 244 | 227 | 210 | 250 | 92 | 121 | 60 | 42 | | 29 | 79 | 75 | 160 | 1480 | | 212 | 210 | 196 | 121 | 83 | 57 | 40 | | 30 | 72 | 87 | 156 | 688 | | 202 | 198 | 180 | 100 | 71 | 56 | 40 | | 31 | 69 | | 136 | 477 | | 196 | | 199 | | 66 | 55 | | | TOTAL | 2265 | 3941 | 3515 | 16511 | 15713 | 16395 | 11349 | 11323 | 4210 | 2683 | 2833 | 1425 | | MEAN | 73.1 | 131 | 113 | 533 | 561 | 529 | 378 | 365 | 140 | 86.5 | 91.4 | 47.5 | | MAX | 213 | 477 | 195 | 3880 | 1930 | 4010 | 1790 | 2270 | 186 | 195 | 464 | 81 | | MIN | 47 | 74 | 72 | 92 | 240 | 188 | 182 | 162 | 92 | 64 | 47 | 39 | | CFSM | .42 | .76 | .66 | 3.08 | 3.24 | 3.06 | 2.19 | 2.11 | .81 | .50 | .53 | .27 | | IN. | .49 | .85 | .76 | 3.55 | 3.38 | 3.53 | 2.44 | 2.43 | .91 | .58 | .61 | .31 | | TIM. | . 40 | .05 | . / 0 | 3.33 | 3.30 | 3.33 | 2.77 | 4.43 | . 21 | . 50 | .01 | | e Estimated. # 02064000 FALLING RIVER NEAR NARUNA, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1930 - | 1934. | 1942 - | - 1998. | BY | WATER | YEAR | (WY) | |------------|----|---------|------|------|-----|-------|-------|--------|-------|--------|---------|----|-------|------|------| OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|------|-------|------------|-----------|------|------------|-----------|------|----------|------|------------------| | MEAN | 105 | 126 | 161 | 203 | 237 | 265 | 218 | 166 | 123 | 91.4 | 83.0 | 123 | | MAX | 399 | 639 | 487 | 636 | 683 | 844 | 552 | 606 | 898 | 334 | 400 | 1475 | | (WY) | 1973 | 1986 | 1997 | 1978 | 1979 | 1975 | 1987 | 1971 | 1972 | 1972 | 1985 | 1996 | | MIN | 24.5 | 32.2 | 44.0 | 47.9 | 56.5 | 62.9 | 60.2 | 50.7 | 25.4 | 29.9 | 23.9 | 20.1 | | (WY) | 1970 | 1970 | 1966 | 1966 | 1931 | 1981 | 1966 | 1981 | 1970 | 1970 | 1932 | 1970 | | SUMMARY | STATIST | ics | FOR 1 | 1997 CALEI | NDAR YEAR | F | OR 1998 WA | ATER YEAR | | WATER YE | | - 1934
- 1998 | | ANNUAL | TOTAL | | | 58530 | | | 92163 | | | | | | | ANNUAL | MEAN | | | 160 | | | 253 | | | 158 | | | | HIGHEST | ' ANNUAL N | MEAN | | | | | | | | 322 | | 1996 | | LOWEST | ANNUAL M | EAN | | | | | | | | 60.9 | | 1970 | | HIGHEST | DAILY ME | EAN | | 1010 | Feb 15 | | 4010 | Mar 21 | | e20000 | Sep | 6 1996 | | HIGHEST ANNUAL MEAN | | | | | 322 | 1 | L996 | |--------------------------|----------|----|-------|---------|--------|-----------|------| | LOWEST ANNUAL MEAN | | | | | 60.9 | 1 | L970 | | HIGHEST DAILY MEAN | 1010 Feb | 15 | 4010 | Mar 21 | e20000 | Sep 6 1 | L996 | | LOWEST DAILY MEAN | 37 aAug | 18 | 39 | Sep 17 | 5.0 | bSep 27 1 | L932 | | ANNUAL SEVEN-DAY MINIMUM | 40 Sep | 2 | 41 | Sep 12 | 7.7 | Jul 22 1 | L966 | | INSTANTANEOUS PEAK FLOW | | | 6470 | Mar 21 | 32600 | Jun 22 1 | L972 | | INSTANTANEOUS PEAK STAGE | |
| 16.36 | Mar 21 | c36.14 | Sep 6 1 | L996 | | INSTANTANEOUS LOW FLOW | | | 39 | dSep 15 | 3.0 | Oct 9 1 | L932 | | ANNUAL RUNOFF (CFSM) | .93 | | 1.46 | | .91 | | | | ANNUAL RUNOFF (INCHES) | 12.59 | | 19.82 | | 12.41 | | | | 10 PERCENT EXCEEDS | 298 | | 538 | | 269 | | | | 50 PERCENT EXCEEDS | 117 | | 144 | | 95 | | | | 90 PERCENT EXCEEDS | 50 | | 52 | | 38 | | | | | | | | | | | | a b c d e Also Sept. 8, 1997. Also Oct. 9, 14, 1932. From high-water mark on gage house. Also Sept. 16, 17, 29, 30, 1998. Estimated. # 02065500 CUB CREEK AT PHENIX, VA LOCATION.--Lat 37°04'45", long 78°45'50", Charlotte County, Hydrologic Unit 03010102, on right bank 5 ft upstream from bridge on State Highway 40, 0.9 mi west of Phenix, 1.9 mi downstream from Rough Creek, and 6.4 mi upstream from Louse Creek. DRAINAGE AREA. -- 98.0 mi². PERIOD OF RECORD. -- August 1946 to current year. REVISED RECORDS.--WSP 1333: 1947(M), 1948, 1949(M). WSP 2104: Drainage area. WDR VA-76-1: 1975. GAGE.--Water-stage recorder. Datum of gage is 370.19 ft above sea level. Prior to July 14, 1950, nonrecording gage at same site and datum. REMARKS.--Records good except for period with ice effect, Jan. 1, which is fair. Maximum discharge, 15,200 ft³/s, from rating curve extended above 5,400 ft³/s on basis of contracted-opening measurement of peak flow. Minimum gage height, 0.74 ft, Oct. 6, 1970. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 1940 reached a stage of 17.5 ft, from floodmarks, discharge not determined. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 24 | 1630 | 1,130 | 7.63 | Mar. 21 | 1800 | 2,190 | 10.21 | | Jan. 28 | 2230 | *2,690 | *11.39 | Apr. 5 | 1030 | 1,160 | 7.72 | | Feb. 5 | 1130 | 1,570 | 9.00 | Apr. 18 | 0530 | 1,440 | 8.72 | | Feb. 18 | 0930 | 2,020 | 9.90 | May 9 | 0400 | 2,410 | 10.58 | | Mar 20 | 0200 | 1 560 | 8 99 | * | | • | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum daily discharge, 26 ft³/s, Sept. 29, 30. | | | | | | DAIL | Y MEAN VA | LUES | | | | | | |----------------------------------|-----------------------------------|---|--------------------------------------|---|--|--|--|--|----------------------------------|----------------------------------|----------------------------------|--------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 32
30
30
30
30 | 77
115
72
55
48 | 91
78
69
96
105 | e76
78
80
83
82 | 166
146
136
313
1170 | 139
146
147
130
123 | 131
166
135
251
843 | 133
171
137
127
282 | 102
91
88
91
93 | 61
58
58
58
71 | 48
45
43
43 | 38
37
37
40
38 | | 6
7
8
9
10 | 29
28
28
28
28 | 46
145
217
112
89 | 82
73
70
68
74 | 80
92
155
212
123 | 757
475
279
182
156 | 119
117
181
478
695 | 355
180
160
161
160 | 491
184
751
1720
530 | 90
87
82
81
109 | 63
58
58
66
147 | 41
41
45
174
108 | 35
35
34
32
32 | | 11
12
13
14
15 | 28
28
28
29
40 | 77
70
68
87
87 | 95
79
72
69
67 | 97
88
92
94
151 | 147
260
261
162
141 | 260
163
146
139
132 | 144
133
127
127
130 | 209
172
157
141
130 | 99
95
90
82
82 | 77
62
59
57
56 | 66
57
53
51
50 | 32
31
31
30
30 | | 16
17
18
19
20 | 39
38
144
81
54 | 73
67
64
63
63 | 65
65
64
63 | 420
498
174
135
132 | 133
400
1440
562
218 | 126
123
161
751
1150 | 124
400
1060
332
343 | 122
268
332
141
121 | 94
83
75
82
108 | 55
73
64
55
53 | 59
84
149
74
57 | 30
29
30
31
32 | | 21
22
23
24
25 | 43
38
35
35
42 | 64
113
106
81
71 | 63
67
82
75
119 | 112
102
266
865
595 | 181
154
177
288
188 | 1450
977
356
205
173 | 368
189
168
158
144 | 115
106
112
133
127 | 81
75
77
89
74 | 51
50
58
59
55 | 52
50
48
46
46 | 32
32
32
29
28 | | 26
27
28
29
30
31 | 72
111
63
47
43
41 | 69
67
64
64
70 | 109
95
121
104
101
94 | 251
208
1250
1990
661
235 | 152
142
139
 | 158
152
146
141
136
132 | 135
127
124
121
120 | 109
150
161
123
111
110 | 69
65
63
73
66 | 52
51
59
54
50
48 | 44
43
43
41
40
39 | 29
28
27
26
26 | | TOTAL MEAN MAX MIN CFSM IN. | 1372
44.3
144
28
.45 | 2464
82.1
217
46
.84
.94 | 2538
81.9
121
63
.84 | 9477
306
1990
76
3.12
3.60 | 8925
319
1440
133
3.25
3.39 | 9452
305
1450
117
3.11
3.59 | 7116
237
1060
120
2.42
2.70 | 7676
248
1720
106
2.53
2.91 | 2536
84.5
109
63
.86 | 1896
61.2
147
48
.62 | 1822
58.8
174
39
.60 | 953
31.8
40
26
.32 | e Estimated. # 02065500 CUB CREEK AT PHENIX, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1947 | - | 1998, | BY | WATER | YEAR | (WY) | | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------|--| |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------|--| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------|------------|-----------|-------|-------------|-----------|------|----------|-------------|------|-----------|----------|--------| | MEAN | 69.1 | 92.9 | 105 | 133 | 150 | 165 | 145 | 104 | 77.8 | 57.6 | 54.1 | 69.5 | | MAX | 293 | 429 | 279 | 478 | 447 | 443 | 354 | 261 | 518 | 192 | 257 | 572 | | (WY) | 1972 | 1986 | 1997 | 1978 | 1979 | 1975 | 1983 | 1971 | 1972 | 1972 | 1985 | 1996 | | MIN | 14.0 | 22.7 | 27.9 | 35.1 | 56.4 | 51.7 | 50.4 | 37.8 | 15.7 | 19.5 | 16.2 | 8.03 | | (WY) | 1971 | 1970 | 1966 | 1966 | 1968 | 1981 | 1966 | 1981 | 1970 | 1966 | 1964 | 1968 | | CIIMMADA | Z OMANICO | Tag | FOR | 1007 GNI EN | ממש ממח | | EOD 1000 | MARIED MEAD | | WARRED WE | NDG 1045 | 1000 | | SUMMAR | Y STATIST | ICS | FOR . | L997 CALEN | NDAR YEAR | 1 | FOR 1998 | WATER YEAR | | WATER YEA | ARS 1947 | - 1998 | | ANNUAL | TOTAL | | | 39417 | | | 56227 | | | | | | | ANNUAL | MEAN | | | 108 | | | 154 | | | 102 | | | | HIGHEST | r annual i | MEAN | | | | | | | | 188 | | 1972 | | LOWEST | ANNUAL M | EAN | | | | | | | | 36.1 | | 1970 | | HIGHEST | r daily M | EAN | | 763 | Apr 29 | | 1990 | Jan 29 | | 6920 | Sep | 6 1996 | | LOWEST | DAILY ME. | AN | | 26 | Sep 8 | | 26 | aSep 29 | | 2.8 | b0ct | 6 1970 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 28 | Sep 3 | | 28 | Sep 24 | | 3.2 | Oct | 5 1970 | | INSTAN | FANEOUS P | EAK FLOW | | | | | 2690 | Jan 28 | | 15200 | Sep | 6 1996 | | INSTANT | TANEOUS P | EAK STAGE | | | | | 11. | 39 Jan 28 | | 21.89 | Sep | 6 1996 | | INSTANT | TANEOUS L | OW FLOW | | | | | 26 | aSep 29 | | 2.6 | Oct | 6 1970 | | ANNUAL | RUNOFF (| CFSM) | | 1.10 |) | | 1. | 57 | | 1.04 | | | | ANNUAL | RUNOFF (| INCHES) | | 14.96 | 5 | | 21. | 34 | | 14.08 | | | | 10 PERG | CENT EXCE | EDS | | 194 | | | 272 | | | 174 | | | | 50 PERG | CENT EXCE | EDS | | 78 | | | 87 | | | 65 | | | | | | | | | | | | | | | | | 90 PERCENT EXCEEDS a Also Sept. 30, 1998. b Also Oct. 7, 1970. #### 02069700 SOUTH MAYO RIVER NEAR NETTLERIDGE, VA LOCATION.--Lat 36°34'15", long 80°07'47", Patrick County, Hydrologic Unit 03010103, on right bank 60 ft downstream from bridge on State Highway 700, 1.2 mi southeast of Nettleridge, 1.4 mi downstream from Russell Creek, and 3.6 mi upstream from Spoon Creek. DRAINAGE AREA. -- 84.6 mi². PERIOD OF RECORD. -- October 1962 to current year. REVISED RECORDS.--WSP 2104: Drainage area. WDR VA-74-1: 1972(M). GAGE.--Water-stage recorder. Datum of gage is 871.60 ft above sea level. Prior to Oct. 9, 1964, nonrecording gage and crest-stage gage at same site and datum. REMARKS.--Records good except those for period with ice effect, Jan. 1, 2, and periods of doubtful gage-height record, Mar. 23-25, and Aug. 10, which are fair. Maximum discharge, 20,600 ft³s, from rating curve extended above 2,900 ft³/s on basis of contracted-opening measurements at gage heights 18.32 ft and 22.00 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location by the Virginia Department of Environmental Quality - Water Division. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,300 ${\rm ft}^3/{\rm s}$ and
maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Apr. 17 | 1030 | *1,680 | *7.95 | Apr. 19 | 2000 | 1,470 | 7.48 | | Minimum | discharge, | 33 ft ³ /s, Sept. | 17, 29. | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAY JUN JUL AUG SEP e52 e56 e86 e160 e145 e132 ------------------TOTAL 56.7 MEAN 48.1 53.7 91.2 61.4 69.7 38.9 MAX MTN .64 .73 CFSM . 57 .67 2.06 2.74 2.02 2.22 2.09 1.08 .82 . 46 .77 TN .71 2.38 2 85 2.33 2 47 2 41 1 20 .84 .51 e Estimated. # 02069700 SOUTH MAYO RIVER NEAR NETTLERIDGE, VA--Continued | STATIST | rics of M | ONTHLY MEAN | DATA F | OR WATER | YEARS 1963 | - 1998, | BY WATER | YEAR (WY) | | | | | |---------|------------|-------------|--------|-----------|------------|---------|-------------|-----------|------|-----------|---------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 102 | 108 | 119 | 144 | 156 | 189 | 184 | 151 | 130 | 110 | 99.2 | 92.5 | | MAX | 304 | 339 | 240 | 261 | 352 | 423 | 497 | 295 | 435 | 303 | 407 | 417 | | (WY) | 1990 | 1986 | 1997 | 1993 | 1990 | 1993 | 1987 | 1990 | 1972 | 1989 | 1985 | 1979 | | MIN | 37.1 | 45.0 | 55.5 | 48.6 | 77.6 | 65.0 | 69.7 | 56.5 | 45.4 | 43.2 | 28.0 | 38.9 | | (WY) | 1964 | 1982 | 1981 | 1981 | 1981 | 1981 | 1967 | 1981 | 1986 | 1977 | 1981 | 1998 | | SUMMARY | Y STATIST | ICS | FOR | 1997 CALE | NDAR YEAR | F | OR 1998 WA' | TER YEAR | | WATER YEA | RS 1963 | - 1998 | | ANNUAL | TOTAL | | | 42400 | | | 41139 | | | | | | | ANNUAL | MEAN | | | 116 | | | 113 | | | 132 | | | | HIGHEST | r annual i | MEAN | | | | | | | | 206 | | 1990 | | LOWEST | ANNUAL M | EAN | | | | | | | | 59.3 | | 1981 | | HIGHEST | r daily M | EAN | | 835 | Apr 29 | | 853 | Jan 28 | | 6820 | Jun 2 | 21 1972 | | LOWEST | DAILY ME | AN | | 41 | aOct 7 | | 33 | Sep 29 | | 21 | | 9 1981 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 42 | Oct 6 | | 35 | Sep 11 | | 22 | Aug 2 | 25 1981 | | INSTANT | FANEOUS P | EAK FLOW | | | | | 1680 | Apr 17 | | 20600 | Sep 2 | 22 1979 | | INSTANT | raneous p | EAK STAGE | | | | | 7.95 | Apr 17 | | 22.00 | Sep 2 | 22 1979 | | INSTANT | FANEOUS L | OW FLOW | | | | | 33 | Sep 17 | | 20 | cAug 2 | 29 1981 | | ANNUAL | RUNOFF (| CFSM) | | 1.3 | 37 | | 1.33 | | | 1.56 | | | | ANNUAL | RUNOFF (| INCHES) | | 18.6 | 4 | | 18.09 | | | 21.18 | | | | | CENT EXCE | | | 195 | | | 205 | | | 217 | | | | | CENT EXCE | | | 101 | | | 78 | | | 100 | | | | 90 PERG | CENT EXCE | EDS | | 47 | | | 42 | | | 52 | | | a Also Oct. 8, 9, 1997. b Also Aug. 30, 1981. c Also Sept. 9, 1997. # 02070000 NORTH MAYO RIVER NEAR SPENCER, VA LOCATION.--Lat 36°33'58", long 79°59'14", Henry County, Hydrologic Unit 03010103, on left bank 800 ft downstream from bridge on State Highway 629 at Moores Mill, 2.1 mi downstream from Horse Pasture Creek, and 3.8 mi southeast of Spencer. DRAINAGE AREA. -- 108 mi². PERIOD OF RECORD.--October 1928 to current year. Monthly discharge only for some periods, published in WSP 1303. REVISED RECORDS.--WSP 1303: 1929-32(M), 1934(M). GAGE.--Water-stage recorder. Datum of gage is 730.94 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Jan. 23, 1936, nonrecording gage at site 800 ft upstream at datum 1.50 ft higher. July 25 to Sept. 27, 1936, nonrecording gage at present site and datum. REMARKS.--Records good except those for periods of doubtful or no gage-height record, Nov. 3, and Aug. 30 to Sept. 30, which are fair. Maximum discharge, 17,200 ft³/s, from rating curve extended above 7,200 ft³/s on basis of slope-area measurement at gage height 13.41 ft and velocity-area study. Minimum gage height, 1.08 ft, Oct. 8, 1954. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION .-- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,400 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 28 | 0600 | *2,650 | *6.48 | Apr. 17 | 1400 | 2,390 | 6.16 | | Feb. 4 | 1700 | 1,640 | 5.13 | Apr. 19 | 2400 | 1,970 | 5.61 | | Feb. 17 | 1530 | 1,680 | 5.19 | May 7 | 2330 | 1,450 | 4.83 | Minimum daily discharge, 44 ${\rm ft}^3/{\rm s}$, Sept. 15, 16. | | | DISCH | ARGE, IN O | CUBIC FEET | | OND, WATER | | FOBER 1997 | 7 TO SEPT | EMBER 199 | 3 | | |-------|------|-------|------------|------------|------|------------|------|------------|-----------|-----------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 56 | 62 | 66 | 69 | 146 | 139 | 119 | 171 | 133 | 89 | 61 | e54 | | 2 | 54 | 79 | 61 | 71 | 131 | 131 | 119 | 193 | 123 | 85 | 57 | e53 | | 3 | 54 | e90 | 60 | 72 | 140 | 124 | 112 | 151 | 120 | 85 | 54 | e52 | | 4 | 54 | 63 | 68 | 77 | 1100 | 117 | 137 | 172 | 133 | 82 | 52 | e74 | | 5 | 54 | 61 | 65 | 77 | 888 | 114 | 122 | 157 | 153 | 85 | 51 | e58 | | 6 | 53 | 60 | 61 | 75 | 328 | 111 | 113 | 137 | 137 | 81 | 50 | e55 | | 7 | 53 | 63 | 60 | 84 | 218 | 110 | 110 | 403 | 125 | 79 | 49 | e53 | | 8 | 52 | 62 | 60 | 529 | 177 | 392 | 110 | 752 | 116 | 90 | 98 | e53 | | 9 | 52 | 61 | 61 | 239 | 154 | 914 | 121 | 279 | 116 | 142 | 191 | e51 | | 10 | 53 | 60 | 63 | 128 | 137 | 366 | 116 | 203 | 131 | 88 | 94 | e49 | | 11 | 53 | 60 | 65 | 102 | 134 | 221 | 112 | 308 | 123 | 80 | 96 | e47 | | 12 | 53 | 60 | 62 | 92 | 306 | 179 | 107 | 228 | 117 | 77 | 72 | e46 | | 13 | 53 | 61 | 61 | 93 | 175 | 162 | 105 | 183 | 115 | 78 | 67 | e45 | | 14 | 53 | 77 | 60 | 87 | 145 | 151 | 106 | 165 | 109 | 76 | 64 | e45 | | 15 | 56 | 73 | 60 | 330 | 130 | 140 | 106 | 152 | 112 | 73 | 63 | e44 | | 16 | 55 | 63 | 60 | 434 | 144 | 134 | 105 | 146 | 119 | 71 | 301 | e44 | | 17 | 54 | 61 | 60 | 171 | 1010 | 132 | 1310 | 454 | 119 | 78 | 307 | e46 | | 18 | 56 | 60 | 60 | 124 | 527 | 134 | 391 | 182 | 107 | 71 | 111 | e51 | | 19 | 62 | 60 | 59 | 110 | 254 | 184 | 609 | 149 | 106 | 68 | 85 | e48 | | 20 | 63 | 60 | 59 | 101 | 200 | 217 | 868 | 139 | 108 | 66 | 75 | e50 | | 21 | 57 | 61 | 59 | 95 | 172 | 361 | 300 | 133 | 101 | 62 | 71 | e55 | | 22 | 56 | 73 | 68 | 92 | 152 | 235 | 222 | 128 | 100 | 60 | 69 | e65 | | 23 | 54 | 70 | 83 | 401 | 336 | 179 | 191 | 166 | 99 | 59 | 67 | e56 | | 24 | 55 | 62 | 72 | 261 | 299 | 159 | 172 | 221 | 100 | 100 | 65 | e52 | | 25 | 62 | 61 | 110 | 172 | 194 | 145 | 158 | 178 | 97 | 71 | 64 | e50 | | 26 | 68 | 61 | 88 | 129 | 166 | 139 | 147 | 147 | 92 | 65 | 61 | e48 | | 27 | 101 | 61 | 95 | 449 | 153 | 134 | 140 | 237 | 89 | 64 | 59 | e47 | | 28 | 68 | 60 | 118 | 1740 | 147 | 130 | 136 | 203 | 87 | 68 | 59 | e46 | | 29 | 61 | 60 | 92 | 460 | | 126 | 131 | 157 | 98 | 63 | 58 | e45 | | 30 | 60 | 62 | 86 | 235 | | 121 | 130 | 141 | 95 | 59 | e56 | e48 | | 31 | 59 | | 76 | 174 | | 118 | | 163 | | 59 | e55 | | | TOTAL | 1794 | 1927 | 2178 | 7273 | 8063 | 6019 | 6725 | 6598 | 3380 | 2374 | 2682 | 1530 | | MEAN | 57.9 | 64.2 | 70.3 | 235 | 288 | 194 | 224 | 213 | 113 | 76.6 | 86.5 | 51.0 | | MAX | 101 | 90 | 118 | 1740 | 1100 | 914 | 1310 | 752 | 153 | 142 | 307 | 74 | | MIN | 52 | 60 | 59 | 69 | 130 | 110 | 105 | 128 | 87 | 59 | 49 | 44 | | CFSM | .54 | .59 | .65 | 2.17 | 2.67 | 1.80 | 2.08 | 1.97 | 1.04 | .71 | .80 | .47 | | IN. | .62 | .66 | .75 | 2.51 | 2.78 | 2.07 | 2.32 | 2.27 | 1.16 | .82 | .92 | .53 | e Estimated. 16.49 202 96 52 # ROANOKE RIVER BASIN # 02070000 NORTH MAYO RIVER NEAR SPENCER, VA--Continued | STATISTICS | OF | W.THTI.V | MEΔN | בדעת | FOR | MATER | VEARS | 1929 - | 1935 | 1937 - | 1998 | RY | $W \Delta TEE$ | VEAR | (WV) | |------------|----|----------|------|------|-----|-------|-------|--------|------|--------|------|----|----------------|------|------| | | | | | | | | | | | | | | | | | 15.57 192 101 59 | O | CT NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------------|---------------|-------|-----------|-----------|------|---------|------------|------|-----------|---------|---------| | MEAN 1 | 15 107 | 124 | 147 | 159 | 184 | 167 | 137 | 125 | 106 | 99.7 | 104 | | MAX 4 | 98 392 | 256 | 368 | 364 | 479 | 523 | 329 | 470 | 320 | 446 | 462 | | (WY) 19 | 38 1986 | 1997 | 1937 | 1960 | 1993 | 1987 | 1972 | 1972 | 1989 | 1985 | 1987 | | MIN 30 | .4 33.8 | 43.5 | 40.6 | 49.6 | 85.5 | 67.1 | 58.0 | 45.0 | 35.2 | 26.0 | 25.7 | | (WY) 19 | 32 1932 | 1956 | 1956 | 1931 | 1981 | 1967 | 1956 | 1956 | 1956 | 1981 | 1954 | | | | | | | | | | | | | | | SUMMARY STA | TISTICS | FOR 1 | 1997 CALE | NDAR YEAR | F | OR 1998 | WATER YEAR | | WATER YEA | RS 1929 | - 1935 | | | | | | | | | | | | 1937 | - 1998 | | ANNUAL TOTA | т | | 45216 | | | 50543 | | | | | | | | | | 124 | | | 138 | | | 131 | | | | ANNUAL MEAN | | | 124 | | | 138 | | | | | 1007 | | HIGHEST ANN | | | | | | | | | 218 | | 1987 | | LOWEST ANNU. | | | | | | | | | 62.6 | | 1956 | | HIGHEST DAI | | | 1400 | Apr 29 | | 1740 | Jan 28 | | 7460 | | .8 1985 | | LOWEST DAIL | Y MEAN | | 52 | aAug 19 | | e44 | bSep 15 | | 15 | _ | .5 1956 | | ANNUAL SEVE | N-DAY MINIMUM | | 53 | cOct 6 | | e45 | Sep 11 | | 18 | Aug | 9 1956 | | INSTANTANEO | US PEAK FLOW | | | | | 2650 | Jan 28 | | 17200 | Oct | 9 1947 | | INSTANTANEO | US PEAK STAGE | | | | | 6. | .48 Jan 28 | | 15.80 | Oct | 9 1947 | | INSTANTANEO | US LOW FLOW | | | | | ((| d) fSep 15 | | 15 | gAug 1 | 1 1956 | | ANNUAL RUNO | FF (CFSM) | | 1.1 | 5 | | 1. | . 28 | | 1.21 | | | | | | | | _
| | | | | | | | 17.41 235 92 54 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS ANNUAL RUNOFF (INCHES) a Also Sept. 8, Oct. 8, 9, 1997. b Also Sept. 16, 1998. c also Oct. 7, 8, 1997. d Not determined. e Estimated. f Also Sept. 16, 1998. g Also Aug. 15, 1956. # 02073000 SMITH RIVER AT MARTINSVILLE, VA LOCATION.--Lat 36°39'40", long 79°52'51", Henry County, Hydrologic Unit 03010103, on right bank at south edge of Martinsville, 800 ft downstream from bridge on U.S. Highways 58 and 220, and 5.0 mi downstream from Beaver DRAINAGE AREA. -- 380 mi². PERIOD OF RECORD. -- August 1929 to current year. REVISED RECORDS.--WSP 1032: 1933-35(M), 1936-39, 1940-41(P). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 657.22 ft above sea level. REMARKS.--No estimated daily discharges. Records good. Flow regulated since August 1950 by Philpott Lake (station 02071900) 19.6 mi upstream from station. Some additional regulation by powerplant 1,000 ft upstream from station. Maximum discharge, 39,000 ft³/s, from rating curve extended above 17,000 ft³/s on basis of computations of flow over dam at gage heights 16.76 ft and 21.50 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,010 $\rm ft^3/s$, Apr. 19, gage height, 6.75 $\rm ft;$ minimum, 40 $\rm ft^3/s$, Oct. 16, result of regulation; minimum daily, 83 $\rm ft^3/s$, Dec. 13, result of regulation. | | | DIS | CHARGE, IN | CUBIC FE | EET I | | OND, WATE | | | OBER 1997 | TO SEPT | EMBER 1 | 998 | | | |----------------|--------------|-----------|------------|----------|-------|---------------|-------------|-----|------------|-------------|--------------|------------|------|-------------|--------------| | DAY | OCT | NO | V DEC | JAI | 1 | FEB | MAR | | APR | MAY | JUN | JU | L | AUG | SEP | | 1 | 337 | 25 | 0 278 | 270 |) | 266 | 271 | | 645 | 922 | 504 | 61 | 8 | 138 | 473 | | 2 | 335 | 23 | 3 265 | 273 | 3 | 670 | 950 | | 549 | 569 | 821 | 64 | 3 | 153 | 368 | | 3 | 343 | 30 | | | | 1010 | 1040 | | 595 | 332 | 799 | 43 | | 405 | 394 | | 4 | 165 | 34 | | | | 2440 | 1060 | | 531 | 847 | 824 | 27 | | 421 | 377 | | 5 | | | | | | | | | | | 784 | | | 421 | | | 5 | 160 | 33 | 5 273 | 330 | J | 1680 | 1060 | | 285 | 1280 | 784 | 28 | 1 | 421 | 161 | | 6 | 339 | 33 | | | | 1390 | 1070 | | 740 | 1170 | 500 | 52 | | 404 | 147 | | 7 | 320 | 35 | 7 151 | 346 | 5 | 1140 | 404 | | 719 | 1470 | 266 | 66 | 0 | 394 | 323 | | 8 | 342 | 23 | 2 259 | 1350 |) | 1140 | 729 | | 738 | 1800 | 456 | 78 | 9 | 435 | 392 | | 9 | 230 | 16 | 8 263 | 498 | 3 | 1120 | 1940 | | 763 | 1880 | 448 | 55 | 7 | 258 | 359 | | 10 | 424 | 27 | 8 280 | 233 | 3 | 1090 | 1280 | | 727 | 1300 | 526 | 50 | 8 | 556 | 354 | | 11 | 145 | 27 | 4 274 | 200 |) | 1150 | 1870 | | 236 | 672 | 571 | 19 | 5 | 518 | 319 | | 12 | 150 | 27 | | | | 1430 | 1820 | | 246 | 449 | 497 | 21 | | 495 | 210 | | 13 | 323 | 29 | | | | 1180 | 1800 | | 657 | 315 | 335 | 51 | | 433 | 130 | | 14 | 321 | 33 | | | | 490 | 583 | | 671 | 327 | 263 | 46 | | 371 | 344 | | 15 | 437 | 18 | | | | 260 | 273 | | 634 | 342 | 521 | 47 | | 107 | 299 | | 1.5 | 437 | 18 | 4 258 | 794 | ± | 200 | 2/3 | | 034 | 342 | 521 | 4 / | 8 | 107 | 299 | | 16 | 228 | 16 | | | | 735 | 698 | | 700 | 335 | 545 | 59 | 9 | 357 | 315 | | 17 | 330 | 27 | 2 257 | 277 | 7 | 2320 | 331 | 2 | 620 | 313 | 568 | 57 | | 1030 | 438 | | 18 | 146 | 27 | 3 256 | 228 | 3 | 1580 | 384 | 1 | 060 | 686 | 526 | 30 | 9 | 566 | 374 | | 19 | 195 | 27 | 3 256 | 420 |) | 1880 | 529 | 2 | 800 | 841 | 511 | 19 | 5 | 518 | 133 | | 20 | 277 | 27 | 2 148 | 317 | 7 | 1790 | 1280 | 2 | 660 | 850 | 271 | 49 | 3 | 450 | 120 | | 21 | 327 | 27 | 5 146 | 329 | 9 | 1150 | 1100 | 1 | 910 | 849 | 258 | 41 | 7 | 378 | 302 | | 22 | 326 | 20 | | | | 975 | 1480 | | 810 | 744 | 543 | 48 | | 119 | 342 | | 23 | 320 | 17 | | | | 1780 | 1830 | | 760 | 318 | 718 | 59 | | 162 | 344 | | 24 | 324 | 27 | | | | 1380 | 1050 | | 250 | 438 | 711 | 53 | | 432 | 336 | | | | | | | | | 988 | | | 453 | 709 | | | | | | 25 | 237 | 26 | 8 383 | 307 | / | 1190 | 988 | | 394 | 453 | 709 | 24 | U | 530 | 334 | | 26 | 222 | 26 | | | | 1130 | 751 | | 284 | 402 | 705 | 17 | | 510 | 144 | | 27 | 348 | 26 | | | | 1140 | 635 | | 619 | 951 | 429 | 46 | | 464 | 119 | | 28 | 345 | 26 | | 3160 |) | 439 | 228 | | 411 | 822 | 235 | 54 | | 394 | 317 | | 29 | 330 | 15 | 7 314 | 1160 |) | | 260 | | 817 | 762 | 474 | 53 | 0 | 128 | 363 | | 30 | 331 | 16 | 7 308 | 1000 |) | | 407 | | 774 | 353 | 593 | 47 | 6 | 142 | 431 | | 31 | 328 | | - 287 | 498 | 3 | | 574 | | | 271 | | 36 | 7 | 366 | | | TOTAL | 8985 | 776 | 9 7899 | 17800 |) | 33945 | 28675 | 28 | 605 | 23063 | 15911 | 1415 | 1 | 12055 | 9062 | | MEAN | 290 | 25 | 9 255 | 574 | 1 | 1212 | 925 | | 954 | 744 | 530 | 45 | 6 | 389 | 302 | | MAX | 437 | 35 | | | | 2440 | 1940 | | 800 | 1880 | 824 | 78 | | 1030 | 473 | | MIN | 145 | 15 | | | | 260 | 228 | | 236 | 271 | 235 | 17 | | 1030 | 119 | | | | | | | | | | | | | | | | | | | (†) | -2687
203 | -63
23 | | | | +2037
1285 | -176
919 | | 116
950 | +630
764 | -1124
493 | -314
35 | | -862
361 | -4089
166 | | MEAN‡
CFSM‡ | .53 | .6 | | | | 3.38 | 2.42 | | .50 | 2.01 | 1.30 | .9 | | .95 | .44 | | IN. ‡ | .62 | .7 | | | | 3.52 | 2.42 | | .79 | 2.32 | 1.45 | 1.0 | | 1.10 | .49 | | | | | | | | | | | | | | | | | | | CAL YR | | TOTAL | 190540 | MEAN | 522 | MAX | 2900 | MIN | 83 | MEAN‡ | 492 | CFSM‡ | 1.30 | | 17.60 | | WTR YR | 1998 | TOTAL | 207920 | MEAN | 570 | MAX | 3160 | MIN | 83 | MEAN‡ | 570 | CFSM‡ | 1.50 | 0 IN.‡ | 20.35 | [†] Total change in contents, equivalent in cubic feet per second, per month, in Philpott Lake; provided by U.S. Army Corps of Engineers. ‡ Adjusted for monthly change in contents. # 02073000 SMITH RIVER AT MARTINSVILLE, VA--Continued | | | | | - | | | | , | | | | | |------------------|--------------------------|--------------------|--------|-------------|---|------------|------------|------------------|---------|-------------------|----------|---------| | STATIS | TICS OF MO | ONTHLY MEAN | DATA | FOR WATER | YEARS 1930 | - 1950, | BY WATER | YEAR (WY) | [UNREG | GULATED]a | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 459 | 394 | 446 | 567 | FEB
517 | 569 | 539 | 483 | 410 | 443 | 435 | 393 | | MAX | 1828 | 940 | 975 | 1415 | 1048 | 907 | 953 | 964 | 788 | 1205 | 1778 | 1258 | | (WY) | 1938 | 1933 | 1933 | 1937 | 1939 | 1936 | 1936 | 1949 | 1949 | 1949 | 1940 | 1945 | | | 107 | 113 | 188 | 200 | 160 | 309 | 275 | 227 | 211 | 123
1930 | 111 | 83.1 | | (WY) | 1932 | 1932 | 1934 | 1934 | 517
1048
1939
160
1931 | 1940 | 1942 | 1934 | 1931 | 1930 | 1932 | 1932 | | SUMMAR | Y STATIST | ICS | | WATER YEAR | S 1930 - 1 | 950 | | | | | | | | ANNUAL
HIGHES | י באזאזוב י | MEAN | | 471
752 | 1 | 949 | | | | | | | | LOWEST | ANNUAL MI | EAN | | 264 | Aug 14 1
Oct 6 1
Sep 17 1
Oct 19 1
Oct 19 1
May 20 1 | 931 | | | | | | | | HIGHES | T DAILY MI | EAN | | 18500 | Aug 14 1 | 940 | | | | | | | | LOWEST. | DAILY MEA | AIN
V MINITMIIM | | PE3 | OCT 6 1 | 935
935 | | | | | | | | TNSTAN | TANEOUS PI | EAK ELOW | | 39000 | Oct 19 1 | 937 | | | | | | | | INSTAN | TANEOUS PI | EAK STAGE | | 21.50 | Oct. 19 1 | 937 | | | | | | | | INSTAN | TANEOUS LO | OW FLOW | | b5.0 | May 20 1 | 934 | | | | | | | | ANNUAL | RUNOFF (| CFSM) | | 1.24 | | | | | | | | | | ANNUAL | RUNOFF (| INCHES) | | 16.85 | | | | | | | | | | 10 PER | CENT EXCE | EDS | | 760
346 | | | | | | | | | | 0 0 L L | CENT EXCEI
CENT EXCEI | | | 164 | | | | | | | | | | JU FER | CENT EXCE | 200 | | 104 | | | | | | | | | | STATIS | TICS OF MO | ONTHLY MEAN | I DATA | FOR WATER | YEARS 1951 | - 1998, | BY WATER | YEAR (WY) | [REGULA | TED, UNADJ | USTED] | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 400 | 392 | 438 | 507 | 531
1212 | 635 | 657 | 533 | 488 | 418 | 409 | 435 | | MAX | 1389 | 1266 | 988 | 1000 | 1212 | 1735 | 2206 | 1138 | 1467 | 1174 | 1032 | 1624 | | (WY) | 1990 | 1986 | 1997 | 1991 | 1998 | 1993 | 1987 | 1978
164 | 1992 | 1989 | 1985 | 1987 | | MIN | 163 | 162 | 203 | 206 | 233 | 233 | 206 | 164 | 144 | | 165 | 205 | | (WY) | 1952 | 1953 | 1996 | 1957 | 1998
233
1968 | 1981 | 1969 | 1964 | 1964 | 1981 | 1953 | 1951 | | SUMMAR | Y STATIST | ics | FOF | R 1997 CALE | NDAR YEAR | F | OR 1998 WA | TER YEAR | | WATER YE | ARS 1951 | - 1998 | | 7 MMT 17 T | TOTAL | | | 190540 | | | 207920 | | | | | | | ANNUAL | | | | 522 | | | 570 | | | 487 | | | | | T ANNUAL I | ME AN | | 322 | | | 370 | | | 817 | | 1987 | | | ANNUAL M | | | | | | | | | 243 | | 1953 | | | T DAILY MI | ZAM
ZAM | | 2000 | Apr 29 | | 3160 | Jan 28 | | 11300 | Con | 8 1987 | | | | | | | | | 83 | | | 24 | _ | 2 1982 | | TOMEST | DAILI MEZ | AN
Y MINIMUM | | 03 | Dec 13 | | 217 | Dec 13 | | 113 | | 26 1964 | | | | | | 21/ | Dec 13 | | 6010 | Dec 13 | | 113 | Jun | | | | TANEOUS PI | | | | | | | Apr 19
Apr 19 | | 34600
20.08 | Sep | 8 1987 | | | TANEOUS PI | | | | | | 40 | | | 3.8 | | 8 1987 | | | TANEOUS LO | | | 1.3 | .7 | | 1.50 | | | 1.28 | | 19 1955 | | ANNUAL | RUNOFF (| INCHES) | | 18.6 | | | 20.35 | | | 17.40 | | | | 7A TATET 7A T | | | | | | | | | | 1/.40 | | | | ANNUAL | CONOFF (. | INCHES / | | | , , | | | | | 016 | | | | 10 PER | CENT EXCE | EDS | | 919 | , , | | 1150 | | | 916 | | | | 10 PER | CENT EXCEICENT EXCEICENT | EDS
EDS | | | ,5 | | | | | 916
364
168 | | | a Prior to regulation from Philpott Lake. b Result of regulation. # 02074500 SANDY RIVER NEAR DANVILLE, VA LOCATION.--Lat 36°37'10", long 79°30'16", Pittsylvania County, Hydrologic Unit 03010103, on right bank
200 ft downstream from Hickory Forest Creek, 400 ft upstream from bridge on State Highway 863 between Callahans Store and Mount Cross, 5.5 mi northwest of western city limits of Danville, and 5.8 mi upstream from mouth. DRAINAGE AREA. -- 112 mi². PERIOD OF RECORD. --October 1929 to current year. Monthly discharge only for some periods, published in WSP 1303. REVISED RECORDS. -- WSP 972: 1930-41. WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 460.38 ft above sea level. Prior to June 26, 1942, at site 1,200 ft downstream at datum 5.57 ft lower. REMARKS.--Records good except for period with ice effect, Jan. 1,2, which is fair. Diurnal fluctuation at low flow caused by small mill upstream from station. Maximum discharge, 23,000 ft³/s, from rating curve extended above 11,000 ft³/s. Minimum gage height, 0.40 ft, Sept. 29, 1930. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION. -- Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,500 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------------------|----------------------|-----------------------------------|------------------------------|---------------------------|----------------------|-----------------------------------|----------------------| | Jan. 8
Jan. 15
Jan. 28 | 1330
2130
0230 | 1,800
1,920
5,220 | 4.77
4.88
7.18 | Mar. 21
Apr. 17 | 0130
0700
0200 | 2,890
3,250 | 5.75
6.00
4.64 | | Feb. 4
Feb. 17
Mar. 9 | 1330
1500
0930 | 2,570
2,570
1,900 | 7.18
5.53
5.53
4.95 | Apr. 20
May 7
May 8 | 2400
1300 | 1,590
*6,020
3,250 | *7.63
6.00 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum daily discharge, $36 \text{ ft}^3/\text{s}$, Sept. 15, 16, 17, 29. | | | | | | DA | ILY MEAN | VALUES | | | | | | |----------|----------|----------|----------|------------|------|------------|------------|------------|----------|----------|----------|----------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 54 | 86 | 74 | e60 | 144 | 133 | 122 | 145 | 99 | 73 | 51 | 43 | | 2 | 52 | 84 | 58 | e64 | 131 | 128 | 123 | 171 | 97 | 70 | 49 | 42 | | 3 | 53 | 70 | 55 | 65 | 140 | 122 | 116 | 131 | 97 | 67 | 47 | 43 | | 4 | 53 | 59 | 65 | 70 | 1670 | 117 | 151 | 137 | 99 | 65 | 45 | 59 | | 5 | 52 | 54 | 61 | 69 | 772 | 115 | 134 | 155 | 107 | 71 | 44 | 48 | | 6 | 51 | 53 | 55 | 68 | 305 | 112 | 120 | 124 | 99 | 68 | 44 | 43 | | 7 | 50 | 70 | 52 | 108 | 206 | 111 | 117 | 859 | 96 | 65 | 44 | 42 | | 8 | 50 | 61 | 51 | 829 | 171 | 306 | 116 | 2740 | 93 | 78 | 53 | 44 | | 9 | 49 | 57 | 51 | 294 | 149 | 1080 | 124 | 400 | 92 | 102 | 83 | 42 | | 10 | 49 | 54 | 55 | 145 | 136 | 282 | 119 | 209 | 100 | 96 | 75 | 41 | | 11 | 49 | 52 | 57 | 105 | 139 | 175 | 115 | 196 | 95 | 77 | 81 | 41 | | 12 | 47 | 51 | 53 | 89 | 454 | 150 | 112 | 177 | 93 | 72 | 61 | 40 | | 13 | 47 | 54 | 51 | 85 | 191 | 138 | 109 | 156 | 91 | 70 | 56 | 38 | | 14 | 47 | 78 | 50 | 79 | 153 | 132 | 113 | 144 | 88 | 68 | 54 | 37 | | 15 | 53 | 68 | 49 | 783 | 135 | 125 | 112 | 134 | 87 | 65 | 53 | 36 | | 16 | 52 | 58 | 48 | 886 | 144 | 121 | 111 | 128 | 88 | 63 | 66 | 36 | | 17 | 52 | 54 | 48 | 246 | 1420 | 119 | 1720 | 130 | 87 | 70 | 131 | 36 | | 18 | 70 | 51 | 48 | 161 | 559 | 128 | 345 | 121 | 84 | 64 | 75 | 64 | | 19 | 81 | 51 | 47 | 139 | 221 | 207 | 403 | 113 | 82 | 60 | 62 | 46 | | 20 | 81 | 50 | 47 | 122 | 179 | 591 | 758 | 111 | 83 | 63 | 56 | 40 | | 21 | 57 | 53 | 47 | 102 | 160 | 1280 | 225 | 109 | 80 | 59 | 54 | 42 | | 22 | 54 | 85 | 62 | 95 | 144 | 321 | 179 | 106 | 80 | 55 | 54 | 62 | | 23 | 50 | 67 | 74 | 773 | 385 | 194 | 167 | 118 | 82 | 55 | 53 | 45 | | 24 | 49 | 57 | 62 | 378 | 292 | 166 | 149 | 142 | 79 | 54 | 51 | 40 | | 25 | 55 | 53 | 102 | 219 | 177 | 150 | 136 | 123 | 76 | 54 | 51 | 39 | | 26 | 61 | 53 | 81 | 150 | 153 | 141 | 128 | 110 | 74 | 53 | 48 | 39 | | 27 | 86 | 52 | 110 | 853 | 144 | 138 | 123 | 132 | 72 | 53 | 48 | 39 | | 28 | 61 | 51 | 149 | 2990 | 139 | 132 | 119 | 124 | 70 | 59 | 48 | 37 | | 29
30 | 56
53 | 50
65 | 99 | 486
220 | | 129
125 | 115
116 | 110
104 | 75
74 | 54
51 | 44
44 | 36
37 | | 31 | 53
52 | | 88
75 | 168 | | 123 | 116 | 102 | | 49 | 44 | 37 | | J- | | | | | | | | | | | | | | TOTAL | 1726 | 1801 | 2024 | 10901 | 9013 | 7291 | 6597 | 7761 | 2619 | 2023 | 1768 | 1277 | | MEAN | 55.7 | 60.0 | 65.3 | 352 | 322 | 235 | 220 | 250 | 87.3 | 65.3 | 57.0 | 42.6 | | MAX | 86 | 86 | 149 | 2990 | 1670 | 1280 | 1720 | 2740 | 107 | 102 | 131 | 64 | | MIN | 47 | 50 | 47 | 60 | 131 | 111 | 109 | 102 | 70 | 49 | 43 | 36 | | CFSM | .50 | .54 | .58 | 3.14 | 2.87 | 2.10 | 1.96 | 2.24 | .78 | .58 | .51 | .38 | | IN. | .57 | .60 | .67 | 3.62 | 2.99 | 2.42 | 2.19 | 2.58 | .87 | .67 | .59 | .42 | e Estimated. # 02074500 SANDY RIVER NEAR DANVILLE, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1930 - | 1998. | BY | WATER | YEAR | (WY) | 1 | |------------|----|---------|------|------|-----|-------|-------|--------|-------|----|-------|------|------|---| | | | | | | | | | | | | | | | | 49 | MAX 366 281 249 409 369 738 591 279 376 265 556 7 (WY) 1938 1958 1974 1936 1979 1975 1987 1971 1972 1989 1940 19 MIN 22.6 32.2 35.2 31.5 40.3 63.9 53.1 52.8 34.1 26.0 17.0 14 | SEP | |--|------| | (WY) 1938 1958 1974 1936 1979 1975 1987 1971 1972 1989 1940 19 MIN 22.6 32.2 35.2 31.5 40.3 63.9 53.1 52.8 34.1 26.0 17.0 14 | 35.3 | | MIN 22.6 32.2 35.2 31.5 40.3 63.9 53.1 52.8 34.1 26.0 17.0 14 | 739 | | | 1996 | | (WY) 1932 1932 1934 1934 1934 1967 1967 1986 1986 1986 1932 19 | 14.2 | | | 1930 | | | | | SUMMARY STATISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEARS 1930 - 19 | 1998 | | ANNUAL TOTAL 39164 54801 | | | ANNUAL MEAN 107 150 111 | | | HIGHEST ANNUAL MEAN 191 19 | 1996 | | LOWEST ANNUAL MEAN 58.5 19 | 1981 | | HIGHEST DAILY MEAN 1910 Apr 29 2990 Jan 28 8340 Sep 6 19 | L996 | | LOWEST DAILY MEAN 35 Aug 19 36 aSep 15 8.0 bAug 29 19 | L932 | | ANNUAL SEVEN-DAY MINIMUM 39 Aug 13 38 Sep 11 8.6 Aug 27 19 | L932 | | INSTANTANEOUS PEAK FLOW 6020 May 7 23000 Aug 14 19 | L940 | | INSTANTANEOUS PEAK STAGE 7.63 May 7 c14.80 Aug 14 19 | 1940 | | INSTANTANEOUS LOW FLOW 36 dSep 15 3.0 Sep 29 19 | L930 | | ANNUAL RUNOFF (CFSM) .96 1.34 .99 | | | ANNUAL RUNOFF (INCHES) 13.01 18.20 13.48 | | | 10 PERCENT EXCEEDS 170 208 167 | | | 50 PERCENT EXCEEDS 81 80 72 | | 47 35 90 PERCENT EXCEEDS a Also Sept. 16, 17, 29, 1998. b Also Aug. 31 to Sept. 2, 1932. c From floodmarks, present datum. d Also Sept. 16-18, 29, 30, 1998. #### KANAWHA RIVER BASIN # 03167000 REED CREEK AT GRAHAMS FORGE, VA LOCATION.--Lat $36^{\circ}56^{\circ}22^{\circ}$, long $80^{\circ}53^{\circ}13^{\circ}$, Wythe County, Hydrologic Unit 05050001, on left bank 20 ft downstream from bridge on State Highway 619 at Grahams Forge, 2.2 mi downstream from Glade Creek, and at mile 7.3. DRAINAGE AREA. -- 247 mi². PERIOD OF RECORD.--July 1908 to September 1916, January 1927 to current year. Monthly discharge only for some periods, published in WSP 1305. REVISED RECORDS.--WSP 1235: 1912-13, 1915-16. WSP 1275: 1911, 1927-28(M), 1930-34(M). WSP 1705: 1913(M), 1916(M), 1957 calendar year runoff. WSP 1725: 1915 calendar year runoff. WDR VA-92-1: 1984-86(P), 1987, 1988-89(P), 1990-91. GAGE.--Water-stage recorder. Datum of gage is 1,924.65 ft above sea level. Prior to Oct. 1, 1916, nonrecording gage at same site at datum 0.68 ft lower. Feb. 3, 1927, to Oct. 28, 1934, and June 11, 1974, to July 22, 1975, nonrecording gage, at present site and datum. REMARKS.--Records good except those for period with ice effect, Dec. 31 to Jan. 2, and period of doubtful gage-height record, Jan. 23, which are fair. Occasional diurnal fluctuation at low flow caused by mills upstream from station. Maximum discharge, 17,500 $\rm ft^3/s$, from rating curve extended above 7,600 $\rm ft^3/s$ on basis of velocity-area study and slope-area measurement at gage heights 11.4 ft and 10.01 ft, respectively. Minimum discharge observed, about 5 $\rm ft^3/s$, Dec. 22, 1909, gage height, 0.49 ft, present datum, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. COOPERATION.--Records were provided by the Virginia Department of Environmental Quality - Water Division. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,300 ${\rm ft}^3/{\rm s}$ and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Apr. 19 | 1730 | *2,400 | *5.49 | No othe | | al to or greater
lischarge | than | Minimum daily discharge, 62 ft^3/s , Dec. 20, 21. | | | | | | Di | ALLY MEAN | VALUES | | | | | | |--|-----------------------------------|--|-------------------------------------|--|---|---
---|---|---|---|----------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 74 | 76 | 77 | e63 | 454 | 381 | 268 | 386 | 304 | 185 | 108 | 75 | | 2 | 73 | 90 | 74 | e68 | 398 | 348 | 257 | 1250 | 269 | 167 | 104 | 76 | | 3 | 75 | 88 | 74 | 74 | 436 | 322 | 236 | 826 | 264 | 153 | 100 | 77 | | 4 | 74 | 84 | 73 | 76 | 1570 | 301 | 282 | 1700 | 341 | 147 | 96 | 78 | | 5 | 74 | 84 | 72 | 81 | 1860 | 282 | 308 | 1460 | 361 | 147 | 95 | 76 | | 6 | 74 | 80 | 70 | 104 | 1190 | 265 | 287 | 993 | 305 | 143 | 94 | 76 | | 7 | 73 | 76 | 67 | 130 | 906 | 253 | 264 | 801 | 274 | 138 | 95 | 77 | | 8 | 73 | 73 | 65 | 1160 | 792 | 280 | 248 | 1100 | 251 | 142 | 141 | 77 | | 9 | 74 | 75 | 66 | 689 | 790 | 459 | 321 | 1160 | 247 | 146 | 110 | 75 | | 10 | 74 | 73 | 69 | 347 | 798 | 656 | 615 | 892 | 320 | 139 | 111 | 74 | | 11 | 72 | 71 | 72 | 242 | 777 | 493 | 464 | 1090 | 473 | 132 | 119 | 76 | | 12 | 74 | 72 | 74 | 200 | 812 | 396 | 367 | 1010 | 372 | 130 | 108 | 76 | | 13 | 74 | 72 | 72 | 186 | 810 | 339 | 308 | 784 | 331 | 129 | 97 | 77 | | 14 | 75 | 80 | 70 | 174 | 635 | 311 | 273 | 636 | 333 | 138 | 95 | 76 | | 15 | 73 | 81 | 66 | 216 | 505 | 289 | 254 | 535 | 351 | 128 | 114 | 74 | | 16 | 73 | 78 | 63 | 483 | 454 | 271 | 237 | 464 | 389 | 124 | 111 | 75 | | 17 | 74 | 73 | 66 | 472 | 1010 | 261 | 1140 | 415 | 311 | 121 | 147 | 79 | | 18 | 77 | 71 | 63 | 329 | 1800 | 269 | 1090 | 371 | 268 | 118 | 130 | 80 | | 19 | 76 | 67 | 63 | 267 | 1140 | 1120 | 1440 | 337 | 244 | 116 | 112 | 109 | | 20 | 75 | 67 | 62 | 244 | 866 | 1580 | 2100 | 312 | 236 | 115 | 97 | 101 | | 21 | 75 | 75 | 62 | 222 | 701 | 1950 | 1290 | 321 | 216 | 110 | 92 | 91 | | 22 | 73 | 97 | 75 | 205 | 582 | 1220 | 923 | 315 | 211 | 111 | 88 | 106 | | 23 | 71 | 89 | 82 | e337 | 565 | 847 | 724 | 397 | 204 | 116 | 85 | 97 | | 24 | 77 | 78 | 84 | 555 | 647 | 632 | 604 | 690 | 197 | 114 | 83 | 88 | | 25 | 77 | 71 | 103 | 432 | 597 | 505 | 500 | 672 | 185 | 113 | 79 | 83 | | 26
27
28
29
30
31 | 91
103
88
78
75
73 | 70
69
67
67
68 | 106
100
98
88
82
e66 | 330
288
429
570
618
556 | 514
466
424
 | 436
385
347
319
294
272 | 436
393
365
332
313 | 589
691
736
543
416
348 | 175
167
162
162
158 | 114
112
109
105
103
106 | 79
78
79
76
77 | 82
82
80
80
93 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 2362
76.2
103
71
.31 | 2282
76.1
97
67
.31
.34 | 2324
75.0
106
62
.30 | 10147
327
1160
63
1.33
1.53 | 22499
804
1860
398
3.25
3.39 | 16083
519
1950
253
2.10
2.42 | 16639
555
2100
236
2.25
2.51 | 22240
717
1700
312
2.90
3.35 | 8081
269
473
158
1.09
1.22 | 3971
128
185
103
.52
.60 | 3077
99.3
147
76
.40 | 2466
82.2
109
74
.33
.37 | e Estimated. # KANAWHA RIVER BASIN # 03167000 REED CREEK AT GRAHAMS FORGE, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1909 | _ | 1916. | 1927 | _ | 1998. | BY | WATER | YEAR | (WY) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|------|---|-------|----|-------|------|------| OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----------|------------|-----------|-------|-----------|-----------|------|-----------|-----------|------|----------|----------|--------| | MEAN | 142 | 163 | 244 | 359 | 466 | 513 | 422 | 324 | 211 | 156 | 140 | 117 | | MAX | 626 | 606 | 790 | 911 | 1411 | 1406 | 1374 | 731 | 732 | 867 | 517 | 488 | | (WY) | 1938 | 1930 | 1973 | 1936 | 1957 | 1955 | 1987 | 1958 | 1992 | 1916 | 1916 | 1989 | | MIN | 45.3 | 50.7 | 59.9 | 61.2 | 63.5 | 120 | 101 | 91.4 | 74.6 | 63.5 | 60.5 | 51.4 | | (WY) | 1942 | 1942 | 1942 | 1942 | 1934 | 1988 | 1942 | 1941 | 1941 | 1930 | 1930 | 1941 | | | | | | | | | | | | | | | | SUMMARY | STATIST: | ICS | FOR 1 | L997 CALE | NDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER YE | ARS 1909 | - 1916 | | | | | | | | | | | | | 1927 | - 1998 | | | | | | | | | | | | | | | | ANNUAL | TOTAL | | | 89137 | | | 112171 | | | | | | | ANNUAL | MEAN | | | 244 | | | 307 | | | 270 | | | | HIGHEST | ANNUAL I | MEAN | | | | | | | | 424 | | 1972 | | LOWEST | ANNUAL MI | EAN | | | | | | | | 118 | | 1941 | | HIGHEST | DAILY M | EAN | | 2010 | Mar 4 | | 2100 | Apr 20 | | 10600 | Apr | 5 1977 | | LOWEST | DAILY MEA | AN | | 62 | aDec 20 | | 62 | aDec 20 | | 22 | Jan 3 | 0 1934 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 64 | Dec 15 | | 64 | Dec 15 | | 33 | Feb 2 | 4 1942 | | INSTANT | CANEOUS PI | EAK FLOW | | | | | 2400 | Apr 19 | | 17500 | Jul 1 | 6 1916 | | INSTANT | ANEOUS PI | EAK STAGE | | | | | 5.4 | - | | b11.40 | | 6 1916 | | INSTANT | CANEOUS LO | OW FLOW | | | | | (c) | - | | f5.0 | | 2 1909 | | ANNUAL | RUNOFF (| CFSM) | | . 9 | 9 | | 1.2 | | | 1.09 | | | | ANNUAL | | INCHES) | | 13.4 | | | 16.8 | | | 14.87 | | | | | CENT EXCE | | | 591 | = | | 786 | - | | 545 | | | | 10 I Dicc | | 220 | | 331 | | | 700 | | | 5 15 | | | 142 73 160 74 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 128 72 a Also Dec. 21, 1997. b Present datum, from floodmarks. c Not determined. d Probably occurred Jan. 2, 1998, result of freezeup. f Observed, result of freezeup. # 03167000 REED CREEK AT GRAHAMS FORGE, VA LOCATION.--Lat $36^{\circ}56'22$ ", long $80^{\circ}53'13$ ", Wythe County, Hydrologic Unit 05050001, on left bank 20 ft downstream from bridge on State Highway 619 at Grahams Forge, 2.2 mi downstream from Glade Creek, and at mile 7.3. DRAINAGE AREA. -- 247 mi². REMARKS.--Analyzed for pesticide schedules A and B, only detected compounds reported. PERIOD OF RECORD. -- October 1996 to September 1998, discontinued. | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | |-----------------------|------|-------------------------------------|---|--|---|---|---|---|--|---|---|--| | OCT 1997 | | | | | | | | | | | | | | 07
NOV | 0805 | 1.44 | 76 | 352 | 8.1 | 14.5 | 14.4 | 715 | 8.9 | 93 | 99 | 110 | | 03
DEC | 1100 | 1.48 | 85 | 366 | 8.3 | 9.0 | 10.3 | 700 | 12.0 | 116 | 76 | 70 | | 09 | 0815 | 1.41 | 70 | 351 | 8.1 | 1.0 | 3.6 | 705 | 9.3 | 76 | K38 | K28 | | JAN 1998
14
FEB | 1300 | 1.79 | 174 | 331 | 8.2 | 4.0 | 5.9 | 713 | 11.3 | 97 | 200 | 160 | | 05 | 0845 | 4.42 | 2030 | 180 | 7.7 | 6.0 | 4.7 | 696 | 11.7 | 100 | 1900 | 1600 | | 12
MAR | 0845 | 2.85 | 789 | 253 | 8.1 | 3.0 | 6.2 | 700 | 11.5 | 101 | 250 | 150 | | 12
APR | 0945 | 2.31 | 406 | 245 | 8.2 | -5.0 | 1.7 | 718 | 13.6 | 103 | K68 | 800 | | 16 | 0810 | 1.96 | 235 | 284 | 8.0 | 16.0 | 14.8 | 703 | 8.6 | 92 | 120 | 140 | | 20
MAY | 1225 | 4.71 | 2130 | 162 | 7.7 | 11.5 | 10.4 | 710 | 10.7 | 102 | K6000 | K6100 | | 07 | 0745 | 2.85 | 789 | 263 | 8.0 | 16.0 | 14.1 | 704 | 8.1 | 85 | 880 | 910 | | 14
JUN | 0800 | 2.68 | 656 | 279 | 8.1 | 17.0 | 15.4 | 710 | 8.2 | 88 | 280 | 260 | | 04 | 0815 | 2.14 | 315 | 342 | 7.9 | 19.0 | 19.1 | 700 | 8.0 | 95 | K4300 | K2600 | | JUL | 1030 | 1.62 | 121 | 371 | 8.2 | 23.0 | 22.2 | 708 | 8.9 | 110 | 150 | 110 | | 17
AUG | 1030 | 1.02 | 121 | 3/1 | 8.2 | 23.0 | 22.2 | 708 | 8.9 | 110 | 150 | 110 | | 04
SEP | 1010 | 1.51 | 92 | 359 | 8.2 | 24.0 | 17.9 | 720 | 10.1 | 113 | 95 | 81 | | 04 | 1030 | 1.44 | 76 | 343 | 8.2 | 21.0 | 18.6 | 706 | 10.1 | 117 | 38 | 38 | # 03167000 REED CREEK AT GRAHAMS FORGE, VA--Continued | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | |--|---
---|--|---|---|---|---|--|---|---|---| | OCT 1997 | | | | | | | | | | | | | 07
NOV | 170 | | 40 | 18 | 5.9 | 7 | . 2 | 2.6 | | | | | 03
DEC | 190 | | 44 | 18 | 6.5 | 7 | . 2 | 3.0 | | | | | 09
JAN 1998 | 170 | | 41 | 18 | 5.9 | 7 | . 2 | 2.0 | | | | | 14
FEB | 150 | 25 | 38 | 13 | 8.1 | 11 | .3 | 2.0 | 146 | 2 | 124 | | 05 | 73 | | 19 | 5.9 | 6.3 | 16 | .3 | 1.8 | | | | | 12
MAR | 110 | 13 | 28 | 9.1 | 5.8 | 10 | . 2 | 1.6 | 115 | <1 | 94 | | 12
APR | 110 | 9 | 28 | 9.7 | 5.2 | 9 | . 2 | 1.4 | 122 | <1 | 100 | | 16 | 140 | 18 | 34 | 12 | 5.3 | 8 | . 2 | 1.6 | 144 | <1 | 118 | | 20
MAY | 73 | 6 | 20 | 5.8 | 2.8 | 7 | .1 | 1.6 | 81 | <1 | 66 | | 07
14 | 120
130 | 13
21 | 31
35 | 10
11 | 4.1
4.6 | 7
7 | .2 | 1.6
1.7 | 131
133 | <1
2 | 108
113 | | JUN
04 | 160 | 21 | 39 | 15 | 5.6 | 7 | . 2 | 2.5 | 169 | <1 | 138 | | JUL | | | | | | | | | | | | | 17
AUG | 180 | 27 | 43 | 18 | 6.0 | 7 | . 2 | 2.8 | 190 | <1 | 156 | | 04
SEP | 170 | 17 | 38 | 18 | 6.0 | 7 | . 2 | 2.2 | 185 | <1 | 152 | | 04 | 170 | 23 | 37 | 18 | 5.7 | 7 | . 2 | 2.3 | 174 | <2 | 143 | | | | | | | | | | | | | | | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | OCT 1997 | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | OCT 1997
07
NOV | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) | | OCT 1997
07
NOV
03
DEC | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TOMS
PER
DAY)
(70302)
40.5 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 | | OCT 1997
07
NOV
03
DEC
09
JAN 1998 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
14
16 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
3.9
3.8 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTITUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
40.5
49.7 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.581
.522 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 | | OCT 1997
07
NOV
03
DEC
09 | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TOMS
PER
DAY)
(70302)
40.5 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 | | OCT 1997
07
NOV
03
DEC
09
JAN 1998
14
FEB
05 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
14
16 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
3.9
3.8 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTITUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
40.5
49.7 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.581
.522 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 | | OCT 1997
07
NOV
03
DEC
09
JAN 1998
14
FEB
05
12 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
14
16
17
18 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
11
10
11 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.24
.14
.33
.17 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
3.9
3.8
1.4
6.3 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
198
218
199
190 | SUM OF
CONSTITUENTS,
DIS-
SOLVED
(MG/L)
(70301)
192
200
196
181 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.27
.30
.27
.26 | DIS-
SOLVED
(TOMS
PER
DAY)
(70302)
40.5
49.7
37.6
89.4 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 .017 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522 .503 1.03 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 <.020 .049 | | OCT 1997
07
NOV
03
DEC
09
JAN 1998
14
FEB
05
12
MAR
12 | DIS-
SOLVED (MG/L
AS SO4) (00945)
14
16
17
18
9.3
10
9.7
9.9 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
11
10
11
17
12
12
10
9.2 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.24
.14
.33
.17
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
3.9
3.8
1.4
6.3
5.6
5.6 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
198
218
199
190
107
151
139 | SUM OF
CONSTITUENTS,
DIS-
SOLVED
(MG/L)
(70301)
192
200
196
181
101
134
132 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.27
.30
.27
.26
.15
.21 | DIS-
SOLVED (TONS PER DAY) (70302) 40.5 49.7 37.6 89.4 585 322 152 97.9 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 .017 <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522 .503 1.03 .877 1.12 .748 .585 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 <.020 .049 <.020 <.020 .022 | | OCT 1997
07
NOV
03
DEC
09
JAN 1998
14
FEB
05
12
MAR
12 | DIS-
SOLVED (MG/L
AS SO4) (00945)
14
16
17
18
9.3
10
9.7 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
11
10
11
17
12
12
10 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.24
.14
.33
.17
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
3.9
3.8
1.4
6.3
5.6
5.6 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
198
218
199
190
107
151 | SUM
OF
CONSTITUENTS,
DIS-
SOLVED
(MG/L)
(70301)
192
200
196
181
101
134 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.27
.30
.27
.26
.15
.21 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
40.5
49.7
37.6
89.4
585
322 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.017 <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522 .503 1.03 .877 1.12 .748 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 <.020 .049 <.020 <.020 <.020 | | OCT 1997
07
NOV
03
DEC
09
JAN 1998
14
FEB
05
12
MAR
12
APR
16
20
MAY
07 | DIS-
SOLVED (MG/L
AS SO4) (00945)
14
16
17
18
9.3
10
9.7
9.9 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
11
10
11
17
12
12
10
9.2 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.24
.14
.33
.17
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
3.9
3.8
1.4
6.3
5.6
5.6 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
198
218
199
190
107
151
139 | SUM OF
CONSTITUENTS,
DIS-
SOLVED
(MG/L)
(70301)
192
200
196
181
101
134
132 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.27
.30
.27
.26
.15
.21 | DIS-
SOLVED (TONS PER DAY) (70302) 40.5 49.7 37.6 89.4 585 322 152 97.9 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 .017 <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522 .503 1.03 .877 1.12 .748 .585 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 <.020 .049 <.020 <.020 .022 | | OCT 1997
07 NOV 03 DEC 09 JAN 1998 14 FEB 05 12 MAR 12 APR 20 MAY 07 14 JUN 04 | DIS-
SOLVED (MG/L
AS SO4) (00945)
14
16
17
18
9.3
10
9.7
9.9
6.8
8.9 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
11
10
11
17
12
12
10
9.2
4.8
7.6 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.24
.14
.33
.17
<.10
<.10
.12 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
3.9
3.8
1.4
6.3
5.6
5.6
5.6 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
198
218
199
190
107
151
139
154
100 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
192
200
196
181
101
134
132
148
90 | DIS-
SOLVED (TONS PER AC-FT) (70303) .27 .30 .27 .26 .15 .21 .19 .21 .14 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
40.5
49.7
37.6
89.4
585
322
152
97.9
574 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522 .503 1.03 .877 1.12 .748 .585 .654 1.09 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 <.020 .049 <.020 <.020 .049 <.020 .049 <.020 .049 <.020 | | OCT 1997
07 NOV 03 DEC 09 JAN 1998 14 FEB 05 12 MAR 12 APR 16 20 MAY 07 14 JUN 04 JUL 17 | DIS-
SOLVED (MG/L
AS SO4) (00945)
14
16
17
18
9.3
10
9.7
9.9
6.8
8.9
8.9 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
11
10
11
17
12
12
10
9.2
4.8
7.6
8.2 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.24
.14
.33
.17
<.10
<.10
.12
.11
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
3.9
3.8
1.4
6.3
5.6
5.6
5.6 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
198
218
199
190
107
151
139
154
100 | SUM OF
CONSTITUENTS,
DIS-
SOLVED
(MG/L)
(70301)
192
200
196
181
101
134
132
148
90 | DIS-
SOLVED (TONS PER AC-FT) (70303) .27 .30 .27 .26 .15 .21 .19 .21 .14 | DIS-
SOLVED (TONS PER DAY) (70302) 40.5 49.7 37.6 89.4 585 322 152 97.9 574 317 269 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.017 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522 .503 1.03 .877 1.12 .748 .585 .654 1.09 1.02 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 <.020 .049 <.020 <.020 .049 <.020 .041 .051 | | OCT 1997
07 NOV 03 DEC 09 JAN 1998 14 FEB 05 12 MAR 12 APR 16 20 MAY 07 14 JUN 04 JUL | DIS-
SOLVED (MG/L
AS SO4) (00945)
14
16
17
18
9.3
10
9.7
9.9
6.8
8.9
8.9 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
11
10
11
17
12
12
10
9.2
4.8
7.6
8.2 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.24
.14
.33
.17
<.10
<.10
.12
.11
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
3.9
3.8
1.4
6.3
5.6
5.6
5.6
5.8 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
198
218
199
190
107
151
139
154
100
149
152 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
192
200
196
181
101
134
132
148
90
139
147 | DIS-
SOLVED (TONS PER AC-FT) (70303) .27 .30 .27 .26 .15 .21 .19 .21 .14 .20 .21 .26 | DIS-
SOLVED (TONS
PER DAY) (70302)
40.5
49.7
37.6
89.4
585
322
152
97.9
574
317
269 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.017 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .522 .503 1.03 .877 1.12 .748 .585 .654 1.09 1.02 .972 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.015 <.020 <.020 .049 <.020 <.020 .049 <.020 .049 .051 .051 .034 | # 03167000 REED CREEK AT GRAHAMS FORGE, VA--Continued | | NITRO- | NITRO- | | | | | PHOS- | PHOS- | | | | |-----------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | GEN, AM- | GEN, AM- | | NITRO- | | PHOS- | PHORUS | PHATE, | ALUM- | | MANGA- | | | MONIA + | MONIA + | NITRO- | GEN | PHOS- | PHORUS | ORTHO, | ORTHO, | INUM, | IRON, | NESE, | | | ORGANIC | ORGANIC | GEN, | DIS- | PHORUS | DIS- | DIS- | DIS- | DIS- | DIS- | DIS- | | | TOTAL | DIS. | TOTAL | SOLVED | TOTAL | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | | DATE | (MG/L (UG/L | (UG/L | (UG/L | | | AS N) | AS N) | AS N) | AS N) | AS P) | AS P) | AS P) | AS PO4) | AS AL) | AS FE) | AS MN) | | | (00625) | (00623) | (00600) | (00602) | (00665) | (00666) | (00671) | (00660) | (01106) | (01046) | (01056) | | OCT 1997 | | | | | | | | | | | | | 07 | <.20 | .27 | | .85 | .059 | E.044 | .050 | .15 | 14 | 18 | 4.1 | | NOV | | | | | | | | | | | | | 03 | < .20 | < .20 | | | < .050 | <.050 | .024 | .07 | 8.2 | 20 | 3.2 | | DEC | | | | | | | | | | | | | 09 | <.10 | <.10 | | | <.050 | <.050 | <.010 | | 6.1 | 17 | <4.0 | | JAN 1998 | | | | | | | | | | | | | 14 | .12 | .10 | 1.2 | 1.1 | <.050 | <.050 | .021 | .06 | <10 | 18 | 7.9 | | FEB | | | | | | | | | | | | | 05 | .26 | .20 | 1.1 | 1.1 | .071 | E.043 | .041 | .13 | 13 | 33 | 4.3 | | 12 | .13 | <.10 | 1.3 | | <.050 | <.050 | .023 | .07 | <10 | 11 | 7.3 | | MAR | | | | | | | | | | | | | 12 | <.10 | < .10 | | | <.050 | <.050 | <.010 | | <10 | 15 | 4.4 | | APR | | | | | | | | | | | | | 16 | .15 | .19 | .74 | .77 | <.050 | <.050 | <.010 | | | 42 | 10 | | 20 | .94 | .20 | 1.6 | .86 | .125 | E.035 | .025 | .08 | 18 | 41 | 6.1 | | MAY | | | | | | | | | | | | | 07 | .15 | .12 | 1.2 | 1.2 | <.050 | <.050 | .014 | .04 | <10 | 360 | 7.3 | | 14 | .17 | .12 | 1.2 | 1.1 | <.050 | <.050 | .018 | .06 | 12 | 20 | 6.3 | | JUN | | | | | | | | | | | | | 04 | .47 | .26 | 1.4 | 1.2 | <.050 | E.036 | .034 | .10 | 10 | 23 | 5.4 | | JUL | | | | | | | | | | | | | 17 | .27 | .20 | 1.1 | .98 | E.041 | <.050 | .022 | .07 | <10 | 23 | 7.4 | | AUG | 0.1 | 1.77 | 0.0 | 0.0 | T 024 | . 050 | 026 | 1.1 | .10 | 1.5 | 6.0 | | 04
SEP | .21 | .17 | .92 | .88 | E.034 | <.050 | .036 | .11 | <10 | 15 | 6.9 | | 04 | .20 | .14 | .70 | .64 | E.045 | <.050 | .032 | .10 | E6.1 | 16 | 6.6 | | U4 | . 20 | .14 | . 70 | .04 | E.045 | <.050 | .032 | .10 | F0.1 | 10 | 0.0 | # 03167000 REED CREEK AT GRAHAMS FORGE, VA--Continued | DATE | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
SUS-
PENDED
TOTAL
(MG/L
AS C)
(00689) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | QUALITY
ASSUR-
ANCE
DATA
INDICA-
TOR
CODE
*(99111) | |-----------|---|--|---|--|---|---|---|---|---|--|---| | OCT 1997 | | | | | | | | | | | | | 07
NOV | 1.5 | <.20 | .012 | E.0069 | .008 | E.0045 | E.0043 | 5 | 1.0 | 43 | 1 | | 03 | 1.8 | <.20 | .013 | E.0142 | .009 | E.0045 | .0052 | 2 | .46 | 50 | 1 | | DEC
09 | 1.4 | <.20 | .012 | E.0057 | .010 |
E.0047 | <.0050 | 1 | .19 | 50 | 40 | | JAN 1998 | | | .012 | 2.0007 | .010 | 2.0017 | | - | • | 50 | | | 14 | 2.0 | <.20 | | | | | | 3 | 1.4 | 35 | 1 | | FEB | | | | | | | | | | | | | 05 | 3.3 | 2.3 | | | | | | 106 | 580 | 70 | 10 | | 12 | 4.0 | .90 | | | | | | 17 | 36 | 96 | 1 | | MAR | | | | | | | | | | | | | 12 | 1.4 | .20 | | | | | | 5 | 5.5 | 67 | 1 | | APR | | | | | | | | | | | _ | | 16 | 1.5 | .30 | | | | | | 9 | 5.7 | 53 | 1 | | 20 | 3.0 | 2.5 | | | | | | 100 | 574 | 93 | 1 | | MAY | | | | | | | | 0.0 | | 0.4 | - | | 07 | 1.5 | .20 | | | | | | 29 | 62 | 94 | 1 | | 14 | 1.3 | .70 | | | | | | 21 | 37 | 93 | 1 | | JUN | 1 0 | . 40 | | | | | | 45 | 38 | 0.3 | 1.0 | | 04 | 1.8 | .40 | | | | | | 45 | 38 | 93 | 10 | | JUL
17 | 1.5 | . 50 | | | | | | 5 | 1.6 | 67 | 1 | | AUG | 1.5 | .50 | | | | | | 5 | 1.0 | 67 | 1 | | 04 | 1.4 | . 30 | | | | | | 4 | .99 | 64 | 1 | | SEP | 1.7 | . 50 | | | | | | - | | 0.4 | _ | | 04 | 1.6 | .30 | | | | | | 3 | .61 | 52 | 1 | | · · · · · | | | | | | | | 9 | | | - | E Estimated. ^{*} The values listed under parameter code 99111 indicate the type of quality-assurance sample associated with each environmental sample, where 1 denotes none, 10 denotes a blank sample, and 40 denotes a spike sample. # Special study and miscellaneous sites Discharge measurements in the following table were made at special study and miscellaneous sites throughout the State. Data for miscellaneous sites provided by the Virginia Department of Environmental Quality - Water Division are noted by an "[a]". Discharge measurements made at special study and miscellaneous sites during water year 1998 Measured Measurements Drainage previously Tributary to Location area (mi²) Date Discharge Stream (water (ft^3/s) years) POTOMAC RIVER BASIN Lat $38^{\circ}24'57"$, long $79^{\circ}34'24"$, 01605200 Strait Creek 1.50 1995-97 10-10-97 .271 Highland County, at Monterey sewage treatment plant discharge, West Strait 0.3 mi upstream from Burners Run, Creek [a] and 0.4 mi downstream from bridge on U.S. Highway 220. Lat $39^{\circ}15'06"$, long $78^{\circ}05'31"$, 01616200 1994-97 7-23-98 Hot Run 1.4 3.05 frederick County, upstream from W.S. Frey Company discharge, 0.04 mi downstream from U.S. Highway 11, and 0.4 mi southeast of Clear Clearbrook 9-30-98 1.52 Run [a] Brook. 01621100 Lat 38°27'58", long 78°58'33", 1963, 9- 3-98 2.15 Dry River Rockingham County, 60 ft upstream from Wampler and Longacre discharge, 350 ft 1976, 1979, Muddy Creek [a] 1981, downstream from bridge on 1991-94 U.S. Highway 33, and 0.2 mi 1997 west of Hinton. 1979, 01621210 Muddy Creek Lat 38°27'58", long 78°58'38", Rockingham County, 500 ft 12 5 9- 3-98 .840 1981. War Branch [a] upstream from mouth, and 1991-94, 0.3 mi west of Hinton. 1997 Lat 38°04'23", long 79°14'57", Augusta County, at Castaline Trout Farms-Middlebrook, 0.6 mi 01622220 Middle River 1.13 1994-97 6-24-98 2.44 Unnamed tribuupstream from bridge on State Highway 602, 0.7 mi upstream from mouth, and 2.4 mi north-west of Middlebrook. tary [a] Lat 38°07'58", long 79°13'30", Augusta County, 150 ft down-stream from Camp Shenandoah Lake, 0.4 mi upstream from mouth, and 0162222990 Middle River 0.99 1996-97 10-10-97 .791 Unnamed 6-24-98 1.65 tribu-9-10-98 .889 tary [a] 2.0 mi southwest of Swoope. Lat 38°16'57", long 79°13'47", Augusta County, at Whites Store, 200 ft upstream from Stoutameyer Branch, and 3.5 mi northwest of 10-10-97 01622468 Middle River 1996-97 .208 9.2 Jennings 7-16-98 .378 Branch [a] 9-22-98 .007 Lone Fountain. Lat 38°11'25", long 78°58'27", Augusta County, 500 ft up-stream from Staunton/Verona 01624350 North River 1991-93. 9- 3-98 61 3 Middle 1995. 1997 River [a] sewage treatment plant discharge, 1,500 ft upstream from Lewis Creek, and 2.0 mi southwest of Verona. a Provided by the Virginia Department of Environmental Quality - Water Division. | | | | Drainage | Measured previously | Mea | surements | |--|-----------------------------------|---|----------------------------|---------------------|--------------------------------|-----------------------------------| | Stream | Tributary to | Location | area
(mi ²) | (water years) | Date | Discharge
(ft ³ /s) | | | | POTOMAC RIVER BASI | NConti | nued | | | | 01624880
Meadow
Run [a] | Christians Creek | Lat 38°09'17", long 78°55'24",
Augusta County, 0.2 mi down-
stream from bridge on State
Highway 254, 0.4 mi upstream
from Coleytown Run, and 1.0 mi
northwest of Hermitage. | 11.83 | 1995-97 | 7-13-98
9-30-98 | 5.76
2.71 | | 01624940
Unnamed
tribu-
tary [a]
(No.3) | Middle River | Lat 38°14'54", long 78°57'37",
Augusta County, at Mt. Sidney/
Fort Defiance sewage treatment
plant, 100 ft upstream from
Railroad bridge, 0.3 mi downst
from culvert on U.S. Highway 1
and 0.7 mi south of Mount Sidn | 1, | 1996-97 | 10-10-97
6-23-98
9-30-98 | .098
.858
.146 | | 01625847
South
River [a] | South Fork
Shenandoah
River | Lat 38°01'07", long 79°01'08",
Augusta County, at Stuarts
Draft sewage treatment plant,
0.8 mi downstream from bridge
on State Highway 608, and 1.2
mi southeast of Stuarts Draft. | 52.47 | 1997 | 7-13-98
9-29-98 | 20.6
8.98 | | 01626575
Jones
Hollow
Run [a] | South River | Lat 38°03'45", long 78°52'24",
Waynesboro City at culverts on
Hunter Street in Waynesboro,
0.6 mi upstream from mouth,
and 0.8 mi downstream from
Jones Hollow Dam. | 2.6 | 1997 | 7-13-98
9- 3-98 | .762
.040 | | 01626952
Porter-
field Run
[a] | South River | Lat 38°08'04", long 78°52'00",
Augusta County, 0.3 mi up-
stream from mouth, 0.5 mi
downstream from culvert on
State Highway 865, and 0.8
mi east of Madrid. | 4.79 | - | 6-23-98
9- 3-98 | 1.84
.667 | | 01628590
Unnamed
tribu-
tary [a]
(No.2) | Cub Run | Lat 38°22'43", long 78°48'21",
Rockingham County, at Lawyer
Road sewage treatment plant,
0.4 mi upstream from mouth,
and 0.5 mi south of Penn Laird | 0.687 | 1994-97 | 6-23-98
9- 3-98 | .250 | | 01629945
Chub
Run | Hawksbill
Creek | Lat 38°34'31", long 78°27'32",
Page County, at culvert on
State Highway 689, 2.2 mi
east of Stanley, and 3.1 mi
upstream from mouth. | 3.16 | 1994 | 1-15-98 | 5.71 | | 01632700
Holmans
Creek [a] | North Fork
Shenandoah
River | Lat 38°42'57", long 78°45'37",
Shenandoah County, 100 ft
downstream from Lake Wunder,
0.2 mi upstream from State
Highway 728 and 1.4 mi west
of Forestville. | 4.96 | 1994-97 | 7-28-98
9-30-98 | 1.45
.720 | | 01632970
Crooked
Run | Mill Creek | Lat 38°45'44", long 78°41'06",
Shenandoah County, at culvert
on State Highway 263, 0.4 mi
upstream from mouth and 2.3 mi
west of Mt. Jackson. | 6.49 | 1994 | 1-15-98 | 5.65 | | 01633570
North
Fork
Shenandoal
River [a] | | Lat 38°49'34", long 78°32'03",
Shenandoah County, upstream
from Aileen, Inc. water intake
1.5 mi downstream from Stony
Creek, and 1.7 mi east of
Edinburg. | 644 | 1993-95,
1997 | 7-28-98
9-30-98 | 154
95.7 | a Provided by the Virginia Department of Environmental Quality - Water Division. | Stream | | | Orainage | Measured
previously | Meas | surements | |--|-----------------------------------|--|----------------------------|--|--------------------|-----------------------------------| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | POTOMAC RIVER BASI | NConti | nued | | | | 01633650
Pughs Run | Shenandoah
River | Lat 38°55'48", long 78°32'43"
Shenandoah County, on left
upstream wingwall of culvert
on State Highway 623, 4.0 mi
northwest of Woodstock, and
5.4 mi upstream from mouth. | 3.66 | 1996 | 1-8-98 | 41.2 | | 01633730
Toms
Brook [a] | North Fork
Shenandoah
River | Lat 38°56'42", long 78°26'32",
Shenandoah County, at bridge
on U.S. Highway 11, at Toms
Brook. | 9.35 | 1952-54,
1969-70,
1994-97 | 7-28-98 | 2.16 | | 01636210
Happy
Creek [a] | Shenandoah
River | Lat 38°54'20", long 78°11'10",
Warren County, at bridge on
Criser Road (Kerfoot Avenue),
at Front Royal, 2.3 mi up-
stream from Leach Run, and
2.9 mi upstream from mouth. | 14.0 | 1948-77‡,
1981-83,
1991-97 | 7- 9-98
9-14-98 | 5.54
.464 | | 01636225
Unnambed
tribu-
tary [a] | Crooked
Run | Lat 39°02'56", long 78°10'29",
Frederick County, at culvert
on State Highway 636, 1.5 mi
upstream from mouth, and
2.4 mi north of Nineveh. | 0.60 | 1993-97 | 7- 9-98 | .090 | | 01636228
Crooked
Run [a] | Shenandoah
River | Lat 38°59'14", long 78°11'00",
Warren County, 0.7 mi upstream
from bridge on State Highway
627, 0.7 mi north of Cedarville | 29.88 | 1997 | 7- 9-98
9-14-98 | 3.18
1.98 | | 01636240
Crooked
Run [a] | Shenandoah
River | Lat 38°57'22", long 78°11'53",
Warren County, 100 ft down-
stream from bridge on U.S.
Highways 340 and 522, 0.6 mi
north of Riverton, and 0.9 mi
upstream from mouth. | - | 1991-97 | 7- 9-98
9-14-98 | 8.37
3.17 | | 01636266
Manassas
Run [a] | Shenandoah
River | Lat 38°54'49", long 78°05'58",
Warren County, 100 ft upstream
from bridge on State Highway 79
1.3 mi west of Linden. | 5.25 | 1991-97 | 7- 9-98
9-14-98 | 2.39
.191 | |
01636295
Roseville
Run [a] | Spout Run | Lat 39°05'18", long 78°03'51",
Clarke County, at Boyce sewage
treatment plant discharge, at
Boyce town boundary, and 100 ft
downstream from bridge on U.S.
Highway 340. | 2.47 | 1995-97 | 7-23-98
9-14-98 | .351
.077 | | 01636345
Unnamed
tribu-
tary [a] | Wheat Spring
Branch | Lat 39°07'26", long 77°54'54",
Clarke County, at S.M. Perry
discharge, 50 ft upstream
from culvert on State High-
way 612, 1.3 mi upstream from
mouth, and 4.0 mi southeast
of Berryville. | 0.61 | - | 7-23-98 | 0 | | 01652500
Fourmile
Run | Potomac River | Lat 38°50'35", long 77°05'09",
Arlington County, at bridge
on Shirlington Road, 0.1 mi
upstream from Interstate
Highway 395, and 2.5 mi
upstream from mouth. | 13.8 | 1951-69‡,
1970-73,
1974-75‡,
1976-77c,
19079-82‡,
1983-92 | 9-10-98 | 3.21 | $[\]ddagger$ Operated as a continuous-record gaging station. a Provided by the Virginia Department of Environmental Quality - Water Division. c Prior to Sept. 28, 1973, at site 0.4 mi downstream at datum 6.02 ft lower. | | | - | rainaco | Measured | Meas | surements | |---|-------------------------|---|---------------------------------------|---|--------------------------------|-----------------------------------| | Stream | Tributary to | Location | rainage
area
(mi ²) | previously
(water
years) | Date | Discharge
(ft ³ /s) | | | | POTOMAC RIVER BASI | NConti | nued | | | | 01657865
Neabsco
Creek trib
utary | Neabsco Creek | Lat 38°39'13", long 77°17'48",
Prince William County, in Dale
City, 0.2 mi upstream from
Prince William Parkway. | - | 1997 | 10- 8-97 | .02 | | | | GREAT WICOMICO R | IVER BAS | IN | | | | 01661800
Bush Mill
Stream [b] | Great Wicomico
River | Lat 37°52′36", long 76°29′40",
Northumberland County, at
bridge on State Highway 601,
2.2 mi northwest of Howland,
3.0 mi southwest of Heathsville
and 3.5 mi upstream from mouth. | 6.82 | 1964-69‡,
1970-86‡,
1987-93,
1996-97 | 6- 3-98 | 4.83 | | | | RAPPAHANNOCK RI | VER BASI | N | | | | 01661835
Unnamed
tribu-
tary [a] | Hickman Run | Lat 38°45'14", long 78°06'24",
Rappahannock County, 50 ft
upstream from culvert on
State Highway 641, 0.8 mi
southwest of Flint Hill. | 0.125 | 1994-97 | 10-14-97
7-21-98
9-16-98 | .017
.040
0 | | 01662010
Unnamed
tribu-
tary [a]
(No.8) | Rappahannock
River | Lat 38°39'50", long 77°54'50",
Culpeper County, at South Wales
sewage treatment plant discharg
0.7 mi upstream from confluence
with Rappahannock River, and 1.
mi north of Jeffersonton. | е, | 1995-97 | 10-14-97
7-21-98
9-16-98 | <.001
<.001
<.001 | | 01662050
Unnamed
tribu-
tary [a] | Great Run | Lat 38°43'00", long 77°48'57",
Fauquier County, upstream
from Warrenton sewage treat-
ment plant discharge, at
Warrenton, and 300 ft up-
stream from bridge on U.S.
Highway 211. | - | 1993-97 | 10-14-97
7-21-98
9-16-98 | .134
.310
.138 | | 01662320
Thornton
River [a] | Hazel River | Lat 38°39'29", long 78°13'13",
Rappahannock County, at Sperry-
ville, 0.25 mi upstream from co
fluence with N.F. Thornton Rive
and 0.3 mi downstream from brid
on U.S. Highway 522. | n-
r | 1995-97 | 10-14-97
7-21-98
9-16-98 | 3.84
3.38
.575 | | 01665050
Pony
Mountain
Branch | Mountain Run | Lat 38°27'04", long 77°57'24",
Culpeper County, at culvert
on State Highway 3, 0.3 mi
upstream from mouth, and
2.7 mi southeast of Culpeper. | .30 | 1983,
1994 | 1-13-98 | .17 | | 01668300
Farmers
Hall Creek | Rappahannock
River | Lat 38°00'05", long 76°58'40",
Essex County, at culvert on U.S
Highway 17, 1.2 mi southeast of
Champlain. | | 1969,
1991,
1996-97 | 5-18-98 | 1.93 | | | | PIANKATANK RIV | ER BASIN | | | | | 01669800
My Ladys
Swamp | Piankatank River | Lat 37°34'34", long 76°31'30",
Middlesex County, at culvert
on State Highway 629, 4.4 mi
southeast of Saluda, and 1.45
upstream from mouth. | 4.81 | 1996-97 | 6- 3-98 | 4.66 | [†] Operated as a continuous-record gaging station. < Less than. a Provided by the Virginia Department of Environmental Quality - Water Division. b Provided by both the U.S. Geological Survey and Virginia Department of Environmental Quality - Water Division.</pre> Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued | | | | Drainage | Measured | Mea | surements | |---|---------------------|---|----------------------------|--------------------------------|--|---| | Stream | Tributary to | Location | area
(mi ²) | previously
(water
years) | Date | Discharge
(ft ³ /s) | | | | YORK RIVER | BASIN | | | | | 01670180
Pamunkey
Creek | Lake Anna | Lat 36°11'53", long 77°58'09",
Orange County, at bridge on
State Highway 669, 0.45 mi
south of Lahore, and 3.8 mi
upstream from Lake Anna. | 40.5 | 1989-91,
1994,
1997 | 3-31-98 | 58.8 | | 01670320
Freshwate:
Creek [a] | Contrary Creek
r | Lat 38°00'33", long 77°53'56",
Louisa County, 20 ft upstream
from Mineral sewage treatment
plant, 600 ft upstream from
culvert on State Highway 618,
and 0.5 mi east of Mineral. | - | 1991-97 | 10- 9-97
6-30-98
9- 1-98 | .063
.322
0 | | 01671270
Licking-
hole
Creek [a] | South Anna
River | Lat 38°04'33", long 78°08'55",
Louisa County, 700 ft down-
stream from Izac Lake, 0.5
mi upstream from mouth, and
2.1 mi east of Boswells Tavern | 2.73 | - | 10- 9-97
9- 1-98 | .051
.012 | | 01671925
Northeast
Creek [a] | South Anna
River | Lat 37°58'39", long 77°56'22",
Louisa County, at Louisa WTP
discharge, 300 ft downstream
from culvert on U.S. Highway and 2.5 mi south of Mineral. | 10.07 | 1994-97 | 10- 9-97
6-30-98
9- 1-98 | .508
2.55
.051 | | 01673610
Unnamed
tribu-
tary [a] | Clopton Swamp | Lat 37°33'05", long 77°06'22",
New Kent County, at Kenwood
Farmes sewage treatment plant
discharge, 0.6 mi upstream fromouth, and 1.6 mi northeast of
Quinton. | | 1994-97 | 10- 8-97
9- 1-98
9-28-98 | .051
.117
.149 | | 01674160
Polecat
Creek [a] | Mattaponi
River | Lat 37°58'09", long 77°32'20",
Caroline County, 150 ft down-
stream from culvert on State
Highway 601, 0.7 mi northeast
of Cedar Fork, and 2.1 mi west
of Golansville. | 1.15 | 1994-97 | 10-14-97
11-19-97
12- 9-97
1- 5-98
2- 3-98
3- 3-98
4- 7-98
5- 7-98
6- 2-98
7- 6-98
8- 5-98
9- 2-98 | .002
.120
.193
.299
1.38
5.34
1.64
.680
.117
.011 | | 01674171
Unnamed
tribu-
tary [a] | Polecat Creek | Lat 37°57'56", long 77°29'17",
Caroline County, 200 ft up-
stream from mouth, 1.2 mi sout
of Golansville, and 2.4 mi
north of Carmel Church. | 3.94
:h | 1994-97 | 10-14-97
11-19-97
12- 9-97
1- 5-98
2- 3-98
2- 6-98
3- 3-98
4- 7-98
5- 7-98
6- 2-98
7- 6-98
8- 5-98
9- 2-98 | .006
1.24
2.41
1.73
8.24
42.4
13.6
12.1
6.09
3.74
.212
0 | a Provided by the Virginia Department of Environmental Quality - Water Division. | | | | Drainage | Measured previously | Meas
Date | surements | |--|-----------------|--|----------------------------|--|--|---| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | YORK RIVER BASI | INContinu | ıed | | | | 01674172
Polecat
Creek [a] | Mattaponi River | Lat 37°58'13", long 77°29'13",
Caroline County, 150 ft upst
from bridge on State Highway
0.5 mi upstream from Stevens
Run, and 1.1 mi southeast of
Golansville. | 652, | 1994-97 | 10-14-97
11-19-97
12- 9-97
1- 5-98
2- 3-98
3- 3-98
4- 7-98
5- 7-98
6- 2-98
7- 6-98
8- 5-98
9- 2-98 | .002
4.35
4.71
5.62
21.1
44.0
26.5
18.8
6.58
.446
0 | | 01674174
Stevens
Mill
Run [a] | Polecat Creek | Lat 37°59'20", long 77°29'50",
Caroline County, 100 ft down
from bridge on State Highway
0.6 mi north of Golansville,
mi downstream from Lake Caro
and 1.6 mi upstream from mou | 601,
0.8
line, | 1994-97 | 10-14-97
11-19-97
12- 9-97
1- 5-98
2- 3-98
3- 3-98
4- 7-98
4-27-98
5- 7-98
6- 2-98
7- 6-98
8- 5-98
9- 2-98 | .394
4.24
3.03
5.68
65.2
37.7
27.2
8.37
14.8
2.00
.472
.166 | | 01674180
Polecat
Creek [a] | Mattaponi River | Lat 37°57'20",
long 77°22'08",
Caroline County, 200 ft upst
from bridge on State Highway
0.25 mi southeast of Penola,
2.2 mi upstream from mouth. | 601, | 1994-97 | 10-14-97
11-19-97
12-9-97
1-5-98
2-3-98
2-6-98
3-3-98
4-7-98
5-7-98
6-2-98
7-6-98
8-5-98
9-2-98 | .975
27.5
23.7
32.8
138
841
166
149
121
26.5
8.32
.406
.022 | | 01674200
Reedy
Creek | Mattaponi River | Lat 37°52′55″, long 77°21′35″,
Caroline County, at bridge of
U.S. Highway 301, 3.3 mi nor
of Dawn and 11 mi south of
Bowling Green. | | 1950,
1952-53,
1955-57,
1961,
1969,
1973-75,
1990-93,
1996-97 | 5-18-98 | 19.2 | | | | JAMES RIVE | ER BASIN | | | | | 02011010
Warm
Springs
Run [a] | James River | Lat 38°02'57", long 79°47'43",
Bath County, 100 ft upstream
from Warm Springs sewage
treatment plant, 0.2 mi down
stream from unnamed tributar
and 0.3 mi northwest of Warm
Springs. | -
Y, | 1991-97 | 6-26-98
9-29-98 | 5.58
2.43 | | 02011830
Hot
Springs
Run [a] | Cedar Creek | Lat 38°00'33", long 79°51'47",
Bath County, 50 ft upstream
from Hot Springs Regional
sewage treatment plant, 0.5
mi east of Bacova Junction,
and 0.7 mi downstream from
bridge on State Highway 615. | 4.32 | 1993-97 | 6-26-98
9-29-98 | 2.99
1.91 | a Provided by the Virginia Department of Environmental Quality - Water Division. Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued | | | Ţ | Orainage | Measured
previously | Measurements | | |---|------------------|--|----------------------------|--------------------------|--------------------------------|-----------------------------------| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | JAMES RIVER BASIN | Contin | ued | | | | 02012500
Jackson
River | James River | Lat 37°52'36", long 79°58'39",
Alleghany County, at Smith
Bridge, 0.8 mi south of
Falling Spring, and 1.6 mi
downsteam from Falling
Spring Creek. | 411 | 1925-96 | 10-16-97
3-31-98 | 219
428 | | 02012980
Jerrys
Run [a] | Dunlap Creek | Lat 37°48'37", long 80°11'25",
Alleghany County, at I-64 Rest
Area, 0.6 mi east of Exit 2,
and 5.3 mi north of Alleghany. | 1.89 | 1996-97 | 6-22-98 | .273 | | 02015300
Wilson
Creek [a] | Jackson River | Lat 37°50'37", long 79°48'01",
Alleghany County, at Tukes
Trailer Court discharge, 1.5
mi northwest of Longdale, and
2.5 mi upstream from mouth. | 28.34 | 1995-97 | 6-25-98
9-22-98 | 7.11
.095 | | 02015600
Cowpasture
River | James River | Lat 38°19'30", long 79°26'14",
Highland County, on left down-
stream wingwall of bridge on
U.S. Highway 250, 1.2 mi west
of Head Waters, and 3 mi
upstream from Shaw Fork. | 11.3 | 1995-97 | 1-10-98 | 49.2 | | 02017700
Craig
Creek
tribu-
tary | Craig Creek | Lat 37°33'21", long 79°59'52",
Craig County, at culvert on
State Highway 606, 0.4 mi up-
stream from mouth, and 7.1 mi
northeast of New Castle. | 2.05 | 1968-71
1992,
1994 | *6-23-95
1- 6-98 | 147
2.56 | | 02018310
Unnamed
tribu-
tary
(No.3) [a] | James River | Lat 37°38'17", long 79°47'52",
Botetourt County, at Eagle Rock
50 ft downstream from culvert
on State Highway 688, and 300 f
upstream from mouth. | | 1997 | 10-24-97
6-22-98 | 0 | | 02018810
Crooked
Run [a] | North Fork | Lat 37°30'44", long 79°55'40",
Botetourt County, at Camp
Fincastle Lake outfall, 0.3
mi downstream from Woodville
Spring, and 2.8 mi northwest
of Fincastle. | - | - | 6-22-98
9- 9-98 | 1.47
.853 | | 02018850
Borden
Creek [a] | Catawba
Creek | Lat 37°32'17", long 79°54'24",
Botetourt County, 0.7 mi
downstream from culvert on
State Highway 666, 1.0 mi
upstream from confluence with
Sukey Johnson Branch, and 1.6
mi west of Flatwoods. | - | 1997 | 10-24-97
6-22-98
9- 9-98 | .731
2.06
.815 | | 02020100
Renick
Run | James River | Lat 37°35'27", long 79°38'04",
Botetourt County, at culvert on
Frontage Road of Interstate
Highway 81, 4.8 miles north-
east of Buchanan. | 2.06 | 1969-71,
1995-97 | 1-13-98 | 1.80 | | 02021080
Alum
Creek [a] | Brattons Run | Lat 37°54'36", long 79°36'27",
Rockbridge County, 300 ft
south of State Highway 633,
1.2 mi upstream from mouth,
and 4.6 mi south of Millboro. | 3.21 | 1992-97 | 9-22-98 | .028 | a Provided by the Virginia Department of Environmental Quality - Water Division. | | | | Drainage | Measured previously | Meas | surements | |---|-----------------------------------|--|----------------------------|---------------------|--------------------|-----------------------------------| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | JAMES RIVER BASI | NContin | ued | | | | 02021110
Brattons
Run [a] | Calfpasture
River | Lat 37°58'07", long 79°30'17",
Rockbridge County, 200 ft
upstream from bridge on State
Highway 39, 0.7 mi southwest
of Goshen, and 1.0 mi down-
stream from bridge on State
Highway 780. | 28.86 | 1991-97 | 6-25-98
9-22-98 | 7.48
.207 | | 02021400
Unnamed
tribu-
tary [a] | Byrd Spring
Creek
tributary | Lat 38°02'26", long 79°23'12",
Augusta County, at Castaline
Trout Farm - Craigsville,
0.3 mi upstream from State
Highway 683, and 2.7 mi
south of Craigville. | 0.38 | 1994-97 | 7-16-98 | 1.63 | | 02021670
Cedar
Creek [a] | Cedar Grove
Branch | Lat 37°53'32", long 79°18'49",
Rockbridge County, 1.6 mi
northwest of Fairfield, 1.9
mi upstream from culverts on
State Highway 712, and 3.3 mi
upstream from mouth. | 1.75 | - | 7-16-98
9-10-98 | .756
.437 | | 02023390
Moores
Creek [a] | South River | Lat 37°55'57", long 79°13'52",
Rockbridge County, at Wilco
Travel Plaza, 200 ft upstream
from State Highway 917 and
0.3 mi south of Raphine. | 0.70 | 1994-97 | 6-24-98 | .722 | | 02023395
Moores
Creek [a] | South River | Lat 37°54'57", long 79°14'10",
Rockbridge County, at Raphine
Motel sewage treatment plant,
0.6 mi upstream from bridge
on U. S. Highway 11, and 1.5 m
south of Raphine. | 2.46
mi | 1994-97 | 6-24-98
9-10-98 | 3.06
1.23 | | 02023410
Marl-
brook
Creek [a] | South River | Lat 37°52'59", long 79°16'57",
Rockbridge County, 30 ft up-
stream from culvert on U.S.
Highway 11, 500 ft downstream
from culvert on State Highway
613, and at Fairfield. | 1.38 | - | 6-24-98
9-10-98 | 1.88
.362 | | 02024208
Indian
Gap
Run [a] | Maury River | Lat 37°43'38", long 79°21'38",
Rockbridge County, at Buena V.
City 600 ft upstream from mou
and 0.2 mi downstream from cu
on U.S. Highway 501. | th, | 1995-97 | 7-13-98
9-22-98 | .492
.271 | | 02025610
Harris
Creek [a] | James River | Lat 37°32'53", long 79°08'30",
Amherst County, at Old Dominic
Job Corps discharge, 0.9 mi u
stream from confluence with Fo
ing Rock Creek, and 2.5 mi no:
west of Faulconerville. | o-
all- | 1995-97 | 7- 6-98 | 7.97 | | 02025680
Unnamed
tribu-
tary [a] | Harris Creek | Lat 37°28'43", long 79°08'11",
Amherst County, at bridge on
private road, 100 ft upstream
from Ivanhoe Forest Subdivision
sewage treatment plant, and
1.4 mi south of Monroe. | 0.50
on | 1993-97 | 7- 6-98 | .210 | | 02025850
Ivy
Creek [a] | Blackwater
Creek | Lat 37°23'36", long 79°18'35",
Bedford County, 100 ft down-
stream from Ivy Hill Lake,
2.1 mi upstream from State
Highway 662, and 2.7 mi
northeast of Norwood. | 9.68 | 1994-97 | 7- 1-98 | 5.65 | a Provided by the Virginia Department of Environmental Quality - Water Division. | | | Th- | rainage | Measured previously | Measurements | | |---|---------------------------------|---|----------------------------|------------------------------------|---|-----------------------------------| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | JAMES RIVER BASIN- | -Contin | ued | | | | 02025890
Unnamed
tribu-
tary [a] | Tussocky Creek | Lat 37°17'55", long 79°09'04",
Campbell County, at Evergreen
Mobile Home Park, 1.0 mi up-
stream from confluence with
tributary from Willow Lake,
and 2.8 mi southeast of City
Farm. | 0.20 | 1996-97 | 7- 1-98
9-21-98 | .018 | | 02025970
Wreck
Island
Creek [a] | James River | Lat 37°28'52", long 78°53'43", Appomattox County, 50 ft up- stream from Appomattox Line Company discharge, 2.0 mi downstream from bridge on State Highway 683, and 3.0 mi south of Riverville. | 56.11 | 1993-97 | 7- 6-98
9-21-98 | 36.5
22.2 | | 02027700
Tribu-
tary | Buffalo River | Lat 37°33'45", long 78°57'35",
Amherst County, at culvert
on U.S. Highway 60, 5.2 mi
southeast of Amherst. | 0.46 | 1966-71,
1996-97 | 3-23-98 | 1.71 | | 02028480
Unnamed
tribu-
tary [a] | South Fork
Rockfish
River | Lat
37°54'16", long 78°57'51",
Nelson County, 200 ft upstream
from Wintergreen Mountain sewage
treatment plant, 2.8 mi northeas
of Love. | | 1993-97 | 7- 6-98 | .236 | | 02030400
Turpin
Creek [a] | Slate River | Lat 37°14'19", long 78°28'50",
Buckingham County, at Bucking-
ham Medium Security Institute
#3 discharge, 1.5 mi upstream
from Peyton Creek, and 2.0 mi
northwest of Dillwyn. | 1.32 | 1994-97 | 10- 7-97
7-30-98
9-21-98 | .271
.499
.250 | | 02030755
Unnamed
tribu-
tary [a] | North Creek | Lat 37°45'28", long 78°15'38",
Fluvanna County, at Village
Nursing Center discharge,
0.2 mi south of Fork Union,
and 0.5 mi upstream from
mouth. | 0.08 | 1994-97 | 10- 8-97
6-30-98
9-28-98 | <.001
.002
<.001 | | 02030760
North
Creek [a] | South Creek | Lat 37°45'27", long 78°15'02",
Fluvanna County, 100 ft
upstream from Fork Union
Military Academy sewage
treatment plant, at bridge
on State Highway 652, and
0.8 mi southeast of Fork
Union. | 2.0 | 1990-97 | 10- 8-97
6-30-98
9-28-98 | .131
.664
.122 | | 02032300
Muddy
Run | Buck Mountain
Creek | Lat 38°14'05", long 78°37'02",
Albemarle County, at bridge on
State Highway 810, 0.7 mi
upstream from mouth, and 11 mi
southwest of Stanardsville. | 3.36 | - | *2- 2-83
*4- 4-83
*3-24-89
1-13-98 | 12.3
27.3
25.3
8.13 | | 02033300
Moores
Creek | Rivanna River | Lat 38°00'25", long 78°34'25",
Albemarle County, at culvert
on access road, 30 ft north
of U.S. Highway 29, 2.8 mi
upstream from Morey Creek,
and 4 mi southwest of
Charlottesville. | 3.52 | 1969,
1990,
1991,
1996-97 | 3-31-98 | 8.55 | ^{*} Not previously published. < Less than. a Provided by the Virginia Department of Environmental Quality - Water Division. | | | | waina | Measured | Measurements | | |---|---------------------|---|---------------------------------------|--|--------------------------------|-----------------------------------| | Stream | Tributary to | Location | rainage
area
(mi ²) | previously
(water
years) | Date | Discharge
(ft ³ /s) | | | | JAMES RIVER BASIN- | Contin | ued | | | | 02033390
Biscuit
Run [a] | Moores Creek | Lat 37°59'57', long 78°31'09",
Albemarle County, at Southwood
Mobile Home Park discharge,
1.1 mi upstream from Inter-
state Highway 64, 0.8 mi south
of Charlottesville City limits
and 1.3 mi upstream from mouth. | 12.56 | 1994-97 | 10- 9-97
7-15-98
9-15-98 | 3.47
6.09
1.68 | | 02033570
Shadwell
Creek[a] | Rivanna River | Lat 38°01'13", long 78°25'27",
Albemarle County, at Ramada
Inn discharge, 0.3 mi upstream
from bridge on U.S. Highway 250
and 1.6 mi west of Shadwell. | 0.624 | - | 10- 9-97
7-15-98
9-15-98 | .035
.146
.030 | | 02033670
Rivanna
River[a] | James River | Lat 38°00'24", long 78°24'02",
Albemarle County, at bridge on
State Highway 729, 0.4 mi
upstream from Camp Branch,
and 0.5 mi southwest of Shadwel | -
1. | 1993,
1995,
1997 | 10- 8-97
8-31-98 | 82.7
120 | | 02033800
Mechunk
Creek [a] | Rivanna River | Lat 38°59'03", long 78°18'44",
Fluvanna County, at bridge on
U.S. Highway 250, 5.0 mi west
of Zion Crossroads. | - | 1941,
1951,
1953-54,
1964,
1994-97 | 10- 8-97
8-31-98
9-28-98 | 5.19
1.61
.494 | | 02036000
Beaverdam
Creek [a] | James River | Lat 37°38'50", long 77°49'34",
Goochland County, at bridge on
State Highway 6, at State Farm,
and 1.7 mi northwest of Crozier | | 1943,
1951-54,
1995-97 | 10- 7-97
8-31-98
9-28-98 | 3.16
1.04
.695 | | 02038000
Falling
Creek | James River | Lat 37°26'37", long 77°31'21",
Chesterfield County, at bridge
on State Highway 651, 2.8 mi
upstream from Pocoshock Creek
and 4.7 mi northwest of Ches-
terfield. | 32.8 | 1955-94‡,
1996-97 | 5-29-98 | 26.0 | | 02038670
Unnamed
tribu-
tary [a] | James River | Lat 37°23'48", long 77°22'36",
Henrico County, 0.2 mi
downstream from culvert on
Kingsland Road, 0.8 mi
upstream from mouth, and
4.4 mi east of Centralia. | 0.77 | 1997 | 10-10-97
8-24-98 | .057
.026 | | 02038730
Fourmile
Creek [b] | James River | Lat 37°27'16", long 77°19'53",
Henrico County, at bridge on
Doran Road, 0.2 mi upstream
from confluence with Ross Run,
and 3.7 mi east of Richmond
Heights. | 4.01 | 1980-83,
1997 | 10-10-97
8-24-98 | .442 | | 02038810
South Fork
Appomattox
River [a] | | Lat 37°21'13", long 78°48'50",
Appomattox County, at Appo-
mattox lagoon discharge,
200 ft downstream from culvert
on U.S. Highway 460 bypass, and
0.8 mi southeast of Appomattox. | 0.46 | 1994-97 | 7- 6-98
8-25-98 | .113 | | 02038840
Holiday
Creek | Appomattox
River | Lat 37°25'58", long 78°41'12",
Buckingham County, at State
Forest Road 2307 (old Rich-
mond Road), 1.8 mi upstream
from confluence with North
Holiday Creek, and 5.2 mi
south-southwest of Toga. | 1.68 | 1972,
1989-90,
1994,
1997 | 1- 8-98 | 4.72 | [†] Operated as a continuous-record gaging station. a Provided by the Virginia Department of Environmental Quality - Water Division. b Provided by both the U.S. Geological Survey and Virginia Department of Environmental Quality - Water Division. Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued | | | | Drainage | Measured
previously | Measurements | | |---------------------------------------|---------------------|---|----------------------------|---|--------------------------------|-----------------------------------| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | JAMES RIVER BASI | NContin | ued | | | | 02038845
North
Holiday
Creek | Holiday Creek | Lat 37°26'09", long 78°40'04",
Buckingham County, at State
Forest Road 2307 (old Rich-
mond Road), 1.0 mi upstream
from mouth, and 4.5 mi south-
southwest of Toga. | 1.31 | 1972-73,
1989-90,
1994,
1997 | 1- 8-98 | 2.86 | | 02040500
Flat
Creek | Appomattox
River | Lat 37°23'37", long 78°03'45",
Amelia County, at bridge on
State Highway 681, 0.5 mi
downstream from Horsepen Creek
and 6.0 mi northwest of Amelia | | 1947-78,
1952-54,
1971-72,
1977,
1981-85,
1987-89,
1992,
1996-97 | 5-29-98 | 44.1 | | 02040590
Nibbs
Creek [a] | Flat Creek | Lat 37°22'02", long 77°59'33",
Amelia County, 150 ft upstream
from Courthouse Branch, 0.2 mi
downstream from bridge on Stat
Highway 681, and 1.8 mi north
of Amelia Courthouse. | = | 1997 | 10- 7-97
9-14-98
9-23-98 | 1.38
.551
1.58 | | 02041700
Cattail
Run [a] | Appomattox
River | Lat 37°12'58", long 77°26'39",
Dinwiddie County, at Peters-
burg, 500 ft upstream from
U.S. Highway 1 and 460, and
0.7 mi upstream from mouth. | 8.61 | 1993-97 | 10- 9-97
9-14-98 | .290
.455 | | 02041745
Poor
Creek | Appomattox
River | Lat 37°12'56", long 77°22'29",
Petersburg City, 100 ft up-
stream from Siege Road, 2.8
mi southwest of entrance to
Petersburg National Battle-
field, and 1.5 mi west of
Fort Lee. | - | - | 9-10-98 | .09 | | 02041748
Poor
Creek | Appomattox
River | Lat 37°13'49", long 77°22'32",
Petersburg City, 0.5 mi west
of Siege Road, 2.0 mi south-
west of entrance to Petersburg
National Battlefield, and 2.0
mi west of Fort Lee. | - | - | 9- 9-98 | .10 | | 02041758
Harrison
Creek | Appomattox
River | Lat 37°13'58", long 77°21'50",
Petersburg City, 75 ft down-
stream from Siege Road, 1.3
mi southwest of entrance to
Petersburg National Battle-
field, and 1.0 mi west of
Fort Lee. | - | - | 9- 9-98 | 0 | | 02041760
Harrison
Creek | Appomattox
River | Lat 37°14'25", long 77°21'50",
Petersburg City, 100 ft down-
stream of State Highway 36,
0.5 mi west of entrance to
Petersburg National Battle-
field, and 1.0 mi west of
Fort Lee | - | - | 9- 9-98 | .10 | | 02041790
Harrison
Branch [a] | Appomattox
River | Lat 37°15'45", long 77°21'22",
Prince George County, at Red F
Mobil Home Park, 1.1. mi upstr
from mouth, 1.8 mi west of Jef
Park, and 3.0 mi east of Color
Heights. | Hill
ream
fferson | 1996-97 | 10- 9-97
8-24-98
9-28-98 | .035
.220
.005 | a Provided by the Virginia Department of Environmental Quality - Water Division. | | | ת | rainage | Measured
previously | Meas | surements | |---|--------------------------|---|----------------------------|---------------------------------|---
--| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | JAMES RIVER BASIN- | Contin | ued | | | | 02041810
Swift
Creek | Appomattox
River | Lat 37°27'18", long 77°42'11",
Chesterfield County, on left
bank, 5 ft upstream from bridge
on State Route 667 and 0.9 mi
upstream from mouth at Swift
Creek Reservoir. | 21.4 | 1987-88,
1991-93,
1996-97 | 10-20-97
11-24-97
11-24-97
12-15-97
1- 7-98 | .05
9.64
9.04
4.21
4.10 | | 02041820
Blackman
Creek | Deep Creek | Lat 37°24′54″, long 77°43′38″,
Chesterfield County, on right
bank, 60 ft upstream from bridge
on State Route 667, and 0.7 mi
upstream from mouth at Deep Cree | | 1987-88,
1992-93,
1996-97 | 10-20-97
11-14-97
11-26-97
11-26-97
12-16-97
1- 8-98 | 0
0
. 48
. 51
. 40
2.79 | | 02041830
Horsepen
Creek | Deep Creek | Lat 37°25′24″, long 77°43′33″,
Chesterfield County, on right
bank, 15 ft downstream from bric
on State Route 667, and 0.9 mi u
stream from mouth at Deep Creek. | ıp- | 1987-88,
1992-93,
1996-97 | 10-20-97
11-14-97
11-25-97
12-16-97
12-16-97
1- 8-98 | 0
7.74
1.12
.34
.36
1.44 | | 02041840
Otterdale
Branch | Deep Creek | Lat 37°26′28″, long 77°42′40″,
Chesterfield County, on right
bank, 10 ft downstream from
bridge on State Route 667, and
0.7 mi upstream from mouth at
Swift Creek Reservoir. | 3.59 | 1987-88,
1991-93,
1996-97 | 10-20-97
11-14-97
11-24-97
12-15-97
12-15-97
1- 7-98 | .01
10.0
1.61
.58
.57 | | 02041850
Tomahawk
Creek | Swift Creek | Lat 37°28′08″, long 77°40′54″,
Chesterfield County, on right
bank, 15 ft downstream from
bridge on State Route 652, and
1.4 mi upstream from mouth at
Swift Creek Reservior. | 4.20 | 1987-88,
1991-93,
1996-97 | 10-20-97
11-14-97
11-24-97
11-24-97
12-15-97
1- 7-98 | 0
10.1
2.87
2.85
1.12
1.87 | | 02041860
Little
Tomahawk
Creek | Tomahawk
Creek | Lat37°27'53", long 77°40'21",
Chesterfield County, on right
bank, 15 ft downstream from
bridge on unimproved road, and
1.3 mi upstream from mouth at
Swift Creek Reservoir. | 2.31 | 1987-88,
1991-93,
1996-97 | 10-20-97
11-14-97
11-24-97
12-15-97
12-15-97
1-7-98
1-7-98 | 0
6.06
.97
.31
.30
.67 | | 02041862
Little
Tomahawk
tributary
(No.1) | Little Tomahawk
Creek | Lat 37°27'05", long 77°40'23",
Chesterfield County, 0.6 mi west
of State Route 604, and 0.2 mi
upstream from mouth. | 0.19 | 1997 | 10-20-97 11- 7-97 | 0
.56
2.17
1.22
1.15
.80
.64
1.02
.99
1.71
1.61
1.57
.37
.36
.28
.24
.21 | Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued | | | т | Orainage | Measured previously | Meas | surements | |---|-------------------|--|----------------------------|---------------------------------|--|---| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | JAMES RIVER BASIN | Contin | ued | | | | 0204186350
Swift Cree
tributary | Swift Creek
ek | Lat 37°25'37", long 77°40'57",
Chesterfield County, 1.7 mi
north of U.S. Highway 360, 4.3
mi south-east of Hallsboro,
and 0.3 mi upstream from mouth. | 0.05 | 1997 | 10-20-97
11- 7-97
11- 7-97
11- 7-97
11- 7-97
11- 7-97
11- 7-97
11- 7-97
11- 7-97
11- 25-97
12-17-97
1-12-98 | .06
1.96
1.60
1.31
2.12
2.00
9.31
6.70
4.22
.04
.07 | | 02041870
Dry
Creek | Swift Creek | Lat 37°23'55", long 77°41'27",
Chesterfield County, on left
bank 10 ft upstream from
unimproved road 0.3 south of
U.S. Highway 360 and 0.3 mi
upstream from mouth at Swift
Creek Reservoir. | 2.96 | 1991-93,
1996-97 | 10-20-97
11- 7-97
11-25-97
12-16-97
1- 8-98 | 0
.60
.54
.10
16.4 | | 02041880
Ashbrook
Creek | Dry Creek | Lat 37°23'56", Long 77°41'06",
Chesterfield County, on right
bank at dam for Ashbrook Lake
about 0.1 mi upstream of mouth
at Swift Creek Reservoir. | 2.37 | 1992-93,
1996-97 | 10-20-97 | 0 | | 02041890
West
Branch | Dry Creek | Lat 37°24'39", long 77°41'16",
Chesterfield County, 0.2 mi
upstream from mouth at Swift
Creek Reservoir | 2.75 | 1991-93,
1996-97 | 10-20-97
11-14-97
11-25-97
12-16-97
1- 8-98 | .03
3.07
.55
.23
18.6 | | 02042075
Bailey
Creek [a] | James River | Lat 37°14'43", long 77°19'34", Prince George County, at Fort Lee Millitary Reservation, 0.7 mi upstream from bridge on Stat Highway 630, and 1.2 mi south of Jefferson Park. | -
e | 1995-97 | 10- 9-97
8-24-98
9-28-98 | .203
.262
.242 | | 02042080
Bailey
Creek [a] | James River | Lat 37°16'26", long 77°17'24",
Hopewell City and Prince
George County line, at bridge
on State Highway 156, at
Hopewell, and 0.4 mi down-
stream from Manchester Run. | 14.0 | 1992-97 | 10- 9-97
8-24-98
9-28-98 | 2.84
3.16
2.46 | | 02042190
Courthouse
Creek [a] | Queens Creek
e | Lat 37°20'36", long 77°04'36",
Charles City County, at Charles
City, 50 ft upstream from
Charles City Middle School
sewage treatment plant, 0.3 mi
upstream from bridge on State
Highway 155, and 1.2 mi up-
stream from mouth. | 5.07 | 1993-97 | 10- 8-97 | .212 | | 02042250
Bailey
Branch
tributary | Bailey Branch | Lat 37°10'29", long 76°59'13",
Surry County, at culvert on
State Highway 10, 1.0 mi
northwest of Sring Grove. | 0.71 | 1968-70,
1992,
1996-97 | 5-27-98 | 1.13 | | 02042400
Jordans
Branch | Upham Brook | Lat 37°35′10″, long 77°29′55″,
Henrico County, at bridge on
U.S. Highway 250 (Broad Street)
at Richmond, and 2.0 mi
upstream from mouth. | 2.53 | 1984-85,
1989-90,
1996-97 | 5-18-98 | .90 | a Provided by the Virginia Department of Environmental Quality - Water Division. | | | D | Orainage | Measured previously | Meas | surements | |--|-----------------------|--|----------------------------|--|---|-----------------------------------| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | JAMES RIVER BASIN | Contin | ued | | | | 02042455
White Oak
Swamp | Chickahominy
River | Lat 37°28'05", long 77°12'32",
Henrico County, at bridge on
State Highway 156, at Elko. | - | 1984-85,
1987-89,
1991,
1995-97 | 10-22-97
1-15-98
4-16-98
7-16-98 | 7.80
25.3
20.1
2.76 | | 02042478
Schiminoe
Creek
tributary | Schiminoe
Creek | Lat 37°27'27", long 77°05'23",
New Kent County, upstream of
culvert on U.S. Highway 60,
2.8 mi west of Providence Forge
and 0.4 mi upstream from mouth. | | 1996-97 | 10-22-97
1-15-98
4-16-98
7-16-98 | .15
1.60
2.25
.21 | | 02042726
Diascund
Creek | Chickahominy
River | Lat 37°28'52", long 76°58'21",
New Kent County, at bridge on
State Highway 628, 2.4 mi south
of New Kent, and 6.0 mi
upstream from Timber Swamp. | 9.25 | 1895,
1987-91,
1995-97 | 10-22-97
1-15-98
4-16-98
7-16-98 | 3.29
9.01
15.0
6.11 | | | | CHOWAN RIVER | BASIN | | | | | 02044900
Great
Creek [a] | Nottoway
River | Lat 36°58'51", long 77°44'28",
Dinwiddle County, at town of
McKenney sewage treatment plant
1.1 mi west of McKenney, and
1.8 mi upstream from mouth. | 3.84 | 1994-97 | 10-10-97 | .006 | | 02045275
Unnamed
tribu-
tary [a] | Sturgeon
Creek | Lat 36°51'35", long 77°50'05",
Brunswick County, 0.7 mi up-
stream from culvert on State
Highway 642, 2.4 mi upstream
from mouth and 2.8 mi east of
Alberta. | 1.68 | - | 6-23-98
9- 1-98
9-14-98
9-28-98 | .095
.002
.003
.004 | | 02046250
Stony
Creek [a] | Nottoway
River | Lat 36°56′53″, long 77°23′24″,
Sussex County, at Stony Creek
sewage treatment plant, 0.2 mi
downstream from bridge on
Interstate Highway 95, 0.6 mi
east of Stony Creek, and 0.9 mi
upstream from mouth. | 236 | 1994-97 | 10-10-97
8-10-98
9-23-98 | 1.81
4.22
2.60 | | 02046265
Hatcher
Run | Rowanty
Creek | Lat 37°09'20", long 77°37'32",
Dinwiddie County, 25 ft up-
stream from State Highway 627,
1.0 mi north of Five Forks,
and 12.0 mi southwest of
Petersburg. | - | - | 9-10-98 | .03 | | 02050050
Blackwater
River
tributary | Blackwater River | Lat 36°38'44", long 76°51'29",
Suffolk City, at culvert on
State Highway 272, 4.9 mi
southwest
of Holland, and 3.0
mi upstream from mouth. | 2.76 | 1968-70,
1996-97 | 5-27-98 | .18 | | | | ROANOKE RIVER | R BASIN | | | | | 02055515
Lick
Run [a] | Tinker Creek | Lat 37°16'20", long 79°56'08",
Roanoke City, at Roanoke,
along Norfolk Avenue, 300 ft
downstream from U.S. High-
way 220, and 1.0 mi upstream
from mouth. | 5.0 | 1994-97 | 9- 9-98 | 7.72 | a Provided by the Virginia Department of Environmental Quality - Water Division. Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued | | | ח | rainage | Measured previously | Meas | surements | |--|---------------------------|---|---------------|---------------------|---------------------|-----------------------------------| | Stream | Tributary to | Location | area
(mi²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | ROANOKE RIVER BASIN | NConti | nued | | | | 02056800
South For
Blackwate
River [a] | | Lat 37°00'39", long 80°02'53",
Franklin County, at Callaway, a
Callaway Elem. School sewage
treatment plant discharge, and
400 ft downstream from bridge of
State Highway 641. | | 1995,
1997 | 9- 9-98 | 2.96 | | 02057060
Gills
Creek | Blackwater
River | Lat 39°06'25", long 79°43'51",
Franklin County, 0.8 mi south
on Jack-O-Lantern Branch Trail
in Booker T. Washington National
Monument, 35 ft upstream of
confluence with Jack-O-Lantern
Branch, 5.5 mi southeast of
Burnt Chimney, and 8.0 mi southwest of Moneta. | | - | 8-26-98 | 9.47 | | 0205706010
Jack-0-
Lantern
Branch | Gills Creek | Lat 37°06′54″, long 79°43′50″,
Franklin County, 0.5 mi south
on Farm Trail Loop in Booker
T. Washington Monument, 5.0 mi
southeast of Burnt Chimney,
and 7.5 mi southwest of Moneta. | - | - | 8-25-98 | .07 | | 0205706020
Jack-0-
Lantern
tribu-
tary
(No.1) | Jack-O-Lantern
Branch | Lat 37°06'42", long 79°43'45",
Franklin County, 0.5 mi south
on Jack-O-Lantern Branch Trail
in Booker T. Washington Nationa.
Monument, 1.0 mi south of State
Highway 122, 5.0 mi southeast
of Burnt Chimney, and 7.0 mi
southwest of Moneta. | -
L | - | 8-25-98 | .12 | | 0205706030
Jack-O-
Lantern
Branch | Gills Creek | Lat 37°06′24″, long 79°43′50″,
Franklin County, 0.8 mi south
on Jack-O-Lantern Branch Trail
in Booker T. Washington Nationa
Monument, 40 ft upstram of con-
fluence with Gills Creek,5.5 mi
southwest of Burnt Chimney, and
8.0 mi southwest of Moneta. | -
L | - | 8-26-98 | .39 | | 02057695
Unnamed
tribu-
tary [a] | Powder Mill
Creek | Lat 37°00'32", long 79°53'29",
Franklin County, at Rocky
Mount, 800 ft east of Main
Street, and 0.25 mi upstream
from culvert on State Street. | - | - | 5-22-98
9- 9-98 | .021 | | 02059440
Unnamed
tribu-
tary [a]
(No.1) | South Fork
Goose Creek | Lat 37°23′52″, long 79°45′08″,
Bedford County, at Woodhaven
discharge, 200 ft upstream from
culvert on State Highway 697,
and 1.5 mi east of Villamont. | 0.31 | 1996-97 | 10-24-97 | .503 | | 02060900
Roaring
Run [a] | Big Otter
River | Lat 37°24'28", long 79°24'11",
Bedford County, at Gunnoe
Sausage discharge, 500 ft
upstream from bridge on
State Highway 643, and
0.3 mi south of Cifax. | 0.70 | 1994-97 | 10-24-97
7- 1-98 | .129
.271 | | 02061460
Buffalo
Creek [a] | Big Otter
River | Lat 37°18'18", long 79°17'24",
Campbell County, 300 ft
upstream from bridge on U.S.
Highway 460, and 0.5 mi
northwest of New London. | 5.86 | 1993-97 | 7- 1-98 | 3.55 | a Provided by the Virginia Department of Environmental Quality - Water Division. Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued | | | | Drainage | Measured
previously | Meas | surements | |--|--------------------|---|-----------------|------------------------|--|--------------------------------------| | Stream | Tributary to | Location | area
(mi²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | ROANOKE RIVER BAS | SINConti | nued | | | | 02063800
Mollys
Creek [a] | Falling River | Lat 37°12'05", long 79°03'18",
at Thousand Trails sewage
treatment plant discharge,
0.7 mi upstream from bridge
on State Highway 654, and 2.7
mi southeast of Winfall. | 13.92 | 1995-97 | 8-25-98 | 3.48 | | 02065010
Phelps
Creek [a] | Falling River | Lat 37°04'06", long 78°57'06",
Campbell County, 500 ft down-
stream from Brookneal Reserve
0.3 mi upstream from mouth, a
1.5 mi north of Brookneal. | ir, | 1995,
1997 | 10- 9-97
8-25-98 | 1.14
1.21 | | 02066520
Twittys
Creek [a] | Roanoke Creek | Lat 36°59'22", long 78°36'13",
Charlotte County, at Drakes
Branch sewage treatment plant
discharge, at Drakes Branch,
0.25 mi downstream from bridg
on State Highway 47. | and | 1995,
1997 | 10- 9-97 | .614 | | 02072530
Blackberry
Creek [a] | Smith River | Lat 36x°44'42", long 80°04'48",
Henry County, at Fairway Acre
discharge, 500 ft upstream fr
bridge on State Highway 687,
2.0 mi northeast of Sandville | om
and | 1997 | 9- 9-98 | 1.99 | | 02075091.25
Unnamed
tribu-
tary [a] | Hogans Creek | Lat 36°32'30", long 79°22'22",
Pittsylvania County, at Goody
Tire and Rubber plant dischar
0.4 mi upstream from bridge of
State Highway 736, 1.1 mi sou
east of Danville City limits,
and 1.5 mi upstream from mout | ge,
n
th- | 1994-97 | 9-10-98 | .125 | | 02075191
Cane
Creek [a] | Dan River | Lat 36°36'00", long 79°19'34",
Pittsylvania County, 0.3 mi
downstream from bridge on
State Highway 730, and 1.7
mi west of Ringgold. | 3.94 | - | †11-18-96
†5-23-97
†6-25-97
†9-18-97
9-10-98 | 2.07
2.06
1.68
1.23
1.20 | | 02075350
Powells
Creek | Dan River | Lat 36°34′50″, long 79°11′20″,
Halifax County, at culvert
on U.S. Highway 58, 1.1 mi
east of Halifax-Pittsylvania
county line, 8.8 mi southwest
of Turbeville, and 0.8 mi up-
stream from mouth. | | 1993,
1996 | 6-10-98 | .10 | | 02076100
Wet
Sleeve
Creek [a] | Banister River | Lat 36°46'18", long 79°32'52", Pittsylvania County, 0.4 mi downstream from bridge on State Highway 815, 1.3 mi upstream from mouth, and 2.8 mi northeast of Swansonville. | 3.75 | 1993-95,
1997 | 9-10-98 | 1.02 | | 02076200
Bearskin
Creek | Banister River | Lat 36°50'30", long 79°29'05",
Pittsylvania County, at culve
on State Highway 57, 4.5 mile
west of Chatham. | | 1969-72,
1996-97 | 1- 6-98 | 2.76 | | 02076280
Dry
Fork [a] | White Oak
Creek | Lat 36°44'40", long 79°23'48",
Pittsylvania County, at Vulca
Materials Company discharge,
0.6 mi south of Dry Fork, and
0.7 mi upstream from bridge of
State Highway 718. | l | 1994-95,
1997 | 9-10-98 | 0 | a Provided by the Virginia Department of Environmental Quality - Water Division. | | | | rainage | Measured previously | Measurements | | |---|------------------|--|----------------------------|---------------------|--------------|-----------------------------------| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | YADKIN RIVER | BASIN | | | | | 02113540
Unnamed
tribu-
tary [a]
(No. 1) | Birds Branch | Lat 36°38'18", long 80°32'05",
Patrick County, at Doe Run Lodge
discharge, 0.25 mi south of Pilc
Mtn. Overlook, and 3.0 mi north-
west of Ararat. | t | 1995-97 | 8- 4-98 | .090 | | 02113541
Unnamed
tribu-
tary [a]
(No. 2) | Birds Branch | Lat 36°38'16", long 80°32'30",
Patrick County, at Groundhog
Mtn. Resort discharge, 0.45
mi southwest of Pilot Mtn.
Overlook, and 3.1 mi north-
west of Ararat. | - | 1995-97 | 8- 4-98 | .040 | | | | KANAWHA RIVER | BASIN | | | | | 03162705
Peggies
Branch [a | New River | Lat 36°36'08", long 81°20'22",
Grayson County, 0.2 mi down-
stream from bridge on State
Hihgway 728, 0.3 mi north of
Oak Hill, and 1.6 mi up-
stream from mouth. | 1.54 | 1995,
1997 | 8- 4-98 | .403 | | 03162750
Fox
Creek [a] | New River | Lat 36°41'22", long 81°25'52",
Grayson County, at Rivers
Casuals sewage treatment
plant, 400 ft upstream from
bridge on State Highway 16,
and 1.1 mi southeast of
Troutdale. | 13.82 | 1994-95,
1997 | 8- 4-98 | 3.06 | | 03162852
Peach
Bottom
Creek [b] | New River | Lat 36°36'01" long 81°06'41",
Grayson County, at Indepen-
dence sewage treatment plant,
200 ft upstream from State
Highway 697, and 2.7 mi
southeast of Independence. | - | 1993-95,
1997 | 8- 4-98 | 8.58 | | 03163480
Stone
Creek [a] | Elk Creek | Lat 36°43'27", long 81°10'45",
Grayson County, at Perry
Manufacturing sewage treat-
ment plant, 0.2 mi north of
Elk Creek, and 0.3 mi upstream
from bridge on State Highway
659. | 2.31 | 1994-95,
1997 | 8- 5-98 | 1.14 | | 03164100
Bull
Run [a] | New River | Lat
36°42'28", long 81°02'11",
Grayson County, 0.5 mi upstream
from bridge on State Highway 648
1.3 mi northwest of Providence,
and 2.5 mi southwest of Stevens
Creek. | 0.32 | 1995,
1997 | 8- 4-98 | .240 | | 03166100
Buddle
Branch [a | New River | Lat 36°50'17", long 80°55'00",
Wythe County, 100 ft east of
State Highway 636, 0.6 mi
upstream from culvert on
State Highway 69, and 0.9 mi
south of Austinville. | - | 1993-97 | 8- 5-98 | .154 | | 0316612010
Unnamed
tribu-
tary [a]
(No.1) | Buddle
Branch | Lat 36°51'21", long 80°54'18",
Wythe County, 10 ft upstream
from confluence with Buddle
Branch, 0.6 mi northeast of
Austinville. | - | 1997 | 8- 5-98 | .955 | a Provided by the Virginia Department of Environmental Quality - Water Division. b Provided by both the U.S. Geological Survey and Virginia Department of Environmental Quality - Water Division. Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued | | | | Drainage | Measured previously | Meas | surements | |---|---|--|----------------------------|---------------------|---------|-----------------------------------| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | KANAWHA RIVER BAS | INConti | nued | | | | 03167100
McGavock
Creek [a] | Reed Creek | Lat 36°57′58″, long 80°51′07″,
Wythe County, at I-81
Auto & Truck Stop sewage
treatment plant discharge, at
exit 86, and 2.8 mi northeast
of Grahams Forge. | 0.12 | 1995-97 | 8- 3-98 | .003 | | 03167150
Big Reed
Island
Creek [a] | New River | Lat 36°41'20", long 80°31'42",
Carroll County, at Olde Mill
Golf Resort, 0.2 mi down-
stream from bridge on State
Highway 618, and 2.1 mi south
of Laurel Fork. | 20.2 | 1994-97 | 8- 4-98 | 14.4 | | 03167600
Unnamed
tribu-
tary [a]
(No.1) | East Fork
Little Reed
Island Creek | Lat 36°40'00", long 80°41'43",
Carroll County, at Lakeview
Motel sewage treatment plant
discharge, at Fancy Gap, and
1.1 mi upstream from mouth. | 0.13 | 1995-97 | 8- 4-98 | .057 | | 03167608
East Fork
Little Red
Island Cre | ed | Lat 36°40'27", long 80°42'42",
Carroll County, at Days Inn
discharge, 200 ft upstream
from I-77, and 1.2 mi
northeast of Fancy Gap. | 3.21 | 1996-97 | 8- 4-98 | 3.02 | | 03167610
Unnamed
tribu-
tary [a] | East Fork
Little Reed
Island Creek
Tributary
(No.2) | Lat 36°40'26", long 80°41'42",
Carroll County, at Utts
Campground discharge, at
culvert on U.S. Highway 52,
and 0.5 mi north of Fancy Gap. | 0.15 | 1995-97 | 8- 4-98 | .035 | | 03168450
Peak
Creek [a] | New River | Lat 37°02'50", long 80°47'32",
Pulaski County, at Pulaski,
600 ft downstream from bridge
on State Highway 610, and 0.4
mi upstream from Tract Fork. | - | 1995,
1997 | 8-21-98 | 3.62 | | 03168480
Tract
Fork [a] | Peak Creek | Lat 37°02'50", long 80°47'14",
Pulaski County, at Pulaski,
100 ft upstream from mouth,
and 1.9 mi downstream from
Harbison Branch. | 25.55 | 1994-95 | 8-21-98 | 3.01 | | 03169220
Dodd
Creek [a] | West Fork | Lat 36°54'38", long 80°20'20",
Floyd County, at Floyd sewage
treatment plant, 900 ft down-
stream from bridge on U.S.
Highway 221, and 0.8 mi west
of Floyd. | 19.25 | 1996-97 | 8- 3-98 | 14.0 | | 03171170
Crab
Creek [a] | New River | Lat 37°09'26", long 80°28'15",
Montgomery County, at Town of
Christiansburg discharge, 200
upstream from culvert on State
Highway 660, and 3.9 mi northw
of Christiansburg. | 2 | 1995,
1997 | 8- 3-98 | 6.13 | | 03171700
Crab
Orchard
Creek [a] | Walker Creek | Lat 37°05'36", long 81°06'37",
Bland County, 0.4 mi down-
stream from bridge on State
Highway 605, 0.7 mi southeast
of Bland. | 15.91 | 1993-97 | 8-28-98 | 1.72 | a Provided by the Virginia Department of Environmental Quality - Water Division. | | | 1 | Drainage | Measured previously | Measurements | | |---|--------------------|---|----------------------------|---------------------|-------------------------------|-----------------------------------| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | KANAWHA RIVER BASI | NConti | nued | | | | 03174580
Hunting
Camp
Creek [a] | Wolf Creek | Lat 37°09'25", long 81°08'55",
Bland County, at GIV Inc. dis-
charge, 0.3 mi north of Bastian
and 1.1 mi upstream from mouth. | | 1995,
1997 | 8- 3-98 | .508 | | 03174600
Wolf
Creek [a] | New River | Lat 37°10'38", long 81°09'10",
Bland County, at Kegley Manor
sewage treatment plant dis-
charge, 0.4 mi upstream from
U.S. Highway 21 and 52, 0.8 mi
upstream from Hunting Camp
Creek, and 1.7 mi north of
Bastian. | 99.0 | 1994-95,
1997 | 8- 3-98 | 9.89 | | | | BIG SANDY RIVE | ER BASIN | | | | | 03207227
Right
Fork [a] | Garden Creek | Lat 37°10'02", long 82°00'53",
Buchanan County, at Skeggs,
600 ft upstream from Skeggs
Branch, and 1.5 mi south of
Mount Heron. | 12.0 | 1995-97 | 8-27-98 | 2.66 | | 03207350
Levisa
Fork [b] | Big Sandy
River | Lat 37°14'21", long 82°04'02",
Buchanan County, at Oakwood
sewage treatment plant, 0.1 mi
downstream from Laurel Branch,
and 1.8 mi east of Vansant. | 177 | 1993-97 | 8-27-98 | 43.3 | | 03207438
Slate
Creek [a] | Levisa Fork | lat 37°18'45", long 81°58'36",
Buchanan County, at J. M.
Bevins Elementary School
sewage treatment plant, 50 ft
south of State Highway 83,
600 ft upstream from Twin
Branch, and 0.9 mi southeast
of Stacy. | 16.12 | 1994-97 | 8-27-98 | 1.13 | | 03208340
McClure
Creek [a] | McClure River | Lat 37°01'03", long 82°17'46",
Dickenson County, 100 ft west
of State Highway 63, 0.2 mi
downstream from Trammel Branch,
and 0.3 mi northwest of Trammel | | 1994-97 | 8-25-98 | 1.72 | | 03208364
McClure
Creek [a] | McClure River | Lat 37°04'04", long 82°20'40",
Dickenson County, at Ervinton
Elementary School sewage treat-
ment plant, 0.2 mi upstream
from bridge on State Highway
652, 0.2 mi upstream from Open
Fork, and 0.3 mi southeast of
Nora. | 22.0 | 1994-97 | 8-25-98 | 11.4 | | 03208368
Spring
Fork [a] | Open Fork | Lat37°02'59", long 82°21'36",
Dickenson County, 400 ft up-
stream from confluence with
Open Fork, 1.6 mi southeast
of Nora. | 5.18 | 1997 | 8-25-98 | 1.65 | | 03208700
North
Fork
Pound
River | Pound River | Lat 37°07'32", long 82°37'36",
Wise County 700 ft down-
stream from Stacy Branch,
1,600 ft downstream from
North Fork Pound River dam,
and at Pound. | 18.5 | 1963-97 | 1- 6-98
5-21-98
5-21-98 | 27.8
3.16
3.45 | a Provided by the Virginia Department of Environmental Quality - Water Division. b Provided by both the U.S. Geological Survey and Virginia Department of Environmental Quality - Water Division. | | | | Drainage | Measured previously | Measurements | | |---|---------------------------------|---|----------------------------|---------------------|--------------------|-----------------------------------| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | BIG SANDY RIVER BA | SINCont | inued | | | | 03208800
Pound
River | Russell Fork | Lat 37°07'26", long 82°36'29",
Wise County, 1,600 ft down-
stream from confluence of
North and South Forks, 0.5 mi
upstream from U.S. Highway 23
0.7 mi upstream from Indian
Creek, and at Pound. | 36.7 | 1966-81,
1984-97 | 4- 2-98
8-11-98 | 45.5
21.5 | | 03208900
Pound
River | Russell Fork | Lat 37°09'51", long 82°31'30",
Dickenson County, 50 ft up-
stream from State Highway 624
150 ft upstream from Camp
Creek, and 2.6 mi northwest
of Georges Fork. | 82.5 | 1964-97 | 5-21-98
8-11-98 | 93.9
52.2 | | 0320890475
Laurel
Creek [a] | Georges
Fork | Lat 37°08'02", long 82°29'25",
Dickenson County, 1.1 mi south
of Georges Fork, 1.4 mi upstre
from mouth. | | 1997 | 8-25-98 | .035 | | 0320890485
Georges
Fork [a] | Pound River | Lat 37°09'01", long 82°29'25",
Dickenson County, 50 ft down-
stream from Laurel Creek,
300 ft downstream from bridge
on State Highway 83, and 0.2 morthwest of Georges Fork. | | 1994-97 | 8-25-98 | 2.53 | | 03209200
Russell
Fork | Levisa Fork | Lat 37°14'45", long 82°19'25",
Dickenson County, at bridge
on State Highway 611, 0.2 mi
downstream from Pound River,
and at Bartlick. | 526 | 1963-97 | 5-21-98
8-11-98 | 546
346 | | 03213570
Right
Fork [a] | Knox Creek | Lat 37°22'53", long 82°00'01",
Buchanan County, at Hurley
Middle School sewage treat-
ment plant, 200 ft downstream
from Straight Fork, 0.1 mi
upstream from mouth, and at
Blackey. | 8.53 | 1994-97 | 8-27-98 | .305 | | | | TENNESSEE RIV | VER BASIN | | | | | 03472200
Big
Laurel
Creek [a] | Whitetop
Laurel
Creek | Lat 36°41'15", long 81°32'54",
Smyth County, at
Grindstone
Recreation Area sewage treat-
ment plant, 0.1 mi upstream
from bridge on State Highway
603, and 1.9 mi north of
Mt. Rogers. | 0.53 | 1994-95,
1997 | 8- 5-98 | .121 | | 03473840
Unnamed
tribu-
tary [a] | Hungry Mother
Creek | Lat 36°52'20", long 81°30'42",
Smyth County, at Hungry Mother
State Park Campground D sewage
treatment plant, 400 ft down-
stream from bridge on park roa
and 2.7 mi north of Marion. | е | 1993-95 | 8-26-98 | .270 | | 03475595
Cedar
Creek [a] | Middle Fork
Holston
River | Lat 36°44'55", long 81°51'26",
Washington County, at Meadowv:
Elem. School sewage treatment
plant, 0.1 mi north of Cedarv:
and 3.4 mi upstream from mouth | ille, | 1995,
1997 | 8- 5-98 | .895 | a Provided by the Virginia Department of Environmental Quality - Water Division. | | | | rainage | Measured previously | Mea | surements | |---|---------------------------------|--|-------------------------|---------------------------------------|---|---| | Stream | Tributary to | Location | area (mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | TENNESSEE RIVER BAS | INCont | inued | | | | 03475600
Cedar
Creek | Middle Fork
Holston
River | Lat 36°44'50", long 81°51'20",
Washington County, at culvert
on U.S. Highway 11, 1.2 mi
south of Meadowview, and 2.5
mi upstream from mouth. | 3.38 | 1969,
1990,
1992-94 | 3-24-98 | 5.28 | | 03475630
Wolf
Creek [b] | South Fork
Holston
River | Lat 36°41'11", long 81°58'56", Washington County, at town of Abingdon sewage treatment plant, 100 ft downstream from bridge on State Highway 670, and 1.6 mi south of Abingdon. | 15.95 | 1948,
1988,
1993-95,
1997 | 10-30-97
12- 1-97
12- 5-97
12- 5-97
12- 5-97
1- 8-98
2- 3-98
2-23-98
3-20-98
4-17-98
5- 1-98
7- 2-98
8-21-98
9-17-98
9-17-98
9-29-98 | 11.0
18.4
9.28
12.0
28.5
60.3
45.8
89.3
248
27.2
24.8
15.8
11.0
10.6
9.15
9.64 | | 034765085
Sinking
Creek [a] | Paperville
Creek | Lat 36°39'44", long 82°03'56",
Washington County, on State
Highway 808, 0.2 mi downstream
from bridge on U.S. Highway 11,
and 5.6 mi southwest of Abingdo | 0.59
n. | 1993-97 | 8- 5-98 | 1.06 | | 03487800
Lick
Creek | North Fork
Holston
River | Lat 36°57'44", long 81°28'21",
Smyth County, 270 ft upstream
from bridge on State Highway
42, 1.6 mi upstream from mouth,
and 2.9 mi northeast of Chatham
Hill. | 25.5 | 1966-68
1990,
1992,
1994 | 4-13-98 | 64.1 | | 03488450
Brumley
Creek | North Fork
Holston
River | Lat 36°47'30", long 82°01'10",
Washington County, at bridge
on State Highway 611, 0.2 mi
upstream from mouth, 0.8 mi
southeast of Brumley Gap, and
2.7 mi downstream from Lee
Creek. | 21.1 | 1979-81,
1982-85,
1992,
1994 | 3-24-98 | 85.0 | | 03488490
Canoe
Branch[a] | North Fork
Holston River | Lat 36°45'12", long 82°02'42",
Washington County, at Greendale
Elementary School discharge,
2.4 mi upstream from mouth,
and 2.4 mi southeast of Holston | | 1997 | 8-26-98 | <.001 | | 03489860
Hilton
Creek [a] | North Fork
Holston
River | Lat 36°39'12", long 82°27'50",
Scott County, at Hilton
Elementary School sewage
treatment plant, 0.2 mi south-
east of Hilton, and 0.4 mi
upstream from mouth. | 1.05 | 1993-95,
1997 | 5-19-98
8-24-98 | .998
.248 | | 03489867
Unnamed
tribu-
tary [a]
(No.8) | North Fork
Holston
River | Lat 36°38'24", long 82°29'33",
Scott County, at Brickyard
Gap, 300 ft upstream from
bridge on State Highway 896,
0.3 mi upstream from mouth,
and 1.7 mi southwest of Hilton. | 2.95 | - | 8-24-98 | .387 | < Less than. a Provided by the Virginia Department of Environmental Quality - Water Division. b Provided by both the U.S. Geological Survey and Virginia Department of Environmental Quality - Water Division. Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued | | | т | rainage | Measured previously | Meas | surements | |---|-------------------------------|---|---------------|---------------------|---------|-----------------------------------| | Stream | Tributary to | Location | area
(mi²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | TENNESSEE RIVER BAS | INCont | inued | | | | 03489950
Unnamed
tribu-
tary [a]
(No.1) | Little Moccasin
Creek | Lat 36°38'13", long 82°40'00",
Scott County, 400 ft upstream
from culvert on State Highway
870, 600 ft upstream from mouth
and 3.1 mi northeast of Kermit. | 0.20 | 1997 | 8-24-98 | .063 | | 03521500
Clinch
River | Tennessee
River | Lat 37°05'10", long 81°46'52",
Tazewell County, 1.0 mi south-
east of Richlands, 1.7 mi
downstream from Indian Creek. | 137 | 1945-97 | 1- 5-98 | 75.8 | | 03521550
Big
Creek [a] | Clinch River | Lat 37°09'14", long 81°47'02",
Tazewell County at Seaboard
No.2 Mine discharge, at mouth
of Wildcat Hollow, and 0.6 mi
southeast of Coaldan. | 3.86 | 1997 | 8-27-98 | .178 | | 03523050
Big
Cedar
Creek [a] | Clinch River | Lat 36°55'19", long 82°03'10",
Russell County, at Lebanon
sewage treatment plant,
200 ft downstream from Little
Cedar Creek, and 2.1 mi north-
east of Lebanon. | - | 1993-95,
1997 | 8-26-98 | 25.7 | | 03524018
Hurricane
Fork [a] | Dumps Creek | Lat 36°59'06", long 82°10'58",
Russell County, 0.6 mi down-
stream from Laurel Branch,
1.1 mi upstream from the mouth,
and 1.6 mi north of
South Clinchfield. | 10.3 | 1995-97 | 8-25-98 | 1.79 | | 03524025
Dumps
Creek [a] | Clinch River | Lat 36°57'23", long 82°10'46",
Russell County, 300 ft down-
stream from Millstone Branch,
0.5 mi south of South
Clinchfield, and 2.0 mi up-
stream from mouth. | 20.9 | 1995-97 | 8-25-98 | 7.95 | | 03524596
Corder
Branch [a | Little Stony
Creek
] | Lat 36°53'04", long 82°27'51",
Wise County, 100 ft downstream
from Ramey Branch, 0.6 mi up-
stream from mouth, and 4.1 mi
south of Coeburn. | 3.55 | 1995,
1997 | 8-26-98 | .137 | | 03527505
Unnamed
tribu-
tary [a]
(No.7) | North Fork
Clinch
River | Lat 36°42'40", long 82°47'15",
Scott County, at Empire Mobile
Home Park sewage treatment plan
dischrage, 0.6 mi upstream from
mouth, and 0.7 mi southeast of
Duffield. | | 1995,
1997 | 8-24-98 | .077 | | 03529420
Callahan
Creek [a] | Powell River | Lat 36°55'03", long 82°47'29",
Wise County, at Interstate R/R
discharge, 0.6 mi southeast of
Andover, 0.6 mi downstream from
Preacher Creek, and 1.0 mi up-
stream from mouth. | 27.4 | 1995,
1997 | 8-25-98 | 7.41 | | 03529430
Lick
Branch [a | Pigeon Creek | Lat 36°52'55", long 82°50'00",
Wise County, at confluence with
Pigeon Creek, at Lower Exeter,
500 ft north of State Highway 6
and 1.5 mi west of Imbodem. | | 1997 | 8-25-98 | .774 | a Provided by the Virginia Department of Environmental Qualtiy - Water Division. Discharge measurements made at special study and miscellaneous sites during water year 1998--Continued | | | | Drainage | Measured previously | Meas | surements | |----------------------------------|--------------|---|----------------------------|---------------------|---------|-----------------------------------| | Stream | Tributary to | Location | area
(mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | TENNESSEE RIVER B | ASINCont | inued | | | | 03531190
Station
Creek [a] | Powell River | Lat 36°42'34", long 82°57'33",
Lee County, at Dot Mobile
Home Park sewage treatment
plant, 500 ft upstream from
bridge on U.S. Highway 58,
and at Dot. | 3.29 | 1994-95,
1997 | 8-24-98 | 0 | | 03531200
Station
Creek [a] | Powell River | Lat 36°41'58", long 83°00'02",
Lee County, at Lee County
Industrial Park discharge,
1.3 mi upstream from mouth,
and 2.4 mi west of Dot. | 7.55 | 1994-95,
1997 | 8-24-98 | 1.08 | a Provided by the Virginia Department of Environmental Quality - Water Division. ### JAMES RIVER BASIN ### 02011795 LAKE MOOMAW NEAR HOT SPRINGS, VA LOCATION.--Lat 37°57'04", long 79°59'21", Alleghany County, Hydrologic Unit 02080201, in control tower at Gathright Dam on Jackson River, 0.9 mi upstream from Cedar Creek, 7.6 mi southwest of Hot Springs, and 19 mi upstream from Covington. DRAINAGE AREA. -- 344 mi². PERIOD OF RECORD. -- December 1979 to current year. GAGE.--Water-stage recorder. Datum of gage is at sea level (U.S. Army Corps of Engineers bench mark). REMARKS.--Lake is formed by rolled rockfill dam with an impervious compacted earth (clay) core. Spillway with crest at elevation 1,667.5 ft is in a divide about 2.5 mi south of the dam, ungated, and 2,450 ft long with a base width of 100 ft. Except for flood flows, all discharge will be through a diversion tunnel with the invert
of the entrance being in an intake tower 260 ft high. Elevation of invert is 1,430.5 ft. Portals in the tower at nine levels permit oxygenated water from the surface and cold water from the bottom of the lake to be mixed for water-quality control. Sluice gates in the tower control flood flow releases. Storage began Dec. 10, 1979. Total capacity at top of dam, elevation 1,684.5 ft, is 502,600 acre-ft of which 81,100 acre-ft is above spillway crest. Capacity at maximum conservation pool, elevation 1,582.0 ft, is 123,700 acre-ft; capacity at minimum conservation pool, elevation 1,554.0 ft, is 63,000 acre-ft. Lake is used for flood control, low-water augmentation for water-quality control, and recreation. U.S. Army Corps of Engineers satellite precipitation and elevation telemeter at station. COOPERATION. -- Records were provided by the U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 168,400 acre-ft, Jan. 20, 1996, elevation, 1,598.4 ft; minimum, (after first filling to minimum conservation pool), 71,900 acre-ft, Nov. 30, Dec. 1, 1991, elevation, 1,558.8 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 148,900 acre-ft, Mar. 22, elevation, 1,591.5 ft; minimum, 75,800 acre-ft, Nov. 1, elevation, 1,560.8 ft. | Date | Elevation
(feet) | Contents (acre-feet) | Change in content (acre-feet) | |-------------|---------------------|----------------------|-------------------------------| | Date | (leet) | (acre-reet) | (acre-reer) | | pt. 30 | 1,564.5 | 83,400 | _ | | t. 31 | 1,560.9 | 76,000 | -7,400 | | v. 30 | 1,563.5 | 81,300 | +5,300 | | c. 31 | 1,564.8 | 84,000 | +2,700 | | CAL YR 1997 | | | -38,500 | | n. 31 | 1,582.6 | 125,300 | +41,300 | | b. 28 | 1,581.7 | 123,000 | -2,300 | | r. 31 | 1,581.6 | 122,700 | -300 | | r. 30 | 1,581.5 | 122,500 | -200 | | y 31 | 1,581.9 | 123,500 | +1,000 | | ne 30 | 1,582.0 | 123,700 | +200 | | ly 31 | 1,577.9 | 113,600 | -10,100 | | g. 31 | 1,572.7 | 101,300 | -12,300 | | pt. 30 | 1,567.4 | 89,500 | -11,800 | ### JAMES RIVER BASIN ### 02011795 LAKE MOOMAW NEAR HOT SPRINGS, VA--Continued ### ROANOKE RIVER BASIN ### 02057400 SMITH MOUNTAIN LAKE NEAR PENHOOK, VA LOCATION.--Lat 37°02'28", long 79°32'09", Pittsylvania County, Hydrologic Unit 03010101, at dam on Roanoke (Staunton) River 6.5 mi northeast of Penhook and at mile 314.0. DRAINAGE AREA. -- 1,024 mi². PERIOD OF RECORD. -- September 1963 to current year. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to July 19, 1965, nonrecording gage at same site and datum. REMARKS.--Reservoir is formed by concrete dam. Two ungated spillways, one near each end of dam, with crests at elevation 795 ft, are each 105 ft long. Initial filling began in September 1963 during construction; water in reservoir first reached minimum power pool, elevation, 787 ft, in May 1965. Total capacity at maximum pool elevation, 811 ft, is 1,517,000 acre-ft of which 375,000 acre-ft is above the spillway crest; 157,800 acre-ft is normally used for power between elevation 787 ft, minimum power pool, and the spillway crest. Capacity at invert of lowest penstock, elevation, 601 ft, is 100 acre-ft. Figures given herein represent total contents. Reservoir is part of the Smith Mountain Combination Project (pumped storage) which is used for hydroelectric power, flood control, low-water regulation for pollution abatement and water supply, water releases for downstream fish spawning, and recreation. COOPERATION. -- Records were provided by the American Electric Power. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,250,200 acre-ft, Apr. 27, 1978, elevation, 799.8 ft; minimum (after first filling to minimum power pool), 995,400 acre-ft, Jan. 23, 1970, elevation, 787.6 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,160,000 acre-ft, Jan. 28, elevation, 795.8 ft; minimum, 1,070,600 acre-ft, Jan. 1, elevation, 791.5 ft. MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Elevation Contents Change in contents (acre-feet) Date (feet) (acre-feet) Sept. 30.... 792.8 1,097,100 1,084,900 -12,200 Oct. 31..... 792.2 30.... 792.8 1,097,100 +12,200 Nov. Dec. 31.... -22,400 791.7 1,074,700 CAL YR 1997..... -63,200 Jan. 794.8 1,137,900 +63.200 31..... 1,127,700 Feb. -10,200 794.3 28..... 31.... 794 2 1,125,700 -2.000 Mar. Apr. 30..... 794.5 1,131,800 +6,100 Mav 31..... 794 5 1,131,800 Ω +2,000 June 30..... 794 6 1,133,800 July 31..... 794.1 1,123,600 -10,200 31..... 793 4 1,109,400 -14,200Sept. 30..... 792.2 1,084,900 -24,500 -12,200 WTR YR 1998..... ### 02057400 SMITH MOUNTAIN LAKE NEAR PENHOOK, VA--Continued ### ROANOKE RIVER BASIN ### 02059400 LEESVILLE LAKE NEAR LEESVILLE, VA LOCATION.--Lat 37°05'35", long 79°24'09", Campbell County, Hydrologic Unit 03010101, at Leesville Dam on Roanoke (Staunton) River, 2.0 mi south of Leesville, 3.5 mi upstream from Goose Creek, and at mile 296. DRAINAGE AREA. -- 1,505 mi². PERIOD OF RECORD. -- September 1962 to current year. GAGE.--Water-stage recorder. Datum of gage is at sea level. Prior to June 6, 1963, nonrecording gage at same site and datum. REMARKS.--Reservoir is formed by concrete dam. Spillway, with crest at elevation 578.0 ft, is equipped with 4 radial gates 35 ft high by 50 ft wide. Storage began on Sept. 29, 1962, during construction, and water in reservoir first reached minimum power pool, elevation, 600.0 ft, on Mar. 5, 1963. Total capacity at maximum pool elevation, 614 ft, is 98,180 acre-ft of which 78,670 acre-ft is above the spillway crest elevation; 38,200 acre-ft is normally used for power between elevations 600.0 ft, minimum power pool, and 613.0 ft. Capacity at invert of lowest penstock, elevation, 579.75 ft, is 21,010 acre-ft. Figures given herein represent total contents. Reservoir is part of the Smith Mountain Combination Project (see station 02057400). COOPERATION .-- Records were provided by the American Electric Power. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 98,180 acre-ft, Feb. 1, 1965, elevation, 614.0 ft; minimum (after first filling to minimum power pool), 39,880 acre-ft, Mar. 19, 1963, elevation, 592.0 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 94,960 acre-ft, Jan. 29, elevation, 613.0 ft; minimum, 58,000 acre-ft, Nov. 24, elevation, 600.3 ft. | Date | Elevation
(feet) | Contents (acre-feet) | Change in content (acre-feet) | |-------------|---------------------|----------------------|-------------------------------| | | | | | | Sept. 30 | 606.3 | 74,420 | _ | | Oct. 31 | 606.8 | 75,890 | +1,470 | | Nov. 30 | 601.4 | 60,950 | -14,940 | | Dec. 31 | 609.3 | 83,240 | +22,290 | | CAL YR 1997 | | | +20,680 | | Jan. 31 | 603.0 | 65,240 | -18,000 | | Feb. 28 | 604.4 | 68,990 | +3,750 | | Mar. 31 | 606.4 | 74,720 | +5,730 | | Apr. 30 | 604.8 | 70,060 | -4,660 | | May 31 | 603.8 | 67,380 | -2,680 | | June 30 | 603.4 | 66,310 | -1,070 | | July 31 | 605.8 | 72,950 | +6,640 | | Aug. 31 | 605.8 | 72,950 | 0 | | Sept. 30 | 604.4 | 68,990 | -3,960 | | WTR YR 1998 | | | -5,430 | ### 02059400 LEESVILLE LAKE NEAR LEESVILLE, VA--Continued ### ROANOKE RIVER BASIN ### 02067800; 02067820 TALBOTT AND TOWNES RESERVOIRS NEAR KIBLER, VA LOCATION.--Talbott Dam: Lat 36°40'39", long 80°23'52", Patrick County, Hydrologic Unit 03010103, on Dan River 4.5 mi northeast of Kibler. Townes Dam: Lat 36°41'10", long 80°25'50", Patrick County, Hydrologic Unit 03010103, on Dan River about 4 mi north of Kibler. DRAINAGE AREA.--Talbott Dam, 20.2 mi²; Townes Dam, 32.9 mi². PERIOD OF RECORD.--February 1939 to December 1945, January 1948 to September 1960 (published in WSP 1723), and October 1960 to current year. REMARKS.--The two reservoirs are operated as a unit for storage of water for Pinnacles hydroelectric plant. Total capacity of Talbott Reservoir, 8,040 acre-ft, and Townes Reservoir, 1,380 acre-ft. Storage began in Talbott Reservoir on Feb. 13, 1939, and in Townes Reservoir several months earlier. MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 COOPERATION. -- Records were provided by the city of Danville. WTR YR 1998..... | Date | Contents (acre-feet) | Change in contents (acre-feet) | |-------------|----------------------|--------------------------------| | Comb. 20 | 4.740 | | | Sept. 30 | 4,740 | -
-470 | | Nov. 30 | 3,730 | -540 | | Dec. 31 | 3,540 | -190 | | CAL YR 1997 | | -4,720 | | Jan. 31 | 6,080 | +2,540 | | Feb. 28 | 7,720 | +1,640 | | Mar. 31 | 7,080 | -640 | | Apr. 30 | 6,820 | -260 | | May 31 | 7,780 | +960 | | June 30 | 7,360 | -420 | | July 31 | 6,320 | -1,040 | | Aug. 31 | 5,990 | -330 | | Sept. 30 | 5,080 | -910 | +340 ### ROANOKE RIVER BASIN ### 02071900 PHILPOTT LAKE NEAR PHILPOTT, VA LOCATION.--Lat $36^{\circ}46^{\circ}52^{\circ}$, long $80^{\circ}01^{\circ}40^{\circ}$, Henry County, Hydrologic Unit 03010103, at Philpott Dam on Smith River, 1.5 mi west of Philpott, 12.0 mi upstream from Reed Creek, and at mile 44.3. DRAINAGE AREA. -- 216 mi². PERIOD OF RECORD. -- August 1950 to current year. GAGE. -- Water-stage recorder. Datum of gage is at sea level. REMARKS.--Reservoir is formed by concrete dam. Spillway, with crest at elevation 985 ft, is ungated and 120 ft long. Storage began August 1950 during construction; initial filling started in December 1951; water in reservoir first reached rule-curve elevation in July 1953. Total capacity at maximum flood-control pool elevation, 998 ft, is 247,400 acre-ft of which 47,000 acre-ft is above the spillway crest; 34,200 acre-ft is controlled flood storage between elevations 974 ft, maximum power pool, and 985 ft; 57,800 acre-ft is available for power between elevations 951 ft, minimum power pool, and 974 ft; and 108,400 acre-ft is inactive and dead storage below elevation 951 ft. Usable capacity is 92,000 acre-ft between elevations 951 ft and 985 ft. Figures given herein represent total contents. Reservoir is used for flood control, hydroelectric power, water supply, low-water regulation for pollution abatement and
industrial water supply, and recreation. COOPERATION.--Records were provided by the U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 191,700 acre-ft, June 22, 1972, elevation, 983.06 ft; minimum (after first filling to rule curve), 64,540 acre-ft, Sept. 26, 1956, elevation, 927.59 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 169,850 acre-ft, Apr. 20, elevation, 975.25 ft; minimum, 140,520 acre-ft, Dec. 19, elevation, 964.64 ft. | Date | Elevation (feet) | Contents (acre-feet) | Change in content (acre-feet) | |-------------|------------------|----------------------|-------------------------------| | | | | | | ept. 30 | 967.80 | 148,840 | _ | | ct. 31 | 965.79 | 143,510 | -5,330 | | ov. 30 | 965.31 | 142,260 | -1,250 | | ec. 31 | 965.05 | 141,580 | -680 | | CAL YR 1997 | | | -21,380 | | an. 31 | 972.61 | 162,180 | +20,600 | | eb. 28 | 974.01 | 166,220 | +4,040 | | ar. 31 | 973.89 | 165,870 | -350 | | pr. 30 | 973.81 | 165,640 | -230 | | ay 31 | 974.24 | 166,890 | +1,250 | | une 30 | 973.47 | 164,660 | -2,230 | | uly 31 | 971.28 | 158,420 | -6,240 | | ag. 31 | 970.67 | 156,710 | -1,710 | | ept. 30 | 967.71 | 148,600 | -8,110 | | WTR YR 1998 | | | -240 | ### 02071900 PHILPOTT LAKE NEAR PHILPOTT, VA--Continued ### ROANOKE RIVER BASIN ### 02079490 JOHN H. KERR RESERVOIR NEAR BOYDTON, VA LOCATION.--Lat 36°35'56", long 78°18'06", Mecklenburg County, Hydrologic Unit 03010102, at John H. Kerr Dam on Roanoke River, 2.7 mi upstream from Allen Creek, 6.7 mi southeast of Boydton, 18 mi upstream from the Virginia-North Carolina State line, and at mile 178.7. DRAINAGE AREA. -- 7,780 mi², approximately. PERIOD OF RECORD. -- July 1950 to current year. GAGE.--Water-stage recorder. Datum of gage is at sea level. REMARKS.--Reservoir is formed by concrete dam with earth embankments. Spillway, with crest at elevation 288.0 ft, is equipped with 22 radial gates 32 ft high by 42 ft wide. Storage began in September 1950 during construction; initial filling started June 30, 1952; water in reservoir first reached rule-curve elevation in March 1953. Total capacity at top of gates, elevation, 320 ft, is 2,770,000 acre-ft of which 1,281,400 acre-ft is controlled flood storage between elevations 300 ft, top of power pool, and 320 ft; 316,900 acre-ft is available for power between elevations 293.0 ft, bottom of power pool, and 300 ft; 1,171,700 acre-ft is inactive and dead storage below elevation 293.0 ft. Figures given herein represent total contents. Reservoir is used for flood control, hydroelectric power, low-water regulation for navigation and pollution abatement, release of water for downstream fish spawning, water supply, and recreation. COOPERATION. -- Records were provided by the U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 2,736,460 acre-ft, Apr. 29, 1987, elevation, 319.61 ft; minimum (after first filling to rule curve), 724,700 acre-ft, Feb. 3, 1956, elevation, 280.23 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 2,424,860 acre-ft, Feb. 20, elevation, 315.71 ft; minimum, 1,251,630 acre-ft, Dec. 19, elevation, 294.90 ft. | MONTHEND ELEVATION AND CONTENTS AT 2400, WATER | YEAR OCTOBER 19 | 97 TO SEPTEMBER | 2 1998 | |--|------------------|----------------------|--------------------------------| | Date | Elevation (feet) | Contents (acre-feet) | Change in contents (acre-feet) | | | | | | | Sept. 30 | 297.25 | 1,356,750 | - | | Oct. 31 | 297.55 | 1,370,730 | +13,980 | | Nov. 30 | 296.78 | 1,335,160 | -35,570 | | Dec. 31 | 296.29 | 1,313,010 | -22,150 | | CAL YR 1996 | | | -181,150 | | Jan. 31 | 308.73 | 1,967,910 | +654,900 | | Feb. 28 | 311.91 | 2,164,480 | +196,570 | | Mar. 31 | 310.87 | 2,098,640 | -65,840 | | Apr. 30 | 309.08 | 1,988,860 | -109,780 | | May 31 | 302.26 | 1,604,430 | -384,430 | | June 30 | 298.69 | 1,424,680 | -179,750 | | July 31 | 296.50 | 1,322,500 | -102,180 | | Aug. 31 | 296.29 | 1,313,010 | -9,490 | | Sept. 30 | 294.93 | 1,252,910 | -60,100 | | WTR YR 1997 | | | -103,840 | 02079490 JOHN H. KERR RESERVOIR NEAR BOYDTON, VA--Continued ### KANAWHA RIVER BASIN ### 03169000 CLAYTOR RESERVOIR NEAR RADFORD, VA LOCATION.--Lat 37°04'28", long 80°35'05", Pulaski County, Hydrologic Unit 05050001, at Claytor Dam on New River, 0.5 mi upstream from Little River, and 5.5 mi upstream from Radford. DRAINAGE AREA.--2,382 mi². PERIOD OF RECORD. -- May 1939 to current year (monthly figures only). REVISED RECORDS.--WSP 2108: 1961-65 monthend contents and change in contents. GAGE.--Water-stage recorder. Datum of gage is approximately at sea level (levels by Appalachian Power Company). Prior to Sept. 11, 1943, nonrecording gage at same site and datum. REMARKS.--Reservoir is formed by gravity overflow concrete dam. Spillway with crest at elevation 1,818.5 ft is equipped with 9 lift gates 30 ft high by 50 ft wide. Dam completed and storage began May 22, 1939; water in reservoir reached minimum pool elevation in January 1940. Total level-pool capacity at elevation 1,847.0 ft, 1.5 ft below top of gates, is 230,100 acre-ft of which about 100,000 acre-ft is controlled storage above minimum pool elevation of 1,820.0 ft. Reservoir is used for hydroelectric power and recreation. U.S. Army Corps of Engineers satellite elevation telemeter at station. COOPERATION. -- Records were provided by the American Electric Power. | MONTHEND ELEVATION AND CONTENTS AT 2400, WATER | | | | |--|---------------------|-------------------------|-----------------------------------| | Date | Elevation
(feet) | Contents
(acre-feet) | Change in contents
(acre-feet) | | | | | | | Sept. 30 | 1,845.62 | 223,900 | _ | | Oct. 31 | 1,844.88 | 220,700 | -3,200 | | Iov. 30 | 1,839.56 | 197,900 | -22,800 | | ec. 31 | 1,845.11 | 221,700 | +23,800 | | CAL YR 1997 | | | -400 | | an. 31 | 1,844.59 | 219,500 | -2,200 | | eb. 28 | 1,844.58 | 219,400 | -100 | | ar. 31 | 1,844.90 | 220,800 | +1,400 | | pr. 30 | 1,845.05 | 221,400 | +600 | | ay 31 | 1,845.55 | 223,600 | +2,200 | | une 30 | 1,845.62 | 223,900 | +300 | | uly 31 | 1,845.48 | 223,300 | -600 | | ug. 31 | 1,845.42 | 223,000 | -300 | | ept. 30 | 1,845.62 | 223,999 | +900 | | WTR YR 1998 | | | 0 | ### 03169000 CLAYTOR RESERVOIR NEAR RADFORD, VA--Continued ### KANAWHA RIVER BASIN ### 03170500 LITTLE RIVER RESERVOIR NEAR RADFORD, VA LOCATION.--Lat 37°04'40", long 80°34'22", Pulaski County, Hydrologic Unit 05050001, on left bank 30 ft upstream from dam, 0.25 mi upstream from mouth of Little River, 3 mi downstream from Meadow Creek, and 4 mi south of Radford. DRAINAGE AREA.--337 mi². PERIOD OF RECORD. -- September 1943 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,770 ft above sea level, from topographic map. REMARKS.--Reservoir is operated for generating power for the city of Radford. Missing record is due to instrument malfunction. EXTREMES FOR CURRENT YEAR.--Maximum recorded contents, 517 acre-ft, Jan. 8, minimum recorded contents, 6.5 acre-ft, Mar. 23. RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|------|------|------|------|------|-----|-------------|-------------|------|------|------|-------| | 1 | 104 | 164 | 85 | 107 | 285 | 276 | 120 | 175 | 155 | 126 | 186 | 175 | | 2 | 101 | 170 | 101 | 107 | 232 | 265 | 146 | 281 | 171 | 135 | 184 | 170 | | 3 | 86 | 146 | 96 | 111 | 141 | 247 | 122 | 285 | 173 | 128 | 171 | 176 | | 4 | 177 | 104 | 90 | 108 | 325 | 192 | 182 | 296 | 205 | 118 | 188 | 181 | | 5 | 186 | 102 | 97 | 109 | 417 | 144 | 297 | 311 | 194 | 121 | 174 | 185 | | 3 | 100 | 102 | , | 100 | 11, | | 257 | 311 | 171 | 121 | 1,1 | 103 | | 6 | 130 | 92 | 94 | 149 | 399 | 188 | 257 | 290 | 160 | 127 | 181 | 173 | | 7 | 102 | 95 | 145 | 147 | 383 | 152 | 179 | 269 | 130 | 122 | 191 | 181 | | 8 | 92 | 169 | 84 | 256 | 349 | 117 | 123 | 215 | 160 | 125 | 232 | 243 | | 9 | 82 | 175 | 83 | 317 | 341 | 294 | 192 | 277 | 160 | 188 | 316 | 242 | | 10 | 120 | 104 | 119 | 289 | 343 | 342 | 315 | 257 | 142 | 200 | 149 | 167 | | | | | | | | | | | | | | | | 11 | 198 | 99 | 95 | 165 | 323 | 285 | 245 | 326 | 204 | 198 | 123 | 176 | | 12 | 186 | 93 | 112 | 143 | 369 | 252 | 184 | 292 | 253 | 203 | 162 | 175 | | 13 | 121 | 91 | 95 | 134 | 367 | | 150 | 184 | 225 | 197 | 183 | 180 | | 14 | 87 | 94 | 96 | 114 | 329 | | 127 | 264 | 137 | 198 | 188 | 197 | | 15 | 90 | 172 | 78 | 144 | 303 | | 138 | 253 | 185 | 204 | 192 | 179 | | | | | | | | | | | | | | | | 16 | 74 | 179 | 62 | 356 | 294 | | 125 | 196 | 186 | 186 | 186 | 176 | | 17 | 136 | 97 | 72 | 300 | 365 | | 245 | 199 | 164 | 183 | 218 | 187 | | 18 | 193 | 90 | 94 | 239 | 414 | | 350 | 175 | 180 | 190 | 183 | 176 | | 19 | 191 | 84 | 92 | 136 | 385 | | 337 | 156 | 181 | 197 | 183 | 190 | | 20 | 112 | 88 | 95 | 131 | 349 | | 440 | 166 | 178 | 190 | 182 | 176 | | 21 | 80 | 93 | 94 | 107 | 331 | | 376 | 144 | 167 | 189 | 190 | 176 | | 22 | 86 | 170 | 94 | 106 | 308 | | 328 | 162 | 181 | 203 | 175 | 181 | | 23 | 84 | 171 | 112 | 142 | 314 | | 305 | 151 | 170 | 191 | 185 | 180 | | 24 | 84 | 100 | 106 | 282 | 369 | 339 | 293 | 282 | 163 | 181 | 184 | 175 | | 25 | 181 | 95 | 107 | 275 | 324 | 296 | 278 | 283 | 177 | 191 | 175 | 162 | | | | | | | | | | | | | | | | 26 | 191 | 95 | 125 | 199 | 303 | 282 | 262 | 234 | 187 | 187 | 178 | 178 | | 27 | 160 | 171 | 109 | 133 | 292 | 273 | 239 | 267 | 140 | 184 | 194 | 166 | | 28 | 141 | 154 | 107 | 109 | 284 | 262 | 185 | 317 | 129 | 199 | 190 | 163 | | 29 | 109 | 154 | 96 | 330 | | 238 | 153 | 265 | 134 | 180 | 182 | 164 | | 30 | 103 | 142 | 78 | 299 | | 172 | 129 | 171 | 152 | 201 | 186 | 167 | | 31 | 92 | | 105 | 287 | | 140 | | 158 | | 182 | 176 | | | moma r | 2070 | 2752 | 2010 | E021 | 9238 | | 6000 | 7201 | E142 | E404 | F707 | E 415 | | TOTAL | 3879 | 3753 | 3018 | 5831 | 330 | | 6822
227 | 7301
236 | 5143 | 5424
 5787 | 5417 | | MEAN | 125 | 125 | 97 | 188 | | | | | 171 | 175 | 187 | 181 | | MAX | 198 | 179 | 145 | 356 | 417 | | 440 | 326 | 253 | 204 | 316 | 243 | | MIN | 74 | 84 | 62 | 106 | 141 | | 120 | 144 | 129 | 118 | 123 | 162 | 03170500 LITTLE RIVER RESERVOIR NEAR RADFORD, VA--Continued ### BIG SANDY RIVER BASIN #### 03208680 NORTH FORK OF POUND LAKE AT POUND, VA LOCATION.--Lat 37°07'27", long 82°37'52", Wise County, Hydrologic Unit 05070202, in control tower of North Fork Pound Dam at Pound, 1,200 ft upstream from Stacy Branch, and 1.2 mi upstream from South Fork Pound River. DRAINAGE AREA. -- 17.2 mi². PERIOD OF RECORD.--July 1966 to current year. Published as "North Fork Pound River Lake" prior to October 1993. GAGE.--Water-stage recorder. Datum of gage is at sea level (U.S. Army Corps of Engineers bench mark). Prior to Aug. 29, 1966, nonrecording gage at same site and datum. REMARKS.--Lake is formed by rockfill dam. Spillway with crest at elevation 1,644.0 ft is in a saddle 350 ft southeast of dam. Except during major floods, all discharge will be through a diversion tunnel, the invert of the entrance of which is at elevation 1,556.5 ft. Storage began in September 1964 during construction with peak discharge affected thereafter; initial filling for regular operation started July 13, 1966. Total capacity at elevation 1,644.0 ft, top of spillway, is 11,290 acre-ft of which 8,110 acre-ft is flood-control storage for summer operations between elevations 1,611.0 ft, top of summer conservation pool, and 1,644.0 ft; an additional 1,290 acre-ft is available for flood control during the period December to March between elevations 1,601.0 ft, top of winter conservation pool, and 1,611.0 ft; contents at established minimum pool, 1,601.0 ft, is 1,900 acre-ft; dead storage is 7 acre-ft below elevation 1,556.5 ft. Figures given herein represent total contents. Lake is used for flood control, low-water augmentation for water-quality control, and recreation. U.S. Army Corps of Engineers satellite precipitation and elevation telemeter at station. COOPERATION. -- Records were provided by the U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 6,920 acre-ft, Apr. 8, 1977, elevation, 1,629.41 ft; minimum (after initial filling for regular operation), 1,660 acre-ft, Jan. 23, 1969, elevation, 1,598.62 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 5,700 acre-ft, Apr. 20, elevation, 1,624.32 ft; minimum, 1,950 acre-ft, Feb. 2, elevation, 1,601.54 ft. | Date | Elevation
(feet) | Contents
(acre-feet) | Change in contents
(acre-feet) | |-------------|---------------------|-------------------------|-----------------------------------| | pt. 30 | 1,611.35 | 3,240 | _ | | t. 31 | 1,606.67 | 2,570 | -670 | | v. 30 | 1,601.79 | 1,980 | -590 | | c. 31 | 1,601.81 | 1,980 | 0 | | CAL YR 1997 | | | -70 | | n. 31 | 1,602.13 | 2,020 | +40 | | b. 28 | 1,601.86 | 1,990 | -30 | | r. 31 | 1,601.94 | 2,000 | +10 | | r. 30 | 1,611.34 | 3,240 | +1,240 | | y 31 | 1,611.57 | 3,270 | +30 | | ne 30 | 1,611.41 | 3,250 | -20 | | ly 31 | 1,611.74 | 3,300 | +50 | | g. 31 | 1,611.09 | 3,200 | -100 | | pt. 30 | 1,610.28 | 3,070 | -130 | 03208680 NORTH FORK OF POUND LAKE AT POUND, VA--Continued ### BIG SANDY RIVER BASIN #### 03208990 JOHN W. FLANNAGAN RESERVOIR NEAR HAYSI, VA LOCATION.--Lat 37°14'00", long 82°20'56", Dickenson County, Hydrologic Unit 05070202, in control tower of John W. Flannagan Dam on Pound River, 1.3 mi upstream from Blacklog Branch, and 3.7 mi northwest of Haysi. DRAINAGE AREA. -- 221 mi². PERIOD OF RECORD. -- September 1964 to current year. GAGE.--Water-stage recorder. Datum of gage is at sea level (U.S. Army Corps of Engineers bench mark). Prior to Mar. 31, 1965, nonrecording gage at same site and datum. REMARKS.--Reservoir is formed by rockfill dam. Spillway with crest at elevation 1,410.0 ft is in a saddle 0.3 mi upstream from dam and is equipped with 6 radial gates 36 ft high by 42 ft wide. Except during major floods, all discharge will be through a diversion tunnel, the invert of the entrance of which is at elevation 1,230.0 ft. Storage began in September 1961 during construction with peak discharge affected thereafter; initial filling for regular operations started in March 1965. Total capacity at elevation 1,446.0 ft, top of gates, is 145,700 acre-ft of which 78,600 acre-ft is controlled flood storage for summer operations between elevations 1,396.0 ft, top of summer conservation pool, and 1,446.0 ft; an additional 16,500 acre-ft is available for flood control during the period December to March between elevations 1,380.0 ft, top of winter conservation pool, and 1,396.0 ft; contents at established minimum pool, 1,314.0 ft, is 12,000 acre-ft; dead storage is 300 acre-ft below elevation 1,230.0 ft. Figures given herein represent total contents. Reservoir is used for flood control, low-water augmentation for water-quality control, and recreation. U.S. Army Corps of Engineers satellite precipitation and elevation telemeter at station. COOPERATION. -- Records were provided by the U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 116,500 acre-ft, Apr. 7, 1977, elevation, 1,430.80 ft; minimum (after initial filling for regular operation), 11,800 acre-ft, Apr. 1, 1965, elevation, 1,313.42 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 93,200 acre-ft, Apr. 20, elevation, 1,416.13 ft; minimum, 50,500 acre-ft, Feb. 7, elevation, 1,379.95 ft. | | Date | Elevation
(feet) | Contents
(acre-feet) | Change in contents
(acre-feet) | |------|---------|---------------------|-------------------------|-----------------------------------| | - | | 1 225 22 | 55.200 | | | | 30 | 1,395.28 | 66,300 | _ | | Oct. | 31 | 1,387.90 | 58,300 | -8,000 | | Nov. | 30 | 1,380.52 | 51,100 | -7,200 | | Dec. | 31 | 1,380.31 | 50,900 | -200 | | CAL | YR 1997 | | | 0 | | Jan. | 31 | 1,381.66 | 52,100 | +1,200 | | Feb. | 28 | 1,380.37 | 50,900 | -1,200 | | Mar. | 31 | 1,380.17 | 50,700 | -200 | | Apr. | 30 | 1,396.21 | 67,300 | +16,600 | | May | 31 | 1,396.21 | 67,300 | 0 | | June | 30 | 1,396.46 | 67,600 | +300 | | July | 31 | 1,395.90 | 67,000 | -600 | | Aug. | 31 | 1,396.27 | 67.400 | +400 | | _ | 30 | 1,394.07 | 64,900 | -2,500 | | WTR | YR 1998 | | | -1,400 | ### BIG SANDY RIVER BASIN 03208990 JOHN W. FLANNAGAN RESERVOIR NEAR HAYSI, VA--Continued ### 01620500 NORTH RIVER NEAR STOKESVILLE, VA LOCATION.--Lat 38°20'15", long 79°14'25", Augusta County, Hydrologic Unit 02070005, George Washington National Forest, on left bank 575 ft upstream from highway bridge, 2.8 mi upstream from city of Staunton dam, 3.8 mi upstream from Broad Run, 5.0 mi west of Stokesville, and 7.8 mi upstream from Skidmore Fork. DRAINAGE AREA. -- 17.2 mi². PERIOD OF RECORD. -- October 1946 to current year. REVISED RECORDS.--WSP 1903: 1960. WSP 2103: Drainage area. WDR VA-89-1: 1949 (M). GAGE.--Water-stage recorder. Datum of gage is 2,051.37 ft above sea level. Prior to June 10, 1958, at site 575 ft downstream at datum 6.0 ft lower. Prior to October 25, 1996, at site 400 ft upstream at datum 3.2 ft higher. REMARKS.--Records fair except those for periods of doubtful or no gage-height record Jan. 8-12, Mar. 24 to May 15, which are poor. Maximum discharge, 9,530 ft³/s, from rating curve extended above 900 ft³/s on basis of computation of peak flow over dam at site 2.8 mi downstream. Maximum gage height, 19.8 ft, from floodmarks, backwater from Elkhorn Lake. Several measurements of water temperature were made during the year. Waterquality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in October 1942 reached a stage of 8.4 ft, from information by local residents. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 200 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-------------------|--------------|-----------------------------------|---------------------|--------------------|--------------|-----------------------------------|---------------------| | Jan. 8
Feb. 17 | 0615
1815 | *1,600
838 | *6.59
4.64 | Mar. 19
Mar. 21 | 1045
0015 | 292
586 | 3.75
4.31 | | Mar. 9 | 1445 | 670 | 4.43 | a | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 a May have been above base discharge on Apr. 21 and May 9. Minimum daily discharge, 0.26 ft³/s, Sept. 18. | | DAILY MEAN VALUES | | | | | | | | | | | | |--|------------------------------------|---|-----------------------------------|---|---|--|---|---|--|--|------------------------------------|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.5
1.1
.98
1.1
1.5 | 2.6
13
24
22
18 | 11
10
9.5
9.2
9.1 | 13
12
13
26
51 | 40
36
35
68
98 | 150
113
87
66
53 | e38
e37
e42
e58
e88 | e54
e63
e72
e83
e95 | 9.5
8.3
7.4
6.7
6.3 | 11
9.3
9.5
15 | 1.3
1.2
1.0
.94
.83 | .51
.43
.40
.36 | | 6
7
8
9
10 | 1.5
1.5
1.4
1.2 | 15
57
102
82
61 | 8.8
8.1
7.7
7.4
7.8 | 65
73
e300
e330
e160 | 71
55
46
42
45 | 42
36
120
528
333 | e53
e45
e46
e80
e130 | e110
e140
e160
e130
e87 | 6.0
5.6
5.1
4.9
5.1 | 14
13
13
12
11 |
.76
.70
.67
.74
e1.2 | .33
.36
.49
.42 | | 11
12
13
14
15 | .99
.96
.93
.90 | 47
35
28
24
26 | 8.5
8.4
8.4
8.8
9.1 | e110
e75
54
43
41 | 54
81
99
81
64 | 141
80
57
45
37 | e90
e70
e57
e48
e40 | e70
e62
e53
e47
e38 | 4.9
5.0
5.4
5.0
6.8 | 9.4
8.1
7.2
6.6
6.1 | .83
.78
.67
.65 | .39
.34
.32
.31
.29 | | 16
17
18
19
20 | .86
.84
.82
.81 | 27
24
21
19
16 | 8.8
8.7
8.4
8.0
7.7 | 55
61
55
48
40 | 53
330
443
212
148 | 30
24
30
255
284 | e35
e35
e48
e73
e120 | 37
59
53
43
35 | 9.3
8.2
6.3
22
51 | 5.5
5.2
4.8
4.4
4.1 | .79
.94
.92
1.0 | .27
.27
.26
.31 | | 21
22
23
24
25 | .78
.77
.75
.80 | 15
15
15
15 | 7.4
7.3
7.1
7.3
8.8 | 33
29
42
80
77 | 124
98
89
73
62 | 443
177
74
e68
e58 | e150
e140
e120
e87
e65 | 29
24
20
19
16 | 38
28
21
18
15 | 3.9
3.6
3.3
3.0
2.7 | 1.1
1.2
1.5
1.9 | .29
.31
.32
.32 | | 26
27
28
29
30
31 | .91
.96
1.0
.98
.96 | 14
14
13
12
11 | 11
14
16
16
16
15 | 63
54
64
55
52
46 | 65
74
112
 | e54
e50
e47
e45
e43
e41 | e50
e43
e42
e43
e48 | 14
14
13
11
10 | 13
11
11
15
13 | 2.5
2.3
2.1
1.9
1.7 | 1.5
1.2
.93
.77
.67 | .31
.29
.36
.31
.30 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 31.38
1.01
1.5
.75
.06 | 801.6
26.7
102
2.6
1.55
1.73 | 299.3
9.65
16
7.1
.56 | 2220
71.6
330
12
4.16
4.80 | 2798
99.9
443
35
5.81
6.05 | 3611
116
528
24
6.77
7.81 | 2021
67.4
150
35
3.92
4.37 | 1672
53.9
160
10
3.14
3.62 | 371.8
12.4
51
4.9
.72
.80 | 212.8
6.86
15
1.6
.40
.46 | 30.92
1.00
1.9
.58
.06 | 10.24
.34
.51
.26
.02 | e Estimated. ### 01620500 NORTH RIVER NEAR STOKESVILLE, VA--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1947 - 1998, BY WATER YEAR (WY) | | OCT | NOV | DEC | JAN | FE | EΒ | MAR | APR | MAY | JUN | JUL | AUG | | SEP | |----------|-----------|----------|-------|------------|-------|----|------|-----------|----------|------|-----------|---------|----|------| | MEAN | 14.1 | 25.8 | 27.7 | 35.4 | 37.5 | 5 | 58.3 | 47.5 | 35.1 | 24.5 | 7.20 | 8.66 | | 10.0 | | MAX | 90.7 | 257 | 99.5 | 152 | 99.9 | 9 | 230 | 196 | 86.4 | 177 | 53.1 | 66.8 | | 157 | | (WY) | 1980 | 1986 | 1974 | 1995 | 1998 | 3 | 1993 | 1992 | 1960 | 1949 | 1995 | 1989 | | 1996 | | MIN | .21 | .41 | 1.29 | .74 | 4.64 | Ł | 8.21 | 11.7 | 5.32 | 2.37 | .87 | .26 | | .25 | | (WY) | 1964 | 1954 | 1961 | 1981 | 1977 | 7 | 1981 | 1995 | 1977 | 1977 | 1966 | 1987 | | 1963 | | SUMMARY | STATISTI | cs | FOR 1 | 997 CALEND | AR YE | AR | FO | R 1998 WA | TER YEAR | | WATER YEA | RS 1947 | - | 1998 | | ANNUAL | TOTAL | | | 7224.64 | | | | 14080.04 | | | | | | | | ANNUAL | 19.8 | | | | 38.6 | | | 27.6 | | | | | | | | HIGHEST | ANNUAL M | IEAN | | | | | | | | | 49.0 | | | 1949 | | LOWEST . | ANNUAL ME | AN | | | | | | | | | 10.4 | | | 1981 | | HIGHEST | DAILY ME | AN | | 477 | Jun | 2 | | 528 | Mar 9 | | 3300 | Nov | 5 | 1985 | | | DAILY MEA | | | .69 | Sep | 8 | | .26 | - | | .10 | bSep | | | | | SEVEN-DAY | | | .78 | Sep | 3 | | .28 | - | | .12 | | | 1968 | | INSTANT. | ANEOUS PE | AK FLOW | | | | | | 1600 | Jan 8 | | 9530 | Jun | 17 | 1949 | | INSTANT. | ANEOUS PE | AK STAGE | | | | | | 6.59 | | | c19.80 | | | 1985 | | INSTANT. | ANEOUS LO | W FLOW | | | | | | | dSep 17 | | .10 | Sep | 15 | 1962 | | ANNUAL | RUNOFF (C | FSM) | | 1.15 | | | | 2.24 | | | 1.60 | | | | | ANNUAL : | RUNOFF (I | NCHES) | | 15.63 | | | | 30.45 | | | 21.78 | | | | | 10 PERC | ENT EXCEE | DS | | 40 | | | | 88 | | | 61 | | | | | 50 PERC | ENT EXCEE | DS | | 9.4 | | | | 14 | | | 12 | | | | | 90 PERC | ENT EXCEE | DS | | .93 | | | | .72 | | | 1.1 | | | | b Also Sept. 16, 19-22, 1962, and Sept. 7-13, 1966. c From floodmarks, backwater from Elkhorn Lake. d Also Sept. 18, 1998. ### 01621050 MUDDY CREEK AT MOUNT CLINTON, VA LOCATION.--Lat 38°29'12", long 78°57'40", Rockingham County, Hydrologic Unit 02070005, on right downstream side of bridge on State Highway 726, at Mount Clinton. DRAINAGE AREA. -- 14.2 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- April 1993 to current year. GAGE.--Water-stage recorder. Elevation of gage is 1,320 ft above sea level, from topographic map. REMARKS.--Records good except for period of doubtful gage-height record, May 5, 6, which is fair. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 150 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 0630 | *1,330 | *6.89 | Mar. 19 | 0015 | 363 | 4.82 | | Feb. 5 | 1645 | 170 | 4.13 | Mar. 20 | 2045 | 433 | 5.01 | | Feb. 17 | 1430 | 860 | 6.02 | May 8 | 0215 | 165 | 4.11 | Minimun discharge, 1.2 ft³/s, Sept. 20. | | | DISCHA | RGE, IN C | UBIC FEET | PER SECON | ND, WATER
LY MEAN V | | OBER 1997 | TO SEPTE | MBER 1998 | | | |-------|------|--------|-----------|-----------|-----------|------------------------|------|-----------|----------|-----------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 3.3 | 4.4 | 3.7 | 3.4 | 35 | 27 | 22 | 15 | 11 | 9.0 | 2.5 | 2.1 | | 2 | 3.2 | 4.2 | 3.4 | 3.5 | 32 | 27 | 20 | 23 | 11 | 8.5 | 2.7 | 2.0 | | 3 | 3.1 | 3.3 | 3.4 | 3.7 | 39 | 25 | 19 | 21 | 11 | 8.1 | 2.4 | 2.1 | | 4 | 3.0 | 3.0 | 3.6 | 4.4 | 50 | 23 | 29 | 25 | 11 | 7.7 | 2.4 | 2.1 | | 5 | 2.5 | 2.5 | 3.4 | 5.2 | 123 | 22 | 23 | e35 | 11 | 7.5 | 2.3 | 1.7 | | 6 | 2.3 | 2.9 | 3.3 | 5.1 | 109 | 20 | 20 | e26 | 10 | 7.0 | 2.3 | 2.0 | | 7 | 2.1 | 24 | 3.2 | 7.7 | 69 | 19 | 19 | 26 | 10 | 6.8 | 2.3 | 2.2 | | 8 | 2.0 | 18 | 3.2 | 249 | 57 | 48 | 19 | 80 | 10 | 7.6 | 2.4 | 5.8 | | 9 | 1.9 | 7.1 | 3.3 | 51 | 50 | 74 | 34 | 44 | 10 | 6.8 | 2.8 | 2.5 | | 10 | 1.9 | 5.4 | 3.7 | 28 | 47 | 42 | 30 | 34 | 11 | 6.4 | 2.9 | 2.3 | | 11 | 2.2 | 4.7 | 3.5 | 22 | 62 | 32 | 24 | 31 | 12 | 6.0 | 2.9 | 2.3 | | 12 | 1.9 | 4.6 | 3.3 | 19 | 92 | 29 | 21 | 32 | 12 | 5.8 | 2.4 | 2.2 | | 13 | 1.7 | 4.5 | 3.2 | 17 | 64 | 26 | 20 | 27 | 10 | 5.6 | 2.2 | 2.1 | | 14 | 1.5 | 5.6 | 3.1 | 15 | 48 | 25 | 19 | 24 | 9.8 | 5.5 | 3.8 | 2.2 | | 15 | 1.7 | 5.1 | 3.0 | 18 | 38 | 23 | 18 | 22 | 12 | 5.2 | 3.2 | 2.0 | | 16 | 1.5 | 4.9 | 3.1 | 21 | 34 | 21 | 17 | 20 | 10 | 5.1 | 3.3 | 2.0 | | 17 | 1.5 | 4.6 | 3.0 | 18 | 272 | 20 | 17 | 22 | 9.7 | 5.3 | 4.0 | 2.0 | | 18 | 1.7 | 4.4 | 3.0 | 16 | 121 | 51 | 15 | 18 | 9.2 | 4.6 | 3.0 | 2.1 | | 19 | 1.4 | 4.4 | 3.0 | 15 | 67 | 135 | 25 | 17 | 11 | 4.4 | 2.7 | 2.2 | | 20 | 1.3 | 4.2 | 2.9 | 14 | 57 | 127 | 27 | 16 | 9.7 | 4.1 | 2.5 | 2.3 | | 21 | 1.4 | 4.2 | 2.8 | 13 | 43 | 182 | 20 | 15 | 9.0 | 3.7 | 2.5 | 2.1 | | 22 | 1.4 | 4.6 | 3.0 | 13 | 36 | 80 | 19 | 14 | 10 | 3.6 | 2.4 | 2.2 | | 23 | 1.6 | 4.1 | 3.1 | 34 | 48 | 52 | 18 | 14 | 13 | 3.9 | 2.3 | 2.2 | | 24 | 2.4 | 4.0 | 3.1 | 27 | 50 | 42 | 17 | 14 | 12 | 3.2 | 2.1 | 2.1 | | 25 | 3.2 | 4.1 | 4.2 | 22 | 38 | 35 | 15 | 15 | 9.9 | 3.1 | 2.1 | 2.1 | | 26 | 2.5 | 4.1 | 3.7 | 19 | 35 | 31 | 15 | 13 | 9.4 | 3.9 | 1.9 | 2.1 | | 27 | 3.0 | 3.9 | 3.9 | 19 | 32 | 29 | 15 | 13 | 9.1 | 3.4 | 2.1 | 2.0 | | 28 | 2.3 | 3.8 | 3.8 | 56 | 30 | 27 | 14 | 13 | 11 | 3.2 | 2.1 | 1.9 | | 29 | 2.1 | 3.7 | 3.8 | 68 | | 25 | 14 | 12 | 13 | 3.1 | 2.1 | 1.7 | | 30 | 1.8 | 3.8 | 3.9 | 58 | | 23 | 13 | 12 | 10 | 2.9 | 2.1 | 1.6 | | 31 | 1.9 | | 3.6 | 44 | | 22 | | 12 | | 3.0 | 2.2 | | | TOTAL | 65.3 | 162.1 | 104.2 | 909.0 | 1778 | 1364 | 598 | 705 | 317.8 | 164.0 | 78.9 | 66.2 | | MEAN | 2.11 | 5.40 | 3.36 | 29.3 | 63.5 | 44.0 | 19.9 | 22.7 | 10.6 | 5.29 | 2.55 | 2.21 | | MAX | 3.3 | 24 | 4.2 | 249 | 272 | 182 | 34 | 80 | 13 | 9.0 | 4.0 | 5.8 | | MIN | 1.3 | 2.5 | 2.8 | 3.4 | 30 | 19 | 13 | 12 | 9.0 | 2.9 | 1.9 | 1.6 | | CFSM | .15 | .38 | . 24 | 2.06 | 4.47 | 3.10 | 1.40 | 1.60 | .75 | .37 | .18 | .16 | | IN. | .17 | .42 | .27 | 2.38 | 4.66 | 3.57 | 1.57 | 1.85 | .83 | .43 | .21 | .17 | ### 01621050 MUDDY CREEK AT MOUNT CLINTON, VA--Continued | STATIST | CICS OF M | ONTHLY MEAN | DATA | FOR WATER | YEARS 1993 | - 1998, | BY WATER | YEAR (WY) | | | | | |--------------|-----------|-------------|------|-----------|------------|---------|-------------|-----------|------|----------|-----------|--------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 9.16 | 8.28 | 12.3 | 27.1 | 26.9 | 27.8 | 13.9 | 12.5 | 10.9 | 7.84 | 10.5 | 19.9 | | MAX | 22.1 | 19.3 | 37.5 | 66.9 | 63.5 | 44.0 | 19.9 | 22.7 | 29.9 | 16.1 | 33.8 | 105 | | (WY) | 1996 | 1997 | 1997 | 1996 | 1998 | 1998 | 1998 | 1998 | 1996 | 1995 | 1996 | 1996 | | MIN | 2.07 | 4.03 | 2.45 | 9.43 | 5.92 | 6.64 | 4.08 | 6.18 | 5.48 | 3.16 | 1.75 | 1.85 | | (WY) | 1994 | 1994 | 1995 | 1995 | 1995 | 1995 | 1995 | 1997 | 1993 | 1993 | 1993 | 1993 | | SUMMARY | STATIST | ICS | FOR | 1997 CAL | ENDAR YEAR | F | 'OR 1998 W. | ATER YEAR | | WATER YI | EARS 1993 | - 1998 | | | | | | | | | | | | | | | | ANNUAL | TOTAL | | | 3031. | 9 | | 6312.5 | | | | | | | A NINITIA I. | MEAN | | | Q · | 3.1 | | 17 3 | | | 16.2 | | | | ANNUAL TOTAL | 3031.9 | 6312.5 | | |--------------------------|------------|-------------
------------------| | ANNUAL MEAN | 8.31 | 17.3 | 16.2 | | HIGHEST ANNUAL MEAN | | | 30.0 1996 | | LOWEST ANNUAL MEAN | | | 6.67 1995 | | HIGHEST DAILY MEAN | 138 Mar 3 | 272 Feb 17 | 1760 Sep 6 1996 | | LOWEST DAILY MEAN | 1.3 Oct 20 | 1.3 Oct 20 | 1.1 Jul 31 1993 | | ANNUAL SEVEN-DAY MINIMUM | 1.5 Oct 16 | 1.5 Oct 16 | 1.4 Jul 29 1993 | | INSTANTANEOUS PEAK FLOW | | 1330 Jan 8 | 3850 Sep 6 1996 | | INSTANTANEOUS PEAK STAGE | | 6.89 Jan 8 | 10.37 Sep 6 1996 | | INSTANTANEOUS LOW FLOW | | a1.2 Oct 20 | .71 Oct 12 1995 | | ANNUAL RUNOFF (CFSM) | .58 | 1.22 | 1.14 | | ANNUAL RUNOFF (INCHES) | 7.94 | 16.54 | 15.47 | | 10 PERCENT EXCEEDS | 17 | 40 | 28 | | 50 PERCENT EXCEEDS | 4.8 | 7.5 | 7.9 | | 90 PERCENT EXCEEDS | 2.4 | 2.1 | 2.3 | a Result from unknown flow disruption. # 01621050 MUDDY CREEK AT MOUNT CLINTON, VA--Continued (National water-quality assessment station) ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--March 1993 to June 1995, September 1997 to current year. REMARKS.--These data are a part of the National Water-Quality Assessment (NAWQA) program of the Potomac River Basin. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | |------------------------|--------------|---|--|--|---|---|---|--|---|---|---|--| | OCT 1997 | | | | | | | | | | | | | | 27 | 1630 | 2.4 | 446 | 8.0 | 8.5 | 12.5 | 720 | 10.1 | 55 | 21 | 3.4 | 7.8 | | DEC
15
JAN 1998 | 1700 | 3.0 | | | 5.0 | 3.5 | 729 | | 61 | 22 | 3.3 | 3.6 | | 13 | 1500 | 17 | 456 | 8.0 | 10.5 | 10.0 | 729 | 10.8 | 55 | 21 | 4.5 | 4.0 | | FEB
12
MAR | 1345 | 77 | 286 | 8.0 | 9.0 | 8.5 | 719 | 11.1 | 33 | 12 | 3.2 | 4.2 | | 16 | 1415 | 21 | 397 | 8.7 | 3.5 | 7.5 | 738 | 14.4 | 49 | 19 | 3.8 | 2.5 | | APR
14
27
MAY | 1445
1200 | 19
16 | 359
380 | 9.1
8.5 | 17.5
13.0 | 15.5
14.5 | 723
730 | 13.6
11.9 | 49 | 18 | 3.3 | 2.5 | | 12 | 1215 | 36 | 384 | 8.2 | 14.0 | 13.5 | 725 | 9.2 | 46 | 17 | 3.7 | 4.1 | | 26
JUN | 1145 | 13 | 431 | 8.2 | 29.0 | 20.0 | 726 | 9.5 | | | | | | 10 | 1345 | 10 | 433 | 8.2 | 20.0 | 16.0 | 729 | 9.4 | 53 | 22 | 3.6 | 3.2 | | 25 | 1100 | 9.9 | 437 | 8.0 | 28.0 | 23.0 | 732 | 9.5 | | | | | | JUL
16 | 1100 | 5.2 | 440 | 8.1 | 27.5 | 24.0 | | 9.2 | | | | | | 30 | 0845 | 2.7 | 451 | 7.8 | 25.5 | 20.5 | 728 | 7.9 | | | | | | AUG
11 | 1330 | 2.9 | 431 | 8.2 | 28.5 | 25.5 | 726 | 9.7 | 51 | 22 | 3.2 | 3.7 | | 25 | 1215 | 1.8 | 431 | 8.2 | 30.0 | 25.5 | 727 | 10.7 | 21 | | 3.2 | | | SEP | 1015 | 0.0 | 425 | 0.0 | 05.5 | 00.0 | 505 | 10 5 | | 0.4 | 2 2 | 4.5 | | 28 | 1215 | 2.0 | 437 | 8.2 | 27.5 | 23.0 | 727 | 10.5 | 52 | 24 | 3.3 | 4.7 | | | | | | | | | | | | | | | | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | |----------------|--|---|---|--|--|---|--|---|--|--|--| | OCT 1997
27 | 11 | 9.3 | <.10 | 6.8 | 245 | 0 | 201 | 262 | .066 | 3.00 | .073 | | DEC | | 5.5 | 1.10 | 0.0 | 213 | Ü | 201 | 202 | .000 | 3.00 | .075 | | 15
JAN 1998 | 11 | 7.7 | .10 | 3.1 | 260 | 0 | 213 | 266 | .033 | 4.21 | <.020 | | 13
FEB | 14 | 10 | .11 | 7.6 | 218 | 0 | 179 | 261 | .014 | 8.61 | <.020 | | 12 | 12 | 5.8 | <.10 | 5.3 | 128 | 0 | 105 | 167 | .013 | 4.92 | <.020 | | MAR
16 | 11 | 8.2 | <.10 | 2.6 | 199 | 4 | 169 | 234 | .016 | 6.38 | .023 | | APR
14 | 9.8 | 6.2 | <.10 | 1.8 | 156 | 17 | 156 | 193 | .034 | 4.54 | .049 | | 27 | | | | | | | | | | | | | MAY
12 | 9.7 | 6.1 | <.10 | 6.0 | 203 | 0 | 166 | 219 | .044 | 4.36 | .142 | | 26 | | | | | | | | | | | | | JUN
10 | 9.4 | 7.3 | .12 | 6.5 | 233 | 2 | 195 | 254 | .317 | 5.02 | .062 | | 25 | | | | | | | | | | | | | JUL | | | | | | | | | 0.50 | 2 06 | 006 | | 16 | | | | | | | | | .069 | 3.86 | .086 | | 30 | | | | | | | | | | | | | AUG
11 | 7.6 | 6.9 | .10 | 6.9 | 227 | 8 | 200 | 253 | .049 | 3.14 | .061 | | 25 | 7.0 | 0.9 | | | | | 200 | 255 | .049 | 3.14 | .001 | | SEP | | | | | | | | | | | | | 28 | 7.6 | 7.3 | <.10 | 6.3 | | | | 259 | .081 | 2.65 | .027 | $^{\,{&}lt;}\,$ Actual value is known to be less than the value shown. ## 01621050 MUDDY CREEK AT MOUNT CLINTON, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | |---|--|--|---|---|--|---|---|--|--|---|---| | OCT 1997
27 | .61 | .44 | .120 | .073 | .069 | 22 | 34 | <.003 | <.002 | <.002 | .057 | | DEC
15 | .45 | .35 | .059 | .063 | .059 | 14 | 15 | <.003 | <.002 | <.002 | .065 | | JAN 1998
13 | .49 | .37 | .085 | .065 | .090 | <10 | 15 | | | | | | FEB
12 | 1.0 | .36 | .307 | .224 | .197 | 16 | 11 | | | | | | MAR
16 | .53 | .19 | .029 | <.010 | .014 | <10 | 11 | | | | | | APR
14
27 | .55 | .26 | .050 | .024 | .033 | 22 | 14 | <.003
<.003 | <.002 | <.002
<.002 | .058 | | MAY
12
26
JUN | 1.2 | .63 | .269 | .126 | .126 | 31 | 45
 | <.003
<.003 | <.002
<.002 | <.002
<.002 | 1.54
.368 | | 10
25
JUL | .44 | .24 | .060 | .040 | .044 | 12 | 17
 | <.003
<.003 | <.002
<.002 | <.002
<.002 | .216
2.14 | | 16
30 | .47 | .28 |
.169 | .041 | .029 | | | <.003
<.003 | <.002
<.002 | <.002
<.002 | .214
.155 | | 11
25 | .41 | .34 | .063 | .045 | .052 | 16
 | 22 | <.003
<.003 | <.002
<.002 | <.002
<.002 | .129
.105 | | SEP
28 | .51 | .41 | .096 | .061 | .061 | 32 | 26 | <.003 | <.002 | <.002 | .088 | | | | | | | | | | | | | | | DATE | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | | OCT 1997 | BHC
DIS-
SOLVED
(UG/L)
(34253) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DDE
DISSOLV
(UG/L)
(34653) | ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | | | BHC
DIS-
SOLVED
(UG/L) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L) | ATE,
WATER,
DISS,
REC
(UG/L) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | PYRIFOS
DIS-
SOLVED
(UG/L) | ZINE,
WATER,
DISS,
REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L) | DDE
DISSOLV
(UG/L) | ELDRIN
DIS-
SOLVED
(UG/L) | | OCT 1997
27
DEC
15
JAN 1998
13 | BHC
DIS-
SOLVED
(UG/L)
(34253) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DDE
DISSOLV
(UG/L)
(34653) | ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | | OCT 1997
27
DEC
15
JAN 1998
13
FEB
12 | BHC
DIS-
SOLVED
(UG/L)
(34253) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DDE
DISSOLV
(UG/L)
(34653) | ELDRIN
DIS-
SOLVED
(UG/L)
(39381)
<.001 | | OCT 1997
27
DEC
15
JAN 1998
13
FEB
12
MAR
16 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.002 <.002 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.002
<.002 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.003 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.021 <.003 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.004
<.004 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.004 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
<.002
<.002 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.0820 | DDE
DISSOLV
(UG/L)
(34653)
<.006
<.006 | ELDRIN
DIS-
SOLVED
(UG/L)
(39381)
<.001
<.001 | | OCT 1997
27
DEC
15
JAN 1998
13
FEB
12
MAR
16
APR
14
27 | BHC DIS- SOLVED (UG/L) (34253) <.002 <.002 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.002
<.002 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.003
<.003 | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674)
<.021
<.003 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.004
<.004 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.004
 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
<.002
<.002 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.0820
E.107 | DDE
DISSOLV
(UG/L)
(34653)
<.006
<.006 | ELDRIN
DIS-
SOLVED
(UG/L)
(39381)
<.001

 | | OCT 1997
27
DEC
15
JAN 1998
13
FEB
12
MAR
16
APR
14
27
MAY
12 | BHC DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.002
<.002 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002

<.002
<.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.003 <.003 <.003 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.021 <.003 <.003 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.004
<.004

<.004
<.004 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.004
<.004

<.004 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
<.002
<.002 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.0820
E.107 | DDE
DISSOLV
(UG/L)
(34653)
<.006
<.006 | ELDRIN
DIS-
SOLVED
(UG/L)
(39381)
<.001

<.001 | | OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16 APR 14 27 MAY 12 JUN 10 25 | BHC DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.002
<.002
 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002
 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.003 <.003 <.003 <.003 | FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.021 <.003 <.003 <.003 <.003 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.004
<.004

<.004
<.004
<.004 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.004
<.004

<.004
<.004
<.004 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
<.002
<.002

<.002
<.002
<.002 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.0820
E.107
 | DDE
DISSOLV
(UG/L)
(34653)
<.006
<.006

<.006
E.0017 | ELDRIN
DIS-
SOLVED
(UG/L)
(39381)
<.001

<.001
<.001
<.001 | | OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16 APR 14 27 MAY 12 JUN 10 25 JUL 16 30 | BHC DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.002
<.002
 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.003 <.003 <.003 <.003 E.0051 <.003 <.003 | FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.021 <.003 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.004
<.004

<.004
<.004
<.004
<.004
<.004
<.004
<.004 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.004
<.004
 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
<.002
<.002
 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.0820
E.107

E.112
E.0634
E.107
E.0976 | DDE
DISSOLV
(UG/L)
(34653)
<.006
<.006

<.006
E.0017
<.006
E.0016 | ELDRIN
DIS-
SOLVED
(UG/L)
(39381)
<.001
<.001

<.001
<.001
<.001
<.001 | | OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16 APR 14 27 MAY 12 MAY 10 25 JUN 10 25 JUL 16 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 | FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.021 <.003 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.004
<.004

<.004
<.004
<.004
<.004
<.004
<.004
<.004 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.004
<.004
 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
<.002
<.002
 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.0820
E.107

E.112
E.0634
E.107
E.0976
E.0947
E.340
E.120 | DDE
DISSOLV
(UG/L)
(34653)
<.006
<.006

<.006
E.0017
<.006
E.0016
<.006
<.006 | ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 | $[\]mbox{<}$ Actual value is known to be less than the value shown. \mbox{E} $\mbox{Estimated}.$ ## 01621050 MUDDY CREEK AT MOUNT CLINTON, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE |
DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | |---|--|--|---|---|---|---|---|---|--|--|---| | OCT 1997
27 | <.017 | <.002 | <.002 | <.003 | <.004 | <.003 | <.004 | <.002 | <.006 | <.004 | <.001 | | DEC
15 | <.017 | <.002 | <.002 | <.003 | <.004 | <.003 | <.004 | <.002 | <.006 | <.004 | <.001 | | JAN 1998
13 | | | | | | | | | | | | | FEB
12 | | | | | | | | | | | | | MAR
16
APR | | | | | | | | | | | | | 14
27 | <.017
<.017 | E.001
<.002 | <.002
<.002 | <.003
<.003 | <.004
<.004 | <.003
<.003 | <.004
<.004 | <.002
<.002 | <.006
<.006 | <.004
<.004 | <.001
<.001 | | MAY
12
26 | <.017
<.017 | <.002
<.002 | <.002
<.002 | <.003
<.003 | <.004
<.004 | <.003
<.003 | <.004
<.004 | <.002
<.002 | <.006
<.006 | <.004
<.004 | <.001
<.001 | | JUN
10
25 | <.017
<.017 | <.002
<.002 | <.002
<.002 | <.003
<.003 | <.004
<.004 | <.003
<.003 | <.004
<.004 | <.002
<.002 | <.006
<.006 | <.004
<.004 | <.001
<.001 | | JUL
16
30 | <.017
<.017 | <.002
<.002 | <.002
<.002 | <.003
<.003 | <.004
<.004 | <.003
<.003 | <.004
<.004 | <.002
<.002 | <.006
<.006 | <.004
<.004 | <.001
<.001 | | AUG
11
25 | <.017
<.017 | <.002
<.002 | <.002
<.002 | <.003
<.003 | <.004
<.004 | <.003 | <.004
<.004 | <.002
<.002 | <.006
<.006 | <.004
<.004 | <.001
<.001 | | SEP | <.017 | <.002 | <.002 | <.003 | <.004 | <.003 | <.004 | <.002 | <.006 | <.004 | <.001 | | | | | | | | | | | | | | | DATE | DIS- | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | WATER
FLTRD
0.7 U | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | OCT 1997 | THION,
DIS-
SOLVED
(UG/L)
(39532) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | THION,
DIS-
SOLVED
(UG/L)
(39542) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | OCT 1997
27
DEC
15 | THION,
DIS-
SOLVED
(UG/L) | LACHLOR
WATER
DISSOLV
(UG/L) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L) | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) | THION,
DIS-
SOLVED
(UG/L) | METON,
WATER,
DISS,
REC
(UG/L) | | OCT 1997
27
DEC
15
JAN 1998
13 | THION,
DIS-
SOLVED
(UG/L)
(39532) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 | THION,
DIS-
SOLVED
(UG/L)
(39542) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | OCT 1997
27
DEC
15
JAN 1998
13
FEB
12 | THION,
DIS-
SOLVED
(UG/L)
(39532)
<.005 | LACHLOR
WATER
DISSOLV
(UG/L)
(39415)
.005
<.002 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005 | PARGITE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82685)
<.013 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676)
<.003 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 | THION,
DIS-
SOLVED
(UG/L)
(39542) | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.018 | | OCT 1997
27
DEC
15
JAN 1998
13
FEB
12
MAR
16 | THION,
DIS-
SOLVED
(UG/L)
(39532)
<.005
<.005 | LACHLOR WATER DISSOLV (UG/L) (39415) .005 <.002 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004 | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679)
<.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005 | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685)
<.013 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676)
<.003 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 | THION, DIS-
SOLVED (UG/L) (39542)
<.004 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.018 | | OCT 1997
27
DEC
15
JAN 1998
13
FEB
12
MAR
16
APR
14
27 | THION,
DIS-
SOLVED
(UG/L)
(39532)
<.005
<.005 | LACHLOR WATER DISSOLV (UG/L) (39415) .005 <.002 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005 | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685)
<.013
<.013 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 | THION, DIS-
SOLVED (UG/L) (39542)
<.004
<.004 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.018 | | OCT 1997
27
DEC
15
JAN 1998
13
FEB
12
MAR
16
APR
14
27
MAY
12 | THION,
DIS-
SOLVED
(UG/L)
(39532)
<.005
<.005 | LACHLOR WATER DISSOLV (UG/L) (39415) .005 <.002 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004

<.004
<.004 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004

<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
 | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685)
<.013
 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.018
<.018 | | OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16 APR 14 27 MAY 12 JUN 10 25 | THION,
DIS-
SOLVED
(UG/L)
(39532)
<.005
<.005

<.005
<.005
<.005 | LACHLOR WATER DISSOLV (UG/L) (39415) .005 <.002 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004

<.004
<.004
<.004 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FLT
0.7
U
GF, REC
(UG/L)
(82683)
<.004
<.004
 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
 | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685)
<.013
<.013
 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.018
<.018

E.0038
E.0039 | | OCT 1997 27 DEC 15 JAN 1998 13 FEB 12 MAR 16 APR 14 27 MAY 12 JUN 10 25 JUL 16 30 | THION,
DIS-
SOLVED
(UG/L)
(39532)
<.005
<.005

<.005
<.005
<.005
<.005
<.005 | LACHLOR WATER DISSOLV (UG/L) (39415) .005 <.002004 .010 .330 .062 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004
 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005

<.005
<.005
<.005
<.005 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.013 <.013 <.013 <.013 <.013 <.013 <.013 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.003 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METON, WATER, DISS, REC (UG/L) (04037) <.018 <.018 | | OCT 1997 | THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | LACHLOR WATER DISSOLV (UG/L) (39415) .005 <.002004 .010 .330 .062 .036 .079 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004
 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005 | PARGITE WATER FLITED 0.7 U GF, REC (UG/L) (82685) <.013 <.013 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METON, WATER, DISS, REC (UG/L) (04037) <.018 <.018 | $[\]mbox{<}$ Actual value is known to be less than the value shown. \mbox{E} $\mbox{Estimated}.$ POTOMAC RIVER BASIN ## 01621050 MUDDY CREEK AT MOUNT CLINTON, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PROP-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |----------------|--|--|---|--|---|---|---|--|---|---|---| | OCT 1997 | | | | | | | | | | | | | 27
DEC | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | .0236 | 20 | | 15 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | .0249 | 18 | | JAN 1998
13 | | | | | | | | | | | 19 | | FEB | | | | | | | | | | | | | 12
MAR | | | | | | | | | | | 52 | | 16 | | | | | | | | | | | 6 | | APR | | | | | | | | | | | | | 14 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | .0196 | 23 | | 27
MAY | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | .0384 | | | 12 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | E.0048 | 1.16 | 64 | | 26 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | E.0065 | .169 | | | JUN
10 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | .0862 | 52 | | 25 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | E.0054 | 1.11 | | | JUL | | | | | | | | | | | | | 16 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | .0804 | 13 | | 30
AUG | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | .0607 | | | 11 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | .0553 | 11 | | 25 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | <.010 | .0376 | | | SEP | 0.00 | 0.05 | 0.05 | 0.05 | 0.01 | 0.00 | 000 | 0.1.5 | - 0000 | 0000 | • | | 28 | <.002 | <.007 | <.003 | <.007 | <.001 | <.002 | <.002 | <.013 | E.0029 | .0328 | 8 | $[\]mbox{<}$ Actual value is known to be less than the value shown. $\mbox{\ensuremath{\texttt{E}}}$ Estimated. ### 01631000 SOUTH FORK SHENANDOAH RIVER AT FRONT ROYAL, VA LOCATION.--Lat 38°54'50", long 78°12'40", Warren County, Hydrologic Unit 02070005, on left bank 0.7 mi downstream from bridge on State Highway 619, 1.0 mi west of Front Royal, and 3.5 mi upstream from confluence with North DRAINAGE AREA.--1,642 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1899 to September 1906, September 1930 to current year. Monthly discharge only for some periods, published in WSP 1302. REVISED RECORDS.--WSP 951: 1936(M). WSP 1171: 1935(M), 1937(M). WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 469.38 ft above sea level. June 1899 to July 1906, nonrecording gage at site 1.0 mi upstream at different datum. REMARKS.--No estimated daily discharges. Records good except for period July 28 to Sept. 30, which is fair. Large diurnal fluctuation at low and medium flow caused by powerplants upstream from station prior to 1954; occasional large diurnal fluctuation thereafter. National Weather Service gage-height telemeter at station. Maximum discharge, 130,000 ft³/s, from rating curve extended above 92,000 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 0.56 ft, Jan. 30, 1934. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1870, that of Oct. 16, 1942. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 8,500 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 8 | 1100 | 12,900 | 8.36 | Feb. 18 | 1945 | 35,300 | 15.01 | | Jan. 9 | 0930 | *36,800 | *15.42 | Feb. 24 | 2100 | 9,620 | 7.04 | | Jan. 29 | 1330 | 17,400 | 9.90 | Mar. 10 | 1430 | 10,600 | 7.46 | | Feb. 5 | 2045 | 30,800 | 13.82 | Mar. 22 | 0700 | 18,300 | 10.18 | | Feb. 13 | 0200 | 12,600 | 8.23 | Apr. 21 | 0045 | 9,600 | 7.03 | Minimum discharge, 403 ft³/s, Oct. 12. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|--|--|---|--|--|---|--|---|--| | 1 | 851 | 649 | 872 | 938 | 6990 | 5680 | 2830 | 1980 | 1340 | 1200 | 594 | 581 | | 2 | 642 | 734 | 856 | 905 | 5640 | 5860 | 2660 | 2100 | 1260 | 1060 | 585 | 574 | | 3 | 528 | 962 | 842 | 897 | 4880 | 5810 | 2500 | 2640 | 1200 | 967 | 576 | 567 | | 4 | 487 | 1170 | 828 | 1030 | 5470 | 5280 | 2470 | 2680 | 1150 | 945 | 572 | 548 | | 5 | 445 | 962 | 806 | 1200 | 21500 | 4580 | 2800 | 4240 | 1110 | 1010 | 567 | 526 | | 6
7
8
9 | 447
455
441
439
440 | 826
3930
11800
9720
5680 | 790
766
754
755
746 | 1450
1700
7640
32500
15100 | 21400
12900
9340
8000
6910 | 4050
3620
3430
5340
9830 | 3370
3210
2950
2930
3590 | 4830
4190
4350
6850
7750 |
1050
1060
1050
1040
1060 | 940
918
912
898
895 | 559
544
538
547
607 | 498
478
519
500
548 | | 11 | 435 | 3820 | 747 | 8100 | 6370 | 8700 | 4670 | 5990 | 1050 | 868 | 706 | 659 | | 12 | 417 | 2870 | 767 | 5810 | 8890 | 6550 | 4350 | 4970 | 1070 | 851 | 683 | 497 | | 13 | 432 | 2100 | 784 | 4720 | 11900 | 5300 | 3770 | 4740 | 1080 | 825 | 660 | 452 | | 14 | 452 | 1820 | 744 | 3990 | 9930 | 4550 | 3310 | 4250 | 1070 | 810 | 629 | 452 | | 15 | 448 | 1740 | 732 | 3400 | 7660 | 3960 | 2970 | 3660 | 1570 | 794 | 618 | 461 | | 16 | 455 | 1690 | 729 | 3320 | 6190 | 3470 | 2700 | 3180 | 1390 | 792 | 608 | 466 | | 17 | 450 | 1520 | 743 | 4350 | 9380 | 3120 | 2490 | 2970 | 1570 | 779 | 707 | 477 | | 18 | 478 | 1380 | 713 | 4050 | 31800 | 3010 | 2350 | 3470 | 1610 | 803 | 750 | 536 | | 19 | 472 | 1280 | 704 | 3650 | 23600 | 4590 | 2560 | 3470 | 1650 | 919 | 890 | 486 | | 20 | 482 | 1190 | 681 | 3300 | 13500 | 8660 | 5760 | 2670 | 1300 | 800 | 1040 | 527 | | 21 | 491 | 1140 | 687 | 3010 | 10900 | 11000 | 7980 | 2330 | 1640 | 768 | 777 | 595 | | 22 | 479 | 1140 | 683 | 2540 | 9050 | 16300 | 5620 | 2080 | 1470 | 740 | 687 | 620 | | 23 | 461 | 1110 | 700 | 2630 | 7770 | 10400 | 4450 | 1860 | 1380 | 707 | 665 | 609 | | 24 | 444 | 1110 | 696 | 5220 | 8770 | 7320 | 3740 | 1760 | 1260 | 690 | 651 | 588 | | 25 | 462 | 1040 | 737 | 5760 | 8580 | 5850 | 3270 | 1810 | 1280 | 659 | 636 | 575 | | 26
27
28
29
30
31 | 474
548
628
639
610
562 | 980
938
906
900
869 | 756
869
900
914
994
967 | 5300
4430
7110
15700
11200
8860 | 7280
6350
5780
 | 4960
4400
3860
3480
3210
3000 | 2870
2610
2400
2260
2090 | 1740
1630
1530
1580
1540
1410 | 1240
1070
1060
1050
1070 | 652
654
634
626
620
610 | 630
612
601
586
586
588 | 572
523
522
521
500 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 15494
500
851
417
.30
.35 | 65976
2199
11800
649
1.34
1.49 | 24262
783
994
681
.48
.55 | 179810
5800
32500
897
3.53
4.07 | 296730
10600
31800
4880
6.45
6.72 | 179170
5780
16300
3000
3.52
4.06 | 101530
3384
7980
2090
2.06
2.30 | 100250
3234
7750
1410
1.97
2.27 | 37200
1240
1650
1040
.76
.84 | 25346
818
1200
610
.50 | 19999
645
1040
538
.39
.45 | 15977
533
659
452
.32
.36 | POTOMAC RIVER BASIN ### 01631000 SOUTH FORK SHENANDOAH RIVER AT FRONT ROYAL, VA--Continued | ~ | | | | | | 001 | 1000 | | | / | | | | | | |--------|----------|--------------|----------|----------|----------|------|--------|----------|------|-----------|------|--------|-----------|-----|------| | STATIS | TICS OF | MONTHLY MEAN | I DATA I | OR WATER | YEARS I | .931 | - 1998 | , BY WAT | ER Y | (EAR (WY) | | | | | | | | OCT | NOV | DEC | JAN | FEB | 3 | MAR | APR | | MAY | JUN | JUL | AUG | | SEP | | MEAN | 1165 | 1237 | 1495 | 1953 | 2260 | 1 | 2897 | 2476 | | 1868 | 1347 | 808 | 949 | | 957 | | MAX | 8678 | 10130 | 4795 | 7876 | 10600 | | 10300 | 7963 | | 4807 | 6586 | 2876 | 6807 | | 9631 | | (WY) | 1943 | 1986 | 1973 | 1996 | 1998 | | 1936 | 1987 | | 1989 | 1972 | 1949 | 1955 | | 1996 | | MIN | 225 | 243 | 268 | 285 | 348 | | 632 | 516 | | 578 | 393 | 252 | 281 | | 314 | | (WY) | 1931 | 1931 | 1966 | 1966 | 1931 | | 1981 | 1981 | | 1977 | 1977 | 1966 | 1932 | | 1965 | | SUMMAR | Y STATIS | rics | FOR | 1997 CAL | ENDAR YE | AR | 1 | FOR 1998 | WAT | TER YEAR | | WATER | YEARS 193 | 1 - | 1998 | | ANNUAL | TOTAL | | | 524282 | | | | 1061744 | | | | | | | | | ANNUAL | MEAN | | | 1436 | | | | 2909 | | | | 1614 | | | | | HIGHES | T ANNUAL | MEAN | | | | | | | | | | 3189 | | | 1996 | | LOWEST | ANNUAL | MEAN | | | | | | | | | | 680 | | | 1981 | | HIGHES | T DAILY | MEAN | | 11800 | Nov | 8 | | 32500 | | Jan 9 | | 114000 | Oct | 16 | 1942 | | LOWEST | DAILY M | EAN | | 328 | Aug | 7 | | 417 | | Oct 12 | | 107 | Nov | 18 | 1930 | | ANNUAL | SEVEN-D | AY MINIMUM | | 437 | Oct | 8 | | 437 | | Oct 8 | | 152 | Sep | 6 | 1966 | | INSTAN | TANEOUS | PEAK FLOW | | | | | | 36800 | | Jan 9 | | 130000 | Oct | 16 | 1942 | | INSTAN | TANEOUS | PEAK STAGE | | | | | | 15 | .42 | Jan 9 | | a34. | .80 Oct | 16 | 1942 | | INSTAN | TANEOUS | LOW FLOW | | | | | | 403 | | Oct 12 | | 59 | Jan | 30 | 1934 | | ANNUAL | RUNOFF | (CFSM) | | .8 | 37 | | | 1 | .77 | | | | .98 | | | | ANNUAL | RUNOFF | (INCHES) | | 11.8 | 38 | | | 24 | .05 | | | 13. | . 36 | | | | 10 PER | CENT EXC | EEDS | | 2650 | | | | 7300 | | | | 3230 | | | | | 50 PER | CENT EXC | EEDS | | 988 | | | | 1110 | | | | 960 | | | | | 90 PER | CENT EXC | EEDS | | 472 | | | | 522 | | | | 390 | | | | a From floodmarks. ## 01631000 SOUTH FORK SHENANDOAH RIVER AT FRONT ROYAL, VA--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- July 1996 to current year. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |----------|------|---|---|---|---|---|---|--|---|---| | OCT 1997 | | | | | | | | | | | | 30 | 1530 | 623 | 358 | 8.9 | 18.0 | 12.0 | 750 | 13.1 | 124 | 40 | | NOV | | | | | | | | | | | | 08 | 1515 | 12600 | 210 | 7.6 | | 9.0 | 741 | 10.7 | 95 | | | 20 | 1010 | 1150 | 270 | 6.6 | 8.0 | 9.0 | 750 | 11.2 | 98 | | | DEC | | | | | | | | | | | | 16 | 0830 | 793 | 315 | 7.9 | 3.0 | 1.0 | 752 | 13.2 | 94 | | | JAN 1998 | | | | | | | | | | | | 09 | 1300 | 36100 | 135 | 6.0 | 15.0 | 13.0 | 739 | 11.5 | 113 | | | 10 | 1015 | 14600 | 165 | 6.2 | 6.0 | 10.0 | 751 | 10.6 | 95 | | | 22 | 1200 | 2500 | 245 | 7.7 | 1.0 | 5.0 | 754 | 12.4 | 98 | 30 | | *22 | 1205 | 2500 | 245 | 7.7 | 1.0 | 5.0 | 754 | 12.4 | 98 | | | 24 | 1130 | 5570 | 238 | 8.0 | 4.0 | 5.5 | 744 | 11.9 | 97 | | | 29 | 1100 | 17100 | 184 | 7.0 | 6.0 | 3.0 | 746 | 12.8 | 97 | | | 30 | 1045 | 10900 | 182 | 7.1 | 6.0 | 4.0 | 745 | 13.0 | 101 | | | FEB | | | | | | | | | | | | 06 | 1045 | 21100 | 142 | 7.4 | 5.0 | 3.0 | 745 | 12.1 | 92 | | | 08 | 1100 | 9240 | 205 | 7.0 | 8.0 | 4.5 | 749 | 12.0 | 94 | | | *12 | 1245 | 8520 | 212 | 7.2 | 12.0 | 7.0 | 741 | 11.2 | 95 | | | 12 | 1245 | 8520 | 212 | 7.2 | 12.0 | 7.0 | 741 | 11.2 | 95 | | | 18 | 1045 | 33000 | 126 | 7.5 | 13.0 | 6.5 | 738 | 11.1 | 93 | | | 20 | 1200 | 13200 | 136 | 7.4 | 12.0 | 7.0 | 740 | 11.7 | 99 | | | MAR | | | | | | | | | | | | 17 | 0945 | 3140 | 220 | 6.9 | 5.0 | 6.0 | 760 | 12.4 | 100 | | | APR | | | | | | | | | | | | 16 | 0930 | 2730 | 194 | 7.7 | 20.0 | 16.5 | 744 | 10.4 | 109 | 24 | | 21 | 1200 | 7770 | 200 | 7.6 | 19.7 | 14.0 | 753 | 9.3 | 91 | | | MAY | | | | | | | | | | | | 07 | 1135 | 4170 | 175 | 6.6 | 28.0 | 21.5 | 747 | 8.9 | 103 | | | 13 | 0900 | 4760 | 168 | 7.1 | 15.0 | 15.0 | 754 | 10.3 | 103 | | | JUN | 1120 | 1.600 | 204 | | 0.5 | 00.0 | | | 0.4 | | | 17 | 1130 | 1670 | 324 | 7.6 | 26.0 | 23.0 | 755 | 7.1 | 84 | | | JUL | 1200 | E 41 | 200 | 0.6 | 26.0 | 20 5 | 7.40 | | 0.6 | 2.17 | | 22 | 1300 | 741 | 329 | 8.6 | 36.0 | 29.5 | 749 | 6.4 | 86 | 37 | | AUG | 1020 | 740 | 222 | 0 0 | 27.0 | 25.0 | 740 | 10.0 | 104 | | | 21 | 1030 | 749 | 332 | 9.0 | 27.0 | 25.0 | 748 | 10.0 | 124 | | | SEP | 1045 | 404 | 202 | 0 0 | 27.6 | 25.0 | 746 | 11 0 | 120 | | | 17 | 1245 | 424 | 323 | 9.0 | 27.6 | 25.9 | 746 | 11.0 | 139 | | ^{*} Replicate sample. ### 01631000 SOUTH FORK SHENANDOAH RIVER AT FRONT ROYAL, VA--Continued | | MAGNE- | | POTAS- | ANC
WATER | ALKA-
LINITY | ALKA-
LINITY | CAR-
BONATE | BICAR-
BONATE | | |-----------|---------|---------|---------|--------------|-----------------|-----------------|----------------|------------------|---------| | | SIUM, | SODIUM, | SIUM, | UNFLTRD | WAT.DIS | WAT DIS | WATER | WATER | SULFATE | | | DIS- | DIS- | DIS- | FET | FET | TOT IT | DIS IT | DIS IT | DIS- | | | SOLVED | SOLVED | SOLVED | FIELD | LAB | FIELD | FIELD | FIELD | SOLVED | | DATE | (MG/L | (MG/L | (MG/L | MG/L AS | CACO3 | MG/L AS | MG/L AS | MG/L AS | (MG/L | | | AS MG) | AS NA) | AS K) | CACO3 | (MG/L) | CACO3 | CO3 | HCO3 | AS SO4) | | | (00925) | (00930) | (00935) | (00410) | (29801) | (39086) | (00452) | (00453) | (00945) | | OCT 1997 | | | | | | | | | | | 30 | 15 | 14 | 2.9 | 156 | | 156 | 26 | 138 | 14 | | NOV | | | | | | | | | | | 08 | | | | | | | | | | | 20 | | | | | | | | | | | DEC | | | | | | | | | | | 16 | | | | | | | | | | | JAN 1998 | | | | | | | | | | | 09 | | | | | | | | | | | 10 | | | | | | | | | | | 22 | 7.8 | 4.8 | 1.6 | | 91 | 91 | 0 | 111 | 12 | | 22 | | | | | | 91 | 0 | 111 | | | 24 | | | | | | | | | | | 29 | | | | | | | | | | | 30 | | | | | | | | | | | FEB | | | | | | | | | | | 06 | | | | | | | | | | | 08 | | | | | | | | | | | 12
12 | 18 | | | | | | | | | | | 20
MAR | 17
APR | | | | | | | | | | | 16 | 6.8 | 3.8 | 1.5 | | 82 | 71 | 6 | 74 | 8.2 | | 21 | | J.0 | | | | 7 1 | | 7-2 | 0.2 | | MAY | | | | | | | | | | | 07 | | | | | | | | | | | 13 | | | | | | | | | |
| JUN | | | | | | | | | | | 17 | | | | | | | | | | | JUI. | | | | | | | | | | | 22 | 15 | 9.2 | 2.3 | | 150 | | | | 10 | | AUG | 1.5 | ٧.٢ | 2.5 | | 130 | | | | 10 | | 21 | | | | | | | | | | | SEP | | | | | | | | | | | 17 | | | | | | | | | | | ±/ | | | | | | | | | | ### 01631000 SOUTH FORK SHENANDOAH RIVER AT FRONT ROYAL, VA--Continued | | | | | SOLIDS, | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | |-----------|---------|---------|---------|---------|---------|---------|---------|---------|----------| | | CHLO- | FLUO- | SILICA, | RESIDUE | GEN, | GEN, | GEN, | GEN, | GEN, AM- | | | RIDE, | RIDE, | DIS- | AT 180 | NITRATE | NITRITE | NO2+NO3 | AMMONIA | MONIA + | | | DIS- | DIS- | SOLVED | DEG. C | DIS- | DIS- | DIS- | DIS- | ORGANIC | | | SOLVED | SOLVED | (MG/L | DIS- | SOLVED | SOLVED | SOLVED | SOLVED | TOTAL | | DATE | (MG/L | (MG/L | AS | SOLVED | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | | DAIL | AS CL) | AS F) | SIO2) | (MG/L) | AS N) | | | (00940) | (00950) | (00955) | (70300) | (00618) | (00613) | (00631) | (00608) | (00625) | | | (00940) | (00930) | (00933) | (70300) | (00018) | (00013) | (00031) | (00008) | (00023) | | OCT 1997 | | | | | | | | | | | 30 | 18 | .14 | .23 | 207 | | <.010 | 1.09 | <.020 | . 29 | | NOV | | | | | | | | | | | 08 | | | | | 1.04 | .024 | 1.07 | .092 | .60 | | 20 | | | | | | <.010 | 1.58 | <.020 | .12 | | DEC | | | | | | | | | | | 16 | | | | | | <.010 | .219 | <.020 | .18 | | JAN 1998 | | | | | | | , | 1.020 | | | 09 | | | | | .819 | .033 | .852 | .155 | 2.2 | | 10 | | | | | .796 | .019 | .815 | .057 | 1.2 | | 22 | 7.7 | < .10 | 6.8 | 140 | 1.70 | .013 | 1.71 | <.020 | <.10 | | 22 | | | | 140 | 1.66 | .013 | 1.68 | <.020 | <.10 | | 24 | | | | | 1.70 | .019 | 1.72 | <.020 | .20 | | 29 | | | | | 1.21 | .013 | 1.72 | .096 | .47 | | 30 | | | | | 1.05 | .012 | 1.06 | .128 | .66 | | | | | | | 1.05 | .010 | 1.00 | .120 | .00 | | FEB
06 | | | | | | <.010 | 0.60 | 006 | .65 | | | | | | | | | .862 | .086 | | | 08 | | | | | | <.010 | 1.54 | .062 | .33 | | 12 | | | | | | <.010 | 1.64 | .060 | . 27 | | 12 | | | | | | <.010 | 1.64 | .060 | . 27 | | 18 | | | | | | <.010 | .790 | .063 | .31 | | 20 | | | | | | <.010 | 1.01 | .042 | .19 | | MAR | | | | | | | | | | | 17 | | | | | 1.55 | .041 | 1.59 | <.020 | <.10 | | APR | | | | | | | | | | | 16 | 5.2 | <.10 | .48 | 106 | | <.010 | .554 | .025 | .20 | | 21 | | | | | | <.010 | .895 | .062 | .35 | | MAY | | | | | | | | | | | 07 | | | | | .860 | .011 | .871 | .033 | .41 | | 13 | | | | | .818 | .018 | .836 | .052 | .21 | | JUN | | | | | | | | | | | 17 | | | | | | <.010 | 1.48 | .066 | .63 | | JUL | | | | | | | | | | | 22 | 12 | .11 | 5.2 | 192 | .581 | .018 | .599 | .032 | .39 | | AUG | | | | | | | | | | | 21 | | | | | .906 | .016 | .922 | .033 | .29 | | SEP | | | | | | | | | | | 17 | | | | | .490 | .010 | .500 | .020 | .34 | | | | | | | | | | | | < Actual value is known to be less than the value shown. ### 01631000 SOUTH FORK SHENANDOAH RIVER AT FRONT ROYAL, VA--Continued | | NITRO- | | | | PHOS- | | | | |----------|----------|---------|---------|---------|---------|---------|---------|---------| | | GEN, AM- | NITRO- | | PHOS- | PHORUS | | MANGA- | | | | MONIA + | GEN | PHOS- | PHORUS | ORTHO, | IRON, | NESE, | SEDI- | | | ORGANIC | DIS- | PHORUS | DIS- | DIS- | DIS- | DIS- | MENT, | | | DIS. | SOLVED | TOTAL | SOLVED | SOLVED | SOLVED | SOLVED | SUS- | | DATE | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | (UG/L | (UG/L | PENDEI | | | AS N) | AS N) | AS P) | AS P) | AS P) | AS FE) | AS MN) | (MG/L) | | | (00623) | (00602) | (00665) | (00666) | (00671) | (01046) | (01056) | (80154) | | | | | | | | | | | | OCT 1997 | | | | | | | | | | 30 | .20 | 1.3 | .174 | .169 | .174 | 11 | 2.2 | 7 | | NOV | | | | | | | | | | 08 | .27 | 1.3 | .218 | .125 | .148 | | | 129 | | 20 | <.10 | | .107 | .080 | .100 | | | 2 | | DEC | | | | | | | | | | 16 | .12 | .34 | .073 | .043 | .055 | | | 2 | | JAN 1998 | | | | | | | | | | 09 | .52 | 1.4 | .749 | .169 | .164 | | | 755 | | 10 | .23 | 1.0 | .354 | .075 | .075 | | | 257 | | 22 | <.10 | | .032 | .013 | .043 | <10 | 5.4 | 7 | | 22 | <.10 | | .030 | .030 | .035 | | | | | 24 | .14 | 1.9 | .051 | .048 | .057 | | | 26 | | 29 | .21 | 1.4 | .131 | .087 | .089 | | | 131 | | 30 | .34 | 1.4 | .173 | .111 | .120 | | | 73 | | FEB | | | | | | | | | | 06 | .33 | 1.2 | .206 | .087 | .113 | | | 164 | | 08 | .24 | 1.8 | .117 | .091 | .084 | | | 37 | | 12 | .13 | 1.8 | .082 | .055 | .055 | | | | | 12 | .13 | 1.8 | .082 | .055 | .055 | | | 31 | | 18 | .21 | 1.0 | .105 | .065 | .072 | | | 325 | | 20 | .11 | 1.1 | .054 | .034 | .043 | | | 82 | | MAR | •== | | .031 | .031 | .015 | | | 02 | | 17 | <.10 | | .026 | .021 | .031 | | | 7 | | APR | 1.10 | | .020 | .021 | .031 | | | , | | 16 | .10 | .66 | .030 | .030 | .021 | 28 | <4.0 | 6 | | 21 | .26 | 1.2 | .096 | .051 | .047 | | | 65 | | MAY | .20 | 1.2 | .050 | .031 | .047 | | | 05 | | 07 | .21 | 1.1 | .075 | .051 | .050 | | | 24 | | 13 | .16 | 1.0 | .073 | .050 | .062 | | | 27 | | JUN | .10 | 1.0 | .034 | .030 | .002 | | | 21 | | 17 | .28 | 1.8 | .141 | .113 | .108 | | | 22 | | | .20 | 1.0 | .141 | .113 | .100 | | | 22 | | JUL | ٥٢ | 0.5 | 107 | 077 | 070 | 1.5 | | 2 | | 22 | .25 | .85 | .107 | .077 | .070 | 15 | 7.7 | 3 | | AUG | 0.0 | | 104 | 112 | 114 | | | , | | 21 | .22 | 1.1 | .124 | .113 | .114 | | | 4 | | SEP | 2.0 | 0.0 | 0.55 | 0.50 | 0.55 | | | | | 17 | .30 | .80 | .065 | .062 | .057 | | | 2 | < Actual value is known to be less than the value shown. ### 01632000 NORTH FORK SHENANDOAH RIVER AT COOTES STORE, VA LOCATION.--Lat 38°38'13", long 78°51'11", Rockingham County, Hydrologic Unit 02070006, on right bank at Cootes Store, 300 ft upstream from bridge on State Highway 259, and 3.7 mi upstream from Linville Creek. DRAINAGE AREA. -- 210 mi². PERIOD OF RECORD. -- February 1925 to current year. REVISED RECORDS.--WSP 726: 1928-31. WSP 951: 1936, 1939(M). WSP 1171: 1935, 1937, 1938(M). WSP 1502: 1926, 1927-28(M), 1929, 1930-34(M). WSP 2103: Drainage area. GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,051.8 ft above mean sea level (U.S. Army Corps of Engineers bench mark). Prior to Nov. 15, 1937, nonrecording gage at same site and datum. REMARKS.--Records good except for period of no gage-height record, Aug. 27-31, which is fair. National Weather Service gage-height telemeter and Virginia Department of Emergency Services gage-height radio transmitter at station. Maximum discharge, 63,400 ft³/s, from rating curve extended above 9,000 ft³/s on basis of indirect measurement of peak flow. Minimum gage height, 1.74 ft, Sept. 7-10, 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1836, that of Oct. 15, 1942. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,500 ft³/s and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-------------------|--------------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8
Feb. 17 | 0815
1930 | 7,140
*7,620 | 10.63
*10.97 | Mar. 21 | 0700 | 3,860 | 7.83 | Minimum discharge, 0.85 ft³/s, Sept. 26-27. | | | DISCHA | ARGE, IN | CUBIC FEE | | OND, WATE
AILY MEAN | | TOBER 1997 | / TO SEPT | EMBER 199 | 8 | | |-------|-------|--------|----------|-----------|-------|------------------------|-------|------------|-----------|-----------|-------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 22 | 31 | 65 | 80 | 598 | 1160 | 228 | 150 | 34 | 39 | 4.1 | 2.6 | | 2 | 20 | 69 | 60 | 84 | 521 | 812 | 261 | 268 | 30 | 35 | 4.0 | 2.2 | | 3 | 19 | 75 | 54 | 137 | 535 | 667 | 234 | 272 | 27 | 32 | 3.8 | 2.0 | | 4 | 17 | 55 | 51 | 438 | 841 | 515 | 497 | 275 | 25 | 30 | 3.6 | 1.8 | | 5 | 16 | 43 | 47 | 505 | 1340 | 399 | 698 | 549 | 24 | 28 | 3.2 | 1.7 | | 6 | 15 | 41 | 44 | 403 | 1120 | 318 | 535 | 790 | 24 | 25 | 3.1 | 1.6 | | 7 | 14 | 1400 | 41 | 357 | 849 | 275 | 404 | 502 | 22 | 22 | 2.9 | 1.5 | | 8 | 13 | 1770 | 39 | 4030 | 713 | 728 | 328 | 1820 | 21 | 26 | 2.8 | 2.8 | | 9 | 12 | 846 | 38 | 2160 | 695 | 2050 | 596 | 1470 | 21 | 21 | 3.3 | 2.1 | | 10 | 12 | 441 | 39 | 1160 | 690 | 1550 | 1050 | 806 | 25 | 18 | 3.8 | 1.9 | | 11 | 12 | 271 | 41 | 694 | 865 | 850 | 912 | 552 | 24 | 17 | 3.9 | 1.7 | | 12 | 12 | 195 | 42 | 452 | 1600 | 559 | 629 | 457 | 27 | 15 | 3.2 | 1.6 | | 13 | 11 | 153 | 40 | 338 | 1510 | 414 | 459 | 423 | 23 | 14 | 3.1 | 1.6 | | 14 | 11 | 156 | 40 | 265 | 1070 | 337 | 363 | 374 | 36 | 12 | 3.5 | 1.5 | | 15 | 11 | 194 | 39 | 243 | 727 | 279 | 302 | 312 | 38 | 11 | 4.4 | 2.2 | | 16 | 11 | 181 | 39 | 353 | 576 | 233 | 266 | 263 | 181 | 10 | 5.8 | 1.3 | | 17 | 10 | 161 | 39 | 445 | 3020 | 204 | 231 | 332 | 98 | 9.7 | 38 | 1.3 | | 18 | 11 | 140 | 39 | 407 | 3200 | 295 | 199 | 252 | 61 | 9.0 | 23 | 1.8 | | 19 | 9.8 | 121 | 38 | 346 | 1830 | 1760 | 278 | 201 | 59 | 8.1 | 15 | 1.7 | | 20 | 9.3 | 105 | 37 | 294 | 1500 | 1460 | 1030 | 164 | 71 | 7.5 | 11 | 1.8 | | 21 | 8.9 | 93 | 36 | 245 | 1270 | 3180 | 698 | 137 | 53 | 7.0 | 8.3 | 1.5 | | 22 | 8.9 | 103 | 36 | 217 | 1010 | 1520 | 496 | 112 | 44 | 6.2 | 7.0 | 1.5 | | 23 | 8.5 | 113 | 36 | 765 | 992 | 831 | 382 | 94 | 52 | 5.6 | 6.2 | 1.7 | | 24 | 8.7 | 111 | 36 | 1150 | 1150 | 567 | 309 | 83 | 63 | 5.2 | 5.2 | 1.7 | | 25 | 10 | 102 | 48 | 883 | 1070 | 418 | 254 | 79 | 44 | 4.9 | 4.6 | 1.7 | | 26 | 11 | 96 | 73 | 619 | 1080 | 336 | 216 | 65 | 36 | 4.5 | 4.2 | 1.7 | | 27 | 12 | 87 | 84 | 486 | 928 | 292 | 207 | 60 | 31 | 4.3 | e3.9 | 1.5 | | 28 | 12 | 79 | 87 | 705 | 1030 | 283 | 177 | 55 | 34 | 4.2 | e3.8 | 1.7 | | 29 | 11 | 72 | 87 | 674 | | 258 | 155 | 48 | 52 | 4.0 | e3.4
| 1.5 | | 30 | 11 | 69 | 100 | 770 | | 223 | 143 | 42 | 53 | 3.7 | e3.2 | 1.7 | | 31 | 11 | | 98 | 741 | | 197 | | 38 | | 4.2 | e2.9 | | | TOTAL | 381.1 | 7373 | 1593 | 20446 | 32330 | 22970 | 12537 | 11045 | 1333 | 443.1 | 198.2 | 52.9 | | MEAN | 12.3 | 246 | 51.4 | 660 | 1155 | 741 | 418 | 356 | 44.4 | 14.3 | 6.39 | 1.76 | | MAX | 22 | 1770 | 100 | 4030 | 3200 | 3180 | 1050 | 1820 | 181 | 39 | 38 | 2.8 | | MIN | 8.5 | 31 | 36 | 80 | 521 | 197 | 143 | 38 | 21 | 3.7 | 2.8 | 1.3 | | CFSM | .06 | 1.17 | .24 | 3.14 | 5.50 | 3.53 | 1.99 | 1.70 | .21 | .07 | .03 | .01 | | IN. | .07 | 1.31 | .28 | 3.62 | 5.73 | 4.07 | 2.22 | 1.96 | .24 | .08 | .04 | .01 | e Estimated. ### 01632000 NORTH FORK SHENANDOAH RIVER AT COOTES STORE, VA--Continued | STATISTICS OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1925 | _ | 1998, | BY | WATER | YEAR | (WY) | |---------------|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------| | | | | | | | | | | | | | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|------|------|------|------|------|------|------|------|------|------|------|------| | MEAN | 128 | 147 | 186 | 223 | 293 | 417 | 348 | 275 | 130 | 64.9 | 88.2 | 86.6 | | MAX | 1401 | 1883 | 850 | 1114 | 1155 | 1536 | 1156 | 964 | 906 | 552 | 697 | 1582 | | (WY) | 1943 | 1986 | 1974 | 1996 | 1998 | 1936 | 1987 | 1942 | 1972 | 1949 | 1955 | 1996 | | MIN | .76 | 3.26 | 3.04 | 5.13 | 11.3 | 38.4 | 27.7 | 24.3 | 6.10 | 1.60 | .52 | .66 | | (WY) | 1931 | 1931 | 1966 | 1966 | 1934 | 1981 | 1981 | 1977 | 1977 | 1977 | 1930 | 1930 | | | | | | | | | | | | | | | | SUMMARY STATISTICS | FOR 1997 CALENDAR YEAR | FOR 1998 WATER YEAR | WATER YEARS 1925 - 1998 | |--------------------------|------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 49973.9 | 110702.3 | | | ANNUAL MEAN | 137 | 303 | 199 | | HIGHEST ANNUAL MEAN | | | 463 1996 | | LOWEST ANNUAL MEAN | | | 58.1 1934 | | HIGHEST DAILY MEAN | 2080 Mar 4 | 4030 Jan 8 | 26400 Sep 6 1996 | | LOWEST DAILY MEAN | 4.9 Sep 8 | 1.3 aSep 16 | .20 bAug 28 1957 | | ANNUAL SEVEN-DAY MINIMUM | 5.5 Sep 3 | 1.6 Sep 16 | .27 Sep 3 1966 | | INSTANTANEOUS PEAK FLOW | | 7620 Feb 17 | 63400 Sep 6 1996 | | INSTANTANEOUS PEAK STAGE | | 10.97 Feb 17 | c27.86 Sep 6 1996 | | INSTANTANEOUS LOW FLOW | | .85 dSep 26 | .20 Aug 28 1957 | | ANNUAL RUNOFF (CFSM) | .65 | 1.44 | .95 | | ANNUAL RUNOFF (INCHES) | 8.85 | 19.61 | 12.87 | | 10 PERCENT EXCEEDS | 277 | 872 | 434 | | 50 PERCENT EXCEEDS | 60 | 63 | 62 | | 90 PERCENT EXCEEDS | 10 | 3.2 | 4.6 | a Also Sept. 17, 1998. b Also Aug. 29, Sept. 4, 1957, and Sept. 7-10, 1966. c From floodmarks. d Also Sept. 27, 1998. ### 01634000 NORTH FORK SHENANDOAH RIVER NEAR STRASBURG, VA LOCATION.--Lat 38°58'36", long 78°20'11", Warren County, Hydrologic Unit 02070006, on right bank at downstream side of bridge on State Highway 55, 1.5 mi southeast of Strasburg, 2.2 mi upstream from Cedar Creek, and 10 mi upstream from confluence with South Fork. DRAINAGE AREA. -- 768 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- March 1925 to current year. REVISED RECORDS.--WSP 951: 1936(M). WSP 1001: 1931. WSP 1171: 1929(M), 1933(M), 1936-37. WSP 1302: 1928(M), 1930(M). WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 494.03 ft above sea level. Prior to Sept. 21, 1930, nonrecording gage at same site and datum. REMARKS.--No estimated daily discharges. Records good. Large diurnal fluctuation at low and medium flow from unknown cause. Water-level elevations at the site were affected during the 1992-93 water years by construction of a new bridge about 50 ft downstream from the gage. National Weather Service gage-height telemeter at station. Maximum discharge, 114,000 ft³/s, from rating curve extended above 46,000 ft³/s. Minimum gage height, 1.52 ft, Feb. 9, 1934. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1870, that of Sept. 7, 1996. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 6,000 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-------------------|--------------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 9 | 0500 | *14,000 | *14.90 | Mar. 19 | 1930 | 8,230 | 10.77 | | Feb. 5
Feb. 18 | 1930
1630 | 8,260
13,500 | 10.80
14.56 | Mar. 21 | 2245 | 9,850 | 12.03 | Minimum discharge, 103 ft³/s, Sept. 24. | | | DISCHA | ARGE, IN | CUBIC FEE | | OND, WATE | | TOBER 199 | 7 TO SEPTI | EMBER 199 | 8 | | |-------|------|--------|----------|-----------|-------|-----------|-------|-----------|------------|-----------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 211 | 167 | 253 | 286 | 2510 | 2500 | 1140 | 747 | 439 | 370 | 159 | 128 | | 2 | 185 | 197 | 244 | 266 | 2060 | 2480 | 1320 | 850 | 419 | 344 | 149 | 124 | | 3 | 160 | 204 | 235 | 265 | 1810 | 2120 | 1260 | 1080 | 399 | 316 | 149 | 122 | | 4 | 146 | 278 | 222 | 314 | 2040 | 1890 | 1220 | 1100 | 384 | 303 | 143 | 120 | | 5 | 141 | 241 | 213 | 651 | 6260 | 1630 | 1770 | 1400 | 369 | 298 | 141 | 120 | | 6 | 140 | 210 | 206 | 985 | 6520 | 1430 | 1850 | 1770 | 364 | 287 | 133 | 121 | | 7 | 139 | 855 | 197 | 858 | 4360 | 1290 | 1550 | 1790 | 358 | 283 | 132 | 121 | | 8 | 137 | 4120 | 190 | 2770 | 3300 | 1290 | 1340 | 1830 | 351 | 280 | 131 | 142 | | 9 | 135 | 3200 | 189 | 10300 | 2890 | 2750 | 1390 | 4110 | 346 | 274 | 133 | 134 | | 10 | 133 | 1690 | 191 | 4660 | 2560 | 4810 | 2320 | 2880 | 360 | 265 | 151 | 131 | | 11 | 129 | 1070 | 191 | 2680 | 2380 | 3150 | 2610 | 2030 | 360 | 262 | 197 | 129 | | 12 | 128 | 755 | 193 | 1890 | 3170 | 2190 | 2170 | 1750 | 375 | 242 | 169 | 144 | | 13 | 126 | 584 | 194 | 1450 | 4080 | 1780 | 1740 | 1680 | 424 | 234 | 175 | 137 | | 14 | 127 | 511 | 189 | 1190 | 3330 | 1530 | 1470 | 1510 | 458 | 229 | 189 | 132 | | 15 | 131 | 481 | 183 | 1030 | 2590 | 1390 | 1310 | 1340 | 600 | 225 | 188 | 129 | | 16 | 117 | 514 | 181 | 1150 | 2070 | 1240 | 1190 | 1190 | 1260 | 218 | 175 | 126 | | 17 | 122 | 486 | 178 | 1460 | 2100 | 1120 | 1110 | 1140 | 778 | 215 | 212 | 121 | | 18 | 126 | 438 | 175 | 1460 | 8610 | 1140 | 1030 | 1220 | 595 | 211 | 211 | 140 | | 19 | 125 | 394 | 173 | 1280 | 6020 | 4650 | 994 | 1000 | 485 | 206 | 202 | 124 | | 20 | 126 | 356 | 170 | 1120 | 4180 | 5030 | 1940 | 879 | 423 | 203 | 222 | 125 | | 21 | 127 | 334 | 171 | 979 | 3500 | 6740 | 2600 | 788 | 418 | 198 | 201 | 134 | | 22 | 126 | 339 | 169 | 858 | 2940 | 6980 | 1910 | 712 | 388 | 191 | 186 | 133 | | 23 | 119 | 334 | 169 | 1010 | 2600 | 3840 | 1550 | 651 | 622 | 186 | 177 | 129 | | 24 | 118 | 331 | 171 | 2880 | 3350 | 2690 | 1340 | 610 | 540 | 181 | 169 | 114 | | 25 | 126 | 315 | 192 | 2720 | 3650 | 2150 | 1180 | 671 | 441 | 174 | 164 | 124 | | 26 | 129 | 300 | 198 | 2100 | 3020 | 1820 | 1050 | 613 | 398 | 171 | 155 | 132 | | 27 | 139 | 283 | 252 | 1670 | 2720 | 1620 | 969 | 568 | 348 | 167 | 142 | 154 | | 28 | 141 | 277 | 275 | 2460 | 2430 | 1480 | 914 | 532 | 334 | 165 | 135 | 117 | | 29 | 150 | 262 | 283 | 5010 | | 1380 | 838 | 515 | 335 | 166 | 133 | 117 | | 30 | 143 | 258 | 295 | 3560 | | 1280 | 770 | 488 | 350 | 163 | 130 | 119 | | 31 | 132 | | 290 | 3150 | | 1180 | | 463 | | 164 | 128 | | | TOTAL | 4234 | 19784 | 6432 | 62462 | 97050 | 76570 | 43845 | 37907 | 13721 | 7191 | 5081 | 3843 | | MEAN | 137 | 659 | 207 | 2015 | 3466 | 2470 | 1462 | 1223 | 457 | 232 | 164 | 128 | | MAX | 211 | 4120 | 295 | 10300 | 8610 | 6980 | 2610 | 4110 | 1260 | 370 | 222 | 154 | | MIN | 117 | 167 | 169 | 265 | 1810 | 1120 | 770 | 463 | 334 | 163 | 128 | 114 | | CFSM | .18 | .86 | .27 | 2.62 | 4.51 | 3.22 | 1.90 | 1.59 | .60 | .30 | .21 | .17 | | IN. | .21 | .96 | .31 | 3.03 | 4.70 | 3.71 | 2.12 | 1.84 | .66 | .35 | .25 | .19 | 10.81 1280 319 113 ### POTOMAC RIVER BASIN ### 01634000 NORTH FORK SHENANDOAH RIVER NEAR STRASBURG, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1925 | - 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---------|----|-------|------|-----|---| | | | | | | | | | | | | | | | | 9.49 1030 315 134 | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|-----------|-----------|------|---------|------------|------|-----------|---------|---------| | MEAN | 406 | 425 | 542 | 707 | 888 | 1161 | 985 | 769 | 474 | 299 | 359 | 320 | | MAX | 3488 | 2813 | 1955 | 3394 | 3466 | 5017 | 2876 | 1821 | 2234 | 1169 | 2510 | 3838 | | (WY) | 1943 | 1986 | 1973 | 1996 | 1998 | 1936 | 1993 | 1988 | 1972 | 1949 | 1955 | 1996 | | MIN | 58.9 | 75.8 | 82.0 | 86.4 | 94.0 | 183 | 183 | 154 | 115 | 76.4 | 66.7 | 67.1 | | (WY) | 1931 | 1931 | 1932 | 1966 | 1931 | 1931 | 1981 | 1969 | 1977 | 1977 | 1930 | 1986 | | | | | | | | | | | | | | | | SUMMAR | Y STATIST | ICS | FOR : | 1997 CALE | NDAR YEAR | F | OR 1998 | WATER YEAR | | WATER YEA | RS 1925 | - 1998 | | ANNUAL | TOTAL | | | 195824 | | | 378120 | | | | | | | ANNUAL | MEAN | | | 537 | | | 1036 | | | 611 | | | | HIGHEST | T ANNUAL I | MEAN | | | | | | | | 1360 | | 1996 | | LOWEST | ANNUAL M | EAN | | | | | | | | 226 | | 1934 | | HIGHEST | T DAILY M | EAN | | 8170 | Mar 4 | | 10300 | Jan 9 | | 60700 | Sep | 7 1996 | | LOWEST | DAILY ME | AN | | 107 | aSep 7 | | 114 | Sep 24 | | 35 | b0ct | 15 1985 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 117 | Sep 21 | | 122 | Sep 1 | | 45 | Sep | 13 1986 | | INSTAN | TANEOUS P | EAK FLOW | | | | | 14000 | Jan 9 | | 114000 | Sep | 7 1996 | | INSTANT | TANEOUS P | EAK STAGE | | | | | 14. | 90 Jan 9 | | 32.27 | Sep | 7 1996 | |
INSTAN | TANEOUS L | OW FLOW | | | | | 103 | Sep 24 | | 6.0 | Feb | 9 1934 | | ANNUAL | RUNOFF (| CFSM) | | .7 | 0 | | 1. | 35 | | .80 | | | | | | | | | | | | | | | | | 18.32 2720 360 131 ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Sept. 8, 1997. b Also Sept. 14, 18, 1986. ## 01634000 NORTH FORK SHENANDOAH RIVER AT STRASBURG, VA--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- July 1996 to current year. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |-----------|--------------|---|---|--|---|---|---|--|---|---|---|---| | OCT 1997 | | | | | | | | | | | | | | 30 | 1050 | 144 | 449 | 8.9 | 15.0 | 10.0 | 751 | 13.9 | 125 | 56 | 20 | 8.5 | | NOV | | | | | | | | | | | | | | 08 | 1245 | 4420 | 240 | 7.0 | | 9.0 | 740 | 10.3 | 92 | | | | | 20 | 1215 | 355 | 340 | 7.7 | 10.0 | 7.7 | 751 | 13.9 | 118 | | | | | DEC | | | | | | | | | | | | | | 16 | 1030 | 181 | 390 | 7.9 | 3.0 | 2.0 | 751 | 13.3 | 98 | | | | | JAN 1998 | 1515 | 0.000 | 1.40 | | 15.0 | 14.0 | 7.40 | 10.0 | 100 | | | | | 09 | 1515 | 8730 | 140 | 7.7 | 15.0 | 14.0 | 740 | 10.2 | 102 | | | | | 10 | 1220 | 4750 | 165 | 5.9 | 9.0 | 9.0 | 750 | 10.4 | 91 | | | | | 22
*22 | 1600 | 839
839 | 295
295 | 7.9 | 2.0 | 4.5 | 753 | 13.2 | 103
103 | 40 | 9.4 | 4.6 | | 24 | 1605
1430 | 3480 | 295
380 | 7.9
8.1 | 2.0
4.0 | 4.5
5.0 | 753
744 | 13.2
11.6 | 93 | | | | | 29 | 1345 | 5020 | 163 | 7.1 | 10.0 | 3.5 | 744 | 12.9 | 100 | | | | | 30 | 1250 | 3670 | 215 | 7.1 | 8.0 | 4.5 | 743 | 12.9 | 96 | | | | | FEB | 1230 | 3070 | 213 | 7.2 | 0.0 | 4.5 | 743 | 12.1 | 90 | | | | | 06 | 1330 | 6370 | 200 | 7.8 | 5.0 | 4.5 | 745 | 12.2 | 96 | | | | | 08 | 1315 | 3240 | 210 | 7.1 | 11.0 | 5.5 | 747 | 15.2 | 123 | | | | | *12 | 1000 | 2660 | 265 | 7.0 | 13.0 | 6.0 | 739 | 11.9 | 99 | | | | | 12 | 1000 | 2660 | 265 | 7.0 | 13.0 | 6.0 | 739 | 11.9 | 99 | | | | | 18 | 1315 | 12200 | 204 | 7.8 | 15.0 | 6.5 | 737 | 11.7 | 98 | | | | | 20 | 1430 | 4030 | 172 | 7.7 | 13.0 | 7.0 | 740 | 11.6 | 98 | | | | | MAR | | | | | | | | | | | | | | 17 | 1120 | 1050 | 290 | 6.8 | 2.0 | 5.0 | 760 | 11.9 | 93 | | | | | APR | | | | | | | | | | | | | | 16 | 1430 | 1110 | 270 | 7.6 | 28.0 | 16.1 | 741 | 11.2 | 117 | 35 | 9.0 | 3.8 | | 21 | 1430 | 2450 | 250 | 7.9 | 18.0 | 14.5 | 750 | 10.3 | 103 | | | | | MAY | | | | | | | | | | | | | | 07 | 0940 | 1780 | 240 | 7.3 | 26.0 | 22.0 | 747 | 11.1 | 130 | | | | | 13 | 1130 | 1660 | 250 | 7.4 | 16.0 | 14.5 | 752 | 10.0 | 99 | | | | | JUN | | | | | | | | | | | | | | 17 | 1315 | 678 | 354 | 8.0 | 25.0 | 23.0 | 753 | 7.8 | 92 | | | | | JUL | 1500 | 105 | 256 | 0 6 | 26.0 | 00 5 | | 10.0 | 3.64 | 20 | 0.0 | | | 22
AUG | 1500 | 185 | 356 | 8.6 | 36.0 | 29.5 | 746 | 12.2 | 164 | 38 | 20 | 7.9 | | AUG
21 | 1230 | 1190 | 430 | 8.8 | 29.0 | 24.5 | 748 | 12.0 | 147 | | | | | ZI
SEP | 1230 | 1190 | 430 | 8.8 | ∠9.U | 24.5 | 748 | 12.0 | 14/ | | | | | 17 | 1115 | 121 | 438 | 8.4 | 28.1 | 24.9 | 746 | 9.2 | 114 | | | | ^{*} Replicate sample. ### 01634000 NORTH FORK SHENANDOAH RIVER AT STRASBURG, VA--Continued | | | ALKA- | ALKA- | CAR- | BICAR- | | | | | SOLIDS, | NITRO- | NITRO- | |-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | POTAS- | LINITY | LINITY | BONATE | BONATE | | CHLO- | FLUO- | SILICA, | RESIDUE | GEN, | GEN, | | | SIUM, | WAT.DIS | WAT DIS | WATER | WATER | SULFATE | RIDE, | RIDE, | DIS- | AT 180 | NITRATE | NITRITE | | | DIS- | FET | TOT IT | DIS IT | DIS IT | DIS- | DIS- | DIS- | SOLVED | DEG. C | DIS- | DIS- | | | SOLVED | LAB | FIELD | FIELD | FIELD | SOLVED | SOLVED | SOLVED | (MG/L | DIS- | SOLVED | SOLVED | | DATE | (MG/L | CACO3 | MG/L AS | MG/L AS | MG/L AS | (MG/L | (MG/L | (MG/L | AS | SOLVED | (MG/L | (MG/L | | | AS K) | (MG/L) | CACO3 | CO3 | HCO3 | AS SO4) | AS CL) | AS F) | SIO2) | (MG/L) | AS N) | AS N) | | | (00935) | (29801) | (39086) | (00452) | (00453) | (00945) | (00940) | (00950) | (00955) | (70300) | (00618) | (00613) | | 0.0m 100F | | | | | | | | | | | | | | OCT 1997 | 2.0 | 200 | 100 | 1.0 | 204 | 20 | 16 | 1.2 | 1.77 | 055 | 1 00 | 016 | | 30
NOV | 3.0 | 200 | 198 | 18 | 204 | 20 | 16 | .13 | .17 | 255 | 1.92 | .016 | | 08 | | | | | | | | | | | 1.18 | .025 | | 20 | | | | | | | | | | | 1.10 | <.010 | | DEC | | | | | | | | | | | | <.010 | | 16 | | | | | | | | | | | | <.010 | | JAN 1998 | | | | | | | | | | | | <.010 | | 09 | | | | | | | | | | | 1.01 | .029 | | 10 | | | | | | | | | | | 1.38 | .025 | | 22 | 1.8 | 120 | 111 | 0 | 135 | 16 | 8.5 | <.10 | 5.9 | 173 | 2.26 | .023 | | 22 | | | | | | | | | | | 2.23 | .017 | | 24 | | | | | | | | | | | 2.19 | .017 | | 29 | | | | | | | | | | | 1.19 | .014 | | 30 | | | | | | | | | | | 1.45 | .013 | | FEB | | | | | | | | | | | 1.15 | .013 | | 06 | | | | | | | | | | | | <.010 | | 08 | | | | | | | | | | | | <.010 | | 12 | | | | | | | | | | | | <.010 | | 12 | | | | | | | | | | | | <.010 | | 18 | | | | | | | | | | | | <.010 | | 20 | | | | | | | | | | | | <.010 | | MAR | | | | | | | | | | | | | | 17 | | | | | | | | | | | 2.08 | .033 | | APR | | | | | | | | | | | | | | 16 | 1.7 | 110 | 103 | | | 12 | 6.2 | <.10 | .68 | 147 | | <.010 | | 21 | | | | | | | | | | | | <.010 | | MAY | | | | | | | | | | | | | | 07 | | | | | | | | | | | 1.35 | .015 | | 13 | | | | | | | | | | | 1.38 | .019 | | JUN | | | | | | | | | | | | | | 17 | | | | | | | | | | | | <.010 | | JUL | | | | | | | | | | | | | | 22 | 2.5 | 150 | | | | 16 | 13 | .10 | 4.3 | 217 | .930 | .020 | | AUG | | | | | | | | | | | | | | 21 | | | | | | | | | | | 1.54 | .024 | | SEP | | | | | | | | | | | | | | 17 | | | | | | | | | | | .879 | .016 | $[\]mbox{\ensuremath{$<$}}$ Actual value is known to be less than the value shown. ### 01634000 NORTH FORK SHENANDOAH RIVER AT STRASBURG, VA--Continued | DATE | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |----------|--|--|---|--|--|---|--|--|---|---|---| | OCT 1997 | | | | | | | | | | | | | 30 | | <.020 | .30 | .18 | 2.1 | .100 | .103 | .135 | 9.7 | 2.4 | | | NOV | 1.71 | 1.020 | .50 | .10 | 2.1 | .100 | .105 | .133 | J., | 2.1 | | | 08 | 1.21 | | 1.7 | .35 | 1.6 | .369 | .094 | .098 | | | 215 | | 20 | 2.92 | <.020 | .16 | .10 | 3.0 | .093 | .080 | .100 | | | 3 | | DEC | | | | | | | | | | | | | 16 | .483 | <.020 | .17 | .13 | .61 | .088 | .062 | .079 | | | 4 | | JAN 1998 | | | | | | | | | | | | | 09 | 1.04 | .071 | 1.7 | .40 | 1.4 | .446 | .111 | .104 | | | 287 | | 10 | 1.40 | .060 | .87 | .30 | 1.7 | .216 | .095 | .083 | | | 86 | | 22 | 2.28 | <.020 | <.10 | <.10 | | .036 | .017 | .052 | <10 | 7.0 | 25 | | 22 | 2.25 | <.020 | <.10 | <.10 | | .032 | .019 | .042 | | | | | 24 | 2.20 | <.020 | .40 | .18 | 2.4 | .102 | .054 | .074 | | | 24 | | 29 | 1.21 | .088 | .46 | .29 | 1.5 | .188 | .073 | .078 | | | 83 | | 30 | 1.46 | .073 | .53 | .28 | 1.7 | .145 | .092 | .096 | | | 46 | | FEB | 1 04 | 207 | 1 1 | | 1 0 | 274 | 1.64 | 212 | | | 0.0 | | 06
08 | 1.24
1.89 | .287 | 1.1 | .66
.23 | 1.9
2.1 | .274
.121 | .164
.092 | .213
.096 | | | 82
25 | | 12 | 2.04 | .038 | .17 | .13 | 2.1 | .057 | .054 | .054 | | | | | 12 | 2.04 | .038 | .17 | .13 | 2.2 | .057 | .054 | .054 | | | 14 | | 18 | 1.59 | .064 | .45 | .28 | 1.9 | .137 | .100 | .102 | | | 402 | | 20 | 1.36 | .037 | .15 | .10 | 1.5 | .040 | .034 | .042 | | | 41 | | MAR | 1.50 | .057 | | | 1.5 | .010
| .031 | .012 | | | | | 17 | 2.11 | <.020 | .10 | .10 | 2.2 | .020 | .020 | .029 | | | 5 | | APR | | | | | | | | | | | | | 16 | 1.03 | .025 | .20 | .14 | 1.2 | .032 | .021 | .020 | 24 | 4.6 | 8 | | 21 | 1.37 | .044 | .36 | .26 | 1.6 | .056 | .031 | .028 | | | 37 | | MAY | | | | | | | | | | | | | 07 | 1.37 | .044 | .40 | .23 | 1.6 | .070 | .047 | .048 | | | 28 | | 13 | 1.40 | .050 | .25 | .18 | 1.6 | .055 | .061 | .059 | | | 15 | | JUN | | | | | | | | | | | | | 17 | 1.86 | .225 | .65 | .51 | 2.4 | .169 | .143 | .145 | | | 35 | | JUL | | | | | | | | | | | | | 22 | .950 | .038 | .37 | .26 | 1.2 | .039 | .040 | .032 | 11 | 5.1 | 4 | | AUG | | | | | | | | | | | _ | | 21 | 1.56 | .037 | .28 | .23 | 1.8 | .166 | .148 | .153 | | | 3 | | SEP | 0.5- | 0.55 | 4.5 | 2.7 | 1.6 | | 105 | 105 | | | _ | | 17 | .895 | <.020 | .46 | .31 | 1.2 | .144 | .137 | .135 | | | 1 | < Actual value is known to be less than the value shown. THIS IS A BLANK PAGE ### 01653000 CAMERON RUN AT ALEXANDRIA, VA LOCATION.--Lat 38°48'23", long 77°06'36", Fairfax County, Hydrologic Unit 02070010, on left downstream side of Norfolk Southern Railway bridge at Alexandria, 800 ft downstream from confluence of Holmes Run and Backlick Run, 0.5 mi east of the U.S. Army Quartermaster Depot, and 3.4 mi upstream from mouth. DRAINAGE AREA. -- 33.7 mi². PERIOD OF RECORD.--June 1955 to March 1979, October 1979 to September 1980, October 1980 to September 1986 (annual maximum only), October 1986 to current year. GAGE.--Water-stage recorder. Gage reinstalled Nov. 8, 1979. Datum of gage is 31.07 ft above sea level. Prior to Sept. 20, 1965, at present site at datum 7.78 ft higher. Sept. 20, 1965, to Jan. 19, 1976, at present site at datum 5.44 ft higher. Jan. 20, 1976, to Nov. 8, 1976, at site 1,200 ft downstream at datum 10.00 ft lower. Nov. 9, 1976, to Mar. 31, 1979, at site 0.5 mi downstream at datum 7.22 ft lower. REMARKS.--Records good except for period of doubtful gage-height record, Oct. 1-20, which is fair. Some regulation by Lake Barcroft, formerly Alexandria Reservoir, on Holmes Run 3.6 mi upstream, usable capacity 2,092 acre-ft. Maximum discharge, 19,900 ft³/s, from rating curve extended above 2,500 ft³/s on basis of culvert computations of peak flow for main channel and bypass channels. Several measurements of water temperature were made during the year. Water-quality records for some periods have been collected at this location. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,230 ${\rm ft}^3/{\rm s}$, Feb. 17, gage height, 6.28 ft; minimum daily, 3.5 ${\rm ft}^3/{\rm s}$, Sept. 6. | | DAILY MEAN VALUES | | | | | | | | | | | | |-------|-------------------|------|------------|------|------|------|------|--------------|------------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e8.0 | 95 | 14 | 15 | 27 | 32 | 80 | 84 | 16 | 16 | 11 | 5.0 | | 2 | e6.0 | 45 | 12 | 15 | 22 | 90 | 63 | 130 | 10 | 12 | 9.0 | 5.6 | | 3 | e4.2 | 19 | 11 | 14 | 43 | 153 | 28 | 152 | 13 | 11 | 8.4 | 4.1 | | 4 | e4.2 | 12 | 13 | 16 | 446 | 44 | 121 | 98 | 10 | 10 | 7.5 | 4.2 | | 5 | e4.2 | 11 | 15 | 14 | 418 | 32 | 38 | 117 | 9.9 | 9.9 | 7.1 | 3.9 | | _ | | | | | | | | | | | | | | 6 | e4.0 | 10 | 12 | 14 | 109 | 29 | 27 | 140 | 11 | 9.4 | 6.8 | 3.5 | | 7 | e3.7 | 364 | 11 | 33 | 58 | 36 | 23 | 59 | 10 | 9.4 | 6.8 | 3.6 | | 8 | e3.7 | 203 | 11 | 55 | 41 | 208 | 29 | 203 | 10 | 120 | 6.5 | 29 | | 9 | e3.7 | 142 | 13 | 27 | 32 | 391 | 267 | 76 | 22 | 25 | 6.6 | 5.3 | | 10 | e3.9 | 34 | 40 | 15 | 28 | 74 | 76 | 49 | 39 | 12 | 28 | 4.6 | | 11 | e4.5 | 19 | 29 | 13 | 56 | 42 | 39 | 78 | 23 | 10 | 13 | 4.6 | | 12 | e4.8 | 15 | 14 | 13 | 84 | 35 | 31 | 175 | 166 | 9.4 | 9.1 | 4.0 | | 13 | e4.9 | 27 | 13 | 14 | 32 | 31 | 26 | 75 | 112 | 9.4 | 7.5 | 4.0 | | 14 | e5.8 | 140 | 12 | 12 | 23 | 30 | 30 | 36 | 35 | 9.4 | 6.6 | 3.7 | | 15 | e16 | 39 | 12 | 122 | 22 | 26 | 26 | 32 | 344 | 9.2 | 6.1 | 3.8 | | 16 | e24 | 18 | 11 | 88 | 24 | 24 | 25 | 32 | 124 | 9.0 | 5.6 | 3.9 | | 17 | e55 | 14 | 11 | 27 | 295 | 22 | 105 | 23 | 31 | 18 | 43 | 6.3 | | 18 | e250 | 13 | 11 | 28 | 247 | 149 | 34 | 18 | 18 | 16 | 20 | 6.0 | | 19 | e170 | 12 | 11 | 20 | 64 | 304 | 124 | 20 | 14 | 7.6 | 9.4 | 4.5 | | 20 | e14 | 12 | 11 | 19 | 46 | 170 | 81 | 25 | 37 | 7.6 | 6.1 | 4.0 | | 20 | 011 | | | | 10 | 2,0 | | 23 | <i>3 ,</i> | | | 1.0 | | 21 | 11 | 45 | 11 | 14 | 33 | 494 | 32 | 14 | 14 | 9.4 | 6.4 | 4.7 | | 22 | 9.6 | 99 | 21 | 13 | 29 | 122 | 27 | 12 | 102 | 18 | 6.8 | 111 | | 23 | 10 | 25 | 48 | 486 | 248 | 61 | 25 | 15 | 198 | 89 | 6.8 | 9.7 | | 24 | 12 | 14 | 21 | 107 | 306 | 44 | 21 | 15 | 158 | 31 | 6.0 | 7.3 | | 25 | 168 | 12 | 128 | 59 | 77 | 37 | 22 | 39 | 26 | 10 | 6.0 | 7.5 | | 26 | 193 | 12 | 24 | 32 | 45 | 37 | 21 | 14 | 17 | 8.6 | 6.0 | 7.0 | | 27 | 83 | 12 | 49 | 62 | 38 | 32 | 31 | 13 | 13 | 7.8 | 6.0 | 6.0 | | 28 | 15 | 13 | 46 | 565 | 35 | 30 | 19 | 13 | 65 | 8.5 | 9.1 | 5.9 | | 29 | 12 | 12 | 23 | 115 | | 29 | 20 | 13 | 16 | 8.1 | 5.5 | 5.2 | | 30 | 11 | 13 | 49 | 48 | | 27 | 21 | 13 | 14 | 31 | 5.1 | 6.1 | | 31 | 10 | | 25 | 32 | | 25 | | 12 | | 68 | 4.7 | | | TOTAL | 1129.2 | 1501 | 732 | 2107 | 2928 | 2860 | 1512 | 1795 | 1677.9 | 629.7 | 292.5 | 284.0 | | MEAN | 36.4 | 50.0 | 23.6 | 68.0 | 105 | 92.3 | 50.4 | 57.9 | 55.9 | 20.3 | 9.44 | 9.47 | | MAX | 250 | 364 | 128 | 565 | 446 | 494 | 267 | 203 | 344 | 120 | 43 | 111 | | MIN | 3.7 | 10 | 11 | 12 | 22 | 22 | 19 | 12 | 9.9 | 7.6 | 4.7 | 3.5 | | | | | | | | | | | | | | .28 | | CFSM | 1.08 | 1.48 | .70
.81 | 2.02 | 3.10 | 2.74 | 1.50 | 1.72
1.98 | 1.66 | .60 | .28 | | | IN. | 1.25 | 1.66 | .81 | 2.33 | 3.23 | 3.16 | 1.67 | 1.98 | 1.85 | .70 | .32 | .31 | e Estimated. ### 01653000 CAMERON RUN AT ALEXANDRIA, VA--Continued | STATISTICS OF | MONTHI.V | MEAN | $D\Delta T\Delta$ | FOR | MATER | VEARS | 1956 | - 1978 | 1980 | 1987 | _ 1998 | RV | WATER | VEAR | (WV) | |---------------|----------|------|-------------------|-----|-------|-------|------|--------|------|------|--------|----|-------|------|------| OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|------------|-----------|------|------------|-----------|------|-----------|----------|---------| | MEAN | 32.5 | 31.8 | 39.6 | 43.7 | 47.2 | 55.7 | 41.6 | 39.4 | 36.2 | 46.7 | 36.1 | 30.6 | | MAX | 147 | 80.5 | 99.2 | 157 | 128 | 132 | 81.8 | 117 | 265 | 662 | 364 | 172 | | (WY) | 1984 | 1964 | 1970 | 1978 | 1979 | 1993 | 1970 | 1989 | 1972 | 1981 | 1981 | 1975 | | MIN | 4.52 | 4.40 | 3.47 | 10.0 | 15.6 | 19.9 | 10.6 | 8.59 | 7.93 | 2.51 | 3.85 | 5.31 | | (WY) | 1964 | 1966 | 1966 | 1966 | 1968 | 1966 | 1969 | 1956 | 1956 | 1957 | 1957 | 1977 | | | | | | | | | | | | | | | | SUMMARY | STATIST: | ICS | FOR 1 | 1997 CALEN | IDAR YEAR | F | OR 1998 WA | ATER YEAR | | WATER YEA | ARS 1956 | - 1998 | | ANNUAL | TOTAL | | | 11841.2 | | | 17448.3 | | | | | | | ANNUAL | MEAN | | | 32.4 | | | 47.8 | | | 37.1 | | | | HIGHEST | r annual i | MEAN | | | | | | | | 64.4 | | 1972 | | LOWEST | ANNUAL MI | EAN | | | | | | | | 21.4 | | 1995 | | HIGHEST | C DAILY M | EAN | | 425 | May 26 | | 565 | Jan 28 | | 3680 | Jun 🤄 | 22 1972 | | LOWEST | DAILY ME | AN | | 3.7 | aOct 7 | | 3.5 | Sep 6 | | 1.1 | bSep : | 22 1964 | | ANNUAL | SEVEN-DAY | MUMINIM Y | | 3.9 | Oct 4 | | 3.9 | Oct 4 | | 1.3 | Sep : | 21 1964 | | INSTANT | TANEOUS PI | EAK FLOW | | | | | 3230 | Feb 17 | | 19900 | Jun 🤄 | 22 1972 | | INSTANT | TANEOUS PI | EAK STAGE | | | | | 6.28 | B Feb 17 | | 18.14 | Jun : | 22 1972 | | INSTANT | TANEOUS LO | OW FLOW | | | | | 3.5 | cSep 5 | | 1.1 | dAug : | 15 1957 | | ANNUAL | RUNOFF (| CFSM) | | .96 | ; | | 1.42 | 2 | | 1.10 | | | | ANNUAL | RUNOFF (| INCHES) | | 13.07 | , | | 19.26 | 5 | | 14.98 | | | | 10 PERC | CENT EXCE | EDS | | 66 | | | 123 | | | 80 | | | | 50 PERC | CENT EXCE | EDS | | 18 | | | 19 | | | 16 | | | | 90 PERC | CENT EXCE | EDS | | 7.2 | | | 6.0 | | | 4.9 | | | a Also Oct. 8, 9, 1997. b Also Sept. 23-25, 1964. c Also Sept. 6-7, 14, 15-16, 1998. c Also Sept. 22-25, 1964. ### 01656100 CEDAR RUN NEAR ADEN, VA LOCATION.--Lat. 38°36'58", long 77°33'16", Prince William County, Hydrologic unit 02070010, on left bank 1000 feet upstream side of bridge on State Highway 611, 0.5 mi downstream from Darrels Run, 0.7 mi downstream from Town Run, and 3.0 miles southeast of Aden. DRAINAGE AREA.--155 mi² ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1972 to November 1987, August 1996 to current year. GAGE.--Water-stage recorder. Datum of gage is 166.27 ft above sea level. REMARKS.--Records fair. October 1972 to November 1987, water-stage recorder at site 800 ft downstream at same datum. COOPERATION.--Records provided by Virginia Water Control Board from October 1972 to November 1987. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1972 reached a stage of 21.37 ft, from floodmarks, discharge not determined. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,800 ft^3/s and maximum (*): REVISION.--The maximum discharge for water year 1997 has been revised to 7,990 ${\rm ft}^3/{\rm s}$, Oct. 19, 1996, gage height, 14.89 ft. | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|--------------------| | Nov. 8 | 0115 | 4,050 | 12.75 | Feb. 5 | 0600 | 5,660 | 13.94 | | Jan. 23 | 2400 | 3,960 | 12.66 | Feb. 18 | 1100 | 4,220 | 12.92 | | Jan. 28 | 1845 | 4,960 | 13.57 | Mar. 21 | 1030 | *6,770 | *14.43 | Minimum daily discharge, 0.16 ft^3/s , Sept. 11. | | | DISCHARGE | , IN C | CUBIC FEET | PER SECOND DAILY | , WATER
MEAN VA | | ER 1997 : | TO SEPTEM | BER 1998 | | |
--|-----------------------------------|---|---|---|---|---|--|---|---|--|------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.9
3.7
3.2
2.9
3.1 | 97
179
111
45
32 | 56
49
38
37
43 | e115
102
116
120
109 | 226
187
168
1980
4700 | 163
177
569
238
182 | 118
314
155
184
222 | 63
227
496
363
230 | 37
34
24
20
19 | 41
30
22
17
14 | 3.3
2.8
2.6
1.7 | .87
.92
1.3
.61
.43 | | 6
7
8
9
10 | 2.6
2.4
2.6
2.2
1.9 | 22
1440
2390
527
250 | 45
37
33
30
33 | 100
143
366
282
185 | 1490
812
439
290
224 | 153
135
795
1710
579 | 149
124
112
362
744 | 231
158
1650
872
370 | 18
17
15
15
33 | 13
11
11
14
14 | 1.4
1.2
1.2
2.1 | .49
.44
.40
.30 | | 11
12
13
14
15 | 1.7
1.9
2.4
2.0
2.4 | 165
128
105
321
271 | 67
62
51
44
39 | 143
121
118
110
180 | 198
371
230
177
151 | 284
204
166
152
133 | 276
189
152
133
127 | 298
711
564
287
198 | 63
53
118
248
275 | 11
8.3
6.8
5.3
4.8 | 1.6
1.6
1.9
1.8 | .16
.17
.21
.21 | | 16
17
18
19
20 | 2.7
3.4
59
30
11 | 160
117
93
79
68 | 36
37
37
34
31 | 788
322
271
203
184 | 136
1150
3170
781
408 | 119
112
293
2150
775 | 114
133
155
125
498 | 149
123
98
78
64 | 1200
287
152
103
79 | 4.5
4.5
4.7
4.9
3.9 | 1.9
1.8
2.4
2.0 | .21
.31
42
12
2.5 | | 21
22
23
24
25 | 6.5
4.6
4.3
4.4 | 64
197
150
123
95 | 26
26
63
72
328 | 144
128
1810
1900
585 | 311
220
798
1700
512 | 4770
1420
606
327
244 | 223
157
132
120
100 | 54
46
38
36
73 | 53
42
137
335
107 | 2.9
2.1
2.4
20
14 | 1.1
.94
1.3
1.2 | .99
.87
.73
.62 | | 26
27
28
29
30
31 | 25
70
31
15
11
7.9 | 77
66
54
48
47 | 213
162
223
168
171
175 | 309
247
3340
2540
635
319 | 302
215
175
 | 201
175
154
144
124
107 | 85
79
78
66
57 | 62
44
41
37
31
27 | 59
40
51
76
52 | 6.5
4.5
4.2
2.9
2.6
2.8 | .93
1.4
1.2
.98
1.0 | .83
2.1
.70
.64
.64 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 338.7
10.9
70
1.7
.07 | 7521
251
2390
22
1.62
1.81 | 2466
79.5
328
26
.51
.59 | 16035
517
3340
100
3.34
3.85 | 21521
769
4700
136
4.96
5.17 | 17361
560
4770
107
3.61
4.17 | 5483
183
744
57
1.18
1.32 | 7719
249
1650
27
1.61
1.85 | 3762
125
1200
15
.81
.90 | 310.6
10.0
41
2.1
.06
.07 | 50.25
1.62
3.3
.90
.01 | 72.65
2.42
42
.16
.02
.02 | e Estimated. ### 01656100 CEDAR RUN NEAR ADEN, VA--Continued | STATISTICS OF MONTHLY MEA | N DATA FOR WATER | YEARS 1973 | - 1987, | 1997 - 19 | 998 BY WAT | ER YEAR | (WY) | | | |--|--|--------------------------|---------|---|--|---------|---|------------------------|------| | OCT NOV | DEC JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN 137 151 | 267 301 | 359 | 308 | 266 | 118 | 74.7 | 39.0 | 71.7 | 134 | | MAX 924 584 | 668 893 | 908 | 786 | 1088 | 384 | 353 | 192 | 336 | 958 | | (WY) 1980 1973 | 1973 1978 | 1979 | 1984 | 1983 | 1978 | 1982 | 1975 | 1984 | 1975 | | MIN 1.61 10.0 | 8.55 5.96 | 58.7 | 27.8 | 29.7 | 17.2 | 4.78 | 2.55 | 1.14 | 1.32 | | (WY) 1987 1975 | 1981 1981 | 1977 | 1981 | 1981 | 1977 | 1977 | 1985 | 1987 | 1980 | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) | FOR 1997 CALE 39616.2 109 2390 1.2 1.8 | NOV 8
Sep 27
Sep 3 | | 82640.20
226
4770
.16
.19
6770
14.43
.16
1.46 | Mar 21 5 Sep 11 9 aSep 10 Mar 21 15 Sep 10 Mar 21 16 Sep 10 Mar 21 16 Sep 10 5 | | 184
313
52.0
10400
.16
.19
14900
15.29
.16
1.18
16.09 | Feb 2 Sep 1 aSep 1 Oct | | | 10 PERCENT EXCEEDS | 227 | | | 497 | | | 340 | | | | 50 PERCENT EXCEEDS | 46 | | | 66 | | | 50 | | | | 90 PERCENT EXCEEDS | 2.6 | | | 1.3 | | | 3.0 | | | | | | | | | | | | | | a Also Sept. 11, 12, 1998. ### 01656100 CEDAR RUN NEAR ADEN, VA--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1996 to current year. | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |---|---|---|---| | OCT 1997 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 16 16 17 18 19 20 21 22 21 22 23 24 25 26 27 28 29 30 31 NOV 1997 | 1200 1200 1200 1200 1200 1200 1200 1200 | 2.00 1.88 1.87 1.86 1.85 1.83 1.84 1.79 1.80 1.83 1.80 1.82 1.81 1.79 1.80 1.82 1.81 1.81 1.81 1.81 1.83 1.84 2.93 2.37 2.10 1.97 1.90 1.89 1.90 1.96 2.28 3.15 2.41 2.17 2.08 2.01 | 8 11 12 4 6 8 13 6 9 13 12 12 9 8 12 12 19 18 9 23 12 13 14 95 8 7 | | 01 01 01 01 02 02 02 02 03 04 05 06 07 07 07 07 08 08 08 08 09 09 10 | 1200 1815 2215 0215 0615 1200 2215 0215 1200 1200 1200 1200 145 1745 1745 1745 1200 1345 1745 1200 1345 1745 1200 1345 1745 1200 1345 1745 1200 1345 1745 1200 1345 | 2.14 3.50 4.71 4.10 3.68 3.36 3.50 3.50 3.50 3.61 7.25 9.18 10.94 12.02 12.56 12.24 10.22 9.65 7.88 5.88 5.88 5.88 4.16 3.94 3.70 | 14 71 94 42 24 29 24 17 9 14 11 6 83 422 363 374 145 87 45 77 37 38 25 27 14 10 11 14 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|--|--|--| | NOV 1997 11 12 13 14 14 14 14 15 15 15 20 21 22 22 22 22 23 24 26 26 26 26 27 28 29 | 1200 1200 0430 0830 1200 1230 1630 2030 0030 0430 1200 1230 1200 1200 12100 1200 12100 | 3.47 3.17 2.99 3.46 4.10 4.47 4.50 4.76 4.90 4.71 4.36 3.95 3.93 3.60 3.38 2.72 2.66 3.48 3.48 3.48 3.50 3.28 3.15 2.88 2.88 2.88 2.88 2.77 2.70 2.59 2.55 | 10
12
14
23
34
29
35
27
30
24
23
15
17
12
10
21
11
43
43
16
22
13
15
8
11
5 | | 30 DEC 1997 01 02 03 04 05 06 07 08 10 11 12 16 19 21 22 23 24 25 25 25 25 25 26 26 26 27 | 1200 1200 1200 1200 1200 1200 1200 1200 | 2.54 2.63 2.57 2.45 2.45 2.51 2.52 2.44 2.39 2.36 2.39 2.78 2.66 2.42 2.40 2.37 2.30 2.31 2.63 2.73 3.46 4.86 4.97 4.94 4.62 4.29 4.05 3.66 3.64 3.48 3.28 3.46 | 8 12 8 17 12 21 13 11 20 18 9 12 6 43 23 6 8 5 8 16 44 61 46 53 42 35 27 22 25 20 13 19 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|--|--
--| | DEC 1997 28 28 28 30 30 31 31 31 | 0000
0400
1200
0000
1200
1630
2030
0030
0430
1145
1200 | 3.74
3.92
3.75
3.57
3.39
3.45
3.57
3.66
3.61
3.45
3.44 | 13
16
12
14
10
23
15
13
8
10 | | JAN 1998 02 03 04 05 06 07 08 08 08 08 09 09 09 09 10 11 12 13 14 15 16 16 16 16 17 17 17 18 18 19 18 19 19 22 23 23 23 | 1200 1200 1200 1200 1200 1200 1200 1200 | 2.91 3.07 3.09 2.99 2.93 3.21 3.45 3.96 4.62 4.56 4.38 4.39 4.59 4.47 4.14 4.14 4.12 4.02 3.91 3.73 3.56 3.49 3.23 3.07 3.06 2.98 2.87 3.47 6.07 7.20 6.89 6.12 5.99 5.51 4.58 4.20 4.08 4.06 4.09 4.07 3.59 3.57 3.53 3.14 3.49 5.69 8.95 | 42
9
4
8
10
15
8
23
36
38
27
32
35
23
22
333
21
21
17
15
13
10
7
10
10
3
8
90
164
142
88
69
54
50
22
18
18
18
18
18
18
18
18
18
18 | | 23
23 | 1715
2115 | 11.46
12.35 | 309
193 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|--|--|--| | JAN 1998 24 24 24 24 24 24 24 24 25 25 25 25 25 25 27 27 28 28 28 29 29 29 29 30 30 30 31 5EB 1998 | 0115
0515
0915
1025
1030
1200
1315
1715
2115
0515
0915
1200
1200
1200
2400
0400
0400
1200
1200 | 12.42 11.72 9.51 8.85 8.84 8.42 7.92 7.34 6.27 6.06 6.21 5.99 5.55 5.30 4.74 4.41 4.00 3.84 12.17 12.94 13.40 13.31 13.03 12.09 9.92 7.86 6.21 5.66 5.64 5.64 5.64 5.64 5.23 4.30 4.02 | 102
62
54
58
37
52
57
46
34
30
25
23
21
20
11
15
120
122
132
90
69
49
54
46
45
39
28
31
32
34
36
37
37
37
37
37
37
37
37
37
37 | | 03 03 03 04 04 04 04 04 04 05 05 05 05 06 06 06 06 06 | 1200
1315
0145
0545
0945
1200
1257
1300
1312
1345
1745
2145
0145
0945
1200
1235
1345
0145
0145
0145
0145
0145
0145
0145
01 | 3.46 3.45 3.52 3.78 7.34 9.36 9.90 9.95 10.03 10.36 11.80 12.88 13.54 13.75 13.79 13.64 13.50 13.35 12.86 12.11 10.65 8.69 7.51 7.40 7.17 7.04 7.26 7.52 | 8
6
5
33
160
124
162
23
172
172
144
126
95
87
67
60
42
49
33
29
35
38
28
23
32
26
25
27 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |---|--|---|---| | DATE FEB 1998 07 07 07 07 07 07 08 08 09 10 11 11 12 12 12 12 12 13 13 14 17 17 17 17 17 18 18 18 18 18 18 19 19 19 19 19 19 19 20 20 21 21 21 21 22 21 22 21 22 | 0145
0545
0945
1200
2145
1200
2145
1200
2145
1200
2145
1200
2145
0145
0145
0945
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1345
1200
1200
1345
1200
1200
1345
1200
1200
1345
1200
1200
1200
1345
1360
1360
1360
1360
1360
1360
1360
1360 | HEIGHT (FEET) (00065) 7.20 6.78 6.41 6.18 5.91 5.54 5.23 5.03 4.98 4.50 4.12 3.99 3.78 3.77 3.61 3.69 4.28 4.86 4.85 4.73 4.63 4.41 4.06 3.85 3.68 3.52 4.80 7.19 10.46 11.11 12.19 12.52 12.86 12.66 12.59 12.31 10.33 7.90 6.89 6.63 6.25 6.14 6.00 5.71 5.28 5.00 4.78 4.63 4.63 4.71 4.58 4.33 4.60 4.71 4.58 4.33 4.28 3.78 | PENDED
(MG/L) | | 23
24
24
25
25
25 | 1200
1200
1630
2030
0030
0430
1200
1630 | 3.77
8.83
7.49
6.51
6.01
5.64
5.15
4.95 | 27
40
39
36
28
26
19 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDEI
(MG/L) | |-------------------------------------|--|---|--| | FEB 1998 26 26 27 27 27 28 28 | 0430
1200
1630
0430
1200
1230
0830
1200 | 4.41
4.29
4.23
4.04
3.79
3.78
3.62
3.61 | 12
11
6
8
10
10
8 | | | | | | | 18 18 19 19 19 19 19 19 19 19 19 19 | 1530
1930
2330
0330
0730
1115
1130
1200
1530
1930
2330 | 4.96
4.60
4.39
7.96
10.62
11.43
11.27
11.48
11.37
9.35
7.21 | 28
22
33
219
289
144
152
98
81
49 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDEI
(MG/L) | |--|--|---|---| | MAR 1998 20 20 20 21 21 21 21 21 22 22 22 22 22 23 24 24 24 25 26 27 28 29 30 | 0330
1200
1530
1945
2345
0745
1145
1200
1545
1245
0745
1145
1200
1545
1200
1545
1200
1200
1200
1200
1200
1200
1200
120 | 6.23 5.37 5.19 5.64 10.27 13.03 14.16 14.08 14.03 13.48 12.66 11.54 9.64 8.19 7.32 7.30 6.90 6.57 5.88 5.50 4.90 4.41 4.30 3.90 3.81 3.67 3.60 3.52 3.39 3.45 3.30 3.18 | 38
30
17
26
366
328
271
191
107
96
52
44
47
48
40
45
37
34
32
28
24
19
12
23
11
14
11
16
19
19
19
10
10
10
10
10
10
10
10
10
10
10
10
10 | | 31 APR 1998 01 02 02 03 04 04 04 05 05 05 06 07 08 09 09 10 11 11 12 12 13 14 15 | 1200 1200 2230 1200 1830 0230 1200 1530 1200 1230 0230 1200 1200 1230 030 1200 030 | 3.02 2.95 3.49 4.21 3.79 3.49 3.30 3.24 3.45 4.05 4.15 3.96 3.67 3.47 3.25 3.07 2.98 2.97 3.04 3.47 6.68 7.17 5.85 5.32 4.39 3.96 3.77 3.50 3.45 3.26 3.13 3.10 2.98 | 6
8
14
61
53
23
18
11
14
16
14
13
12
14
15
10
9
55
131
94
63
34
20
16
10
12
10
7 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--
---|--|--| | APR 1998 17 17 18 19 20 20 20 20 21 21 21 21 21 22 22 22 23 24 22 22 23 24 25 26 27 28 29 MAY 1998 | 1200
2000
1200
1200
1200
1330
0330
0730
1130
1200
1530
1930
2330
0730
1130
1200
1530
1930
2330
1010
1015
1200
1200
1200
1200
1200
120 | 3.03
3.45
3.30
3.01
3.45
5.60
5.90
5.18
5.11
4.69
4.36
4.10
3.90
3.77
3.68
3.67
3.60
3.53
3.45
3.42
3.42
3.29
3.13
3.04
2.87
2.79
2.79
2.74
2.75
2.65
2.58 | 9 15 9 9 31 76 66 49 40 40 29 26 20 19 14 18 12 9 7 10 8 8 10 11 11 7 8 10 10 | | 01 02 02 02 02 02 03 03 03 03 03 04 04 04 04 05 05 05 06 06 06 07 08 08 08 08 | 1200 0115 0515 0915 1200 1315 1715 2015 0015 0415 0815 1200 1215 1615 2015 0415 0815 1200 1215 1615 2015 0415 0815 1200 1215 1615 22015 0415 0815 1200 0415 0815 1200 0415 0815 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 1215 1200 12330 1330 1330 1330 1330 1330 133 | 2.55
3.51
4.09
3.75
3.60
3.55
3.45
5.75
6.46
5.26
4.60
4.57
4.22
4.00
3.87
5.40
4.78
4.42
4.41
4.17
3.99
3.86
3.75
3.70
3.85
3.75
3.70
3.85
3.75
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.70
3.87
3.87
3.87
3.87
3.87
3.87
3.87
3.87 | 10
40
32
20
20
12
9
16
123
72
58
40
31
26
33
24
28
25
35
35
35
28
24
19
16
12
15
15
12
15
16
12
17
18
18
19
16
16
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|--|--|--| | MAY 1998 09 09 09 10 11 11 11 12 12 12 13 13 13 13 14 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | 0330
0730
1130
1200
1330
1200
1330
0530
0930
1200
1330
0530
0945
0955
1200
1730
0530
1200
1200
1200
1200
1200
1200
1200
12 | 7.40 6.72 6.27 6.22 4.80 4.45 4.10 4.16 4.27 4.26 5.17 6.09 6.51 7.10 6.82 6.20 5.75 5.46 5.46 5.45 5.21 4.83 4.21 4.07 3.96 3.63 3.57 3.27 3.08 2.89 2.74 2.62 2.54 2.47 2.38 2.37 2.661 2.44 2.43 2.38 2.30 2.25 | 45
41
34
33
21
15
11
18
19
25
45
47
65
47
21
17
21
17
19
11
12
15
11
7
8
11
19
11
19
11
19
11
11
11
11
11
11
11 | | JUN 1998 01 02 03 04 05 06 07 08 09 11 12 13 14 14 14 14 15 15 | 1200 1200 1200 1200 1200 1200 1200 1200 | 2.24
2.31
2.20
2.15
2.13
2.10
2.05
2.02
2.13
2.57
2.46
2.49
3.52
4.96
4.54
3.65
3.65
3.64
2.89
3.62
9.03 | 12
17
14
5
8
7
9
5
11
8
12
13
97
291
140
80
50
155
18
299
322 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|---|---|---| | JUN 1998 16 16 16 16 16 16 17 17 17 18 19 20 21 22 23 24 24 24 24 24 24 24 24 24 25 26 27 28 29 | 0400
0800
1143
1147
1150
1200
2400
0400
1200
1200
1200
1200
120 | 9.57 9.16 7.00 7.00 6.75 6.76 6.76 4.76 4.36 4.21 4.18 4.00 3.49 3.30 2.97 2.79 2.56 2.43 3.45 3.18 3.45 3.18 3.45 3.18 3.51 2.97 2.61 2.43 2.48 2.77 | 271 189 74 75 80 69 75 41 37 32 24 27 29 23 18 15 13 10 27 18 210 115 111 61 70 70 79 27 14 15 18 18 | | 30 JUL 1998 01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 20 22 22 22 23 24 25 26 27 28 29 30 31 | 1200 1200 1200 1200 1200 1200 1200 120 | 2.56 2.44 2.30 2.20 2.12 2.04 2.05 1.98 1.98 2.09 2.07 2.00 1.92 1.88 1.83 1.80 1.80 1.80 1.80 1.82 1.78 1.82 1.82 1.78 1.82 1.82 1.78 1.82 1.82 1.77 1.71 2.48 2.08 1.88 1.88 1.82 1.76 1.76 1.76 | 23
9
16
19
9
14
9
8
9
11
8
10
7
11
5
8
4
3
5
6
5
9
14
11
11
11
11
11
11
11
11
11 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDEI
(MG/L) | |--|--|--|--| | AUG 1998 01 02 03 04 05 06 07 08 09 11 11 11 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 1200 1200 1200 1200 1200 1200 1200 1200 | 1.76 1.76 1.76 1.77 1.69 1.67 1.63 1.69 1.70 1.78 1.67 1.78 1.67 1.66 1.67 1.70 1.70 1.72 1.67 1.69 1.67 1.68 1.64 1.61 1.65 1.65 1.65 1.65 1.65 1.65 1.65 | 8
9
13
10
6
7
6
5
3
9
4
17
10
6
4
3
7
4
10
8
9
6
8
8
9
15
6
8
8
9
8
9
8
9
8
9
8
9
8
8
9
8
9
8
9
8 | | 31 SEP 1998 01 02 03 04 05 06 07 16 | 1200
1200
1200
1200
1200
1200
1200
1200 | 1.73
1.67
1.67
1.73
1.60
1.55
1.60
1.61
1.61 | 8
4
5
5
6
4
4
6
3
2
3 | | DAY | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | |----------------------------------|--|--------------------------------------|-------------------------------------|-----------------------------------|--------------------------------------|-------------------------------------|--|--------------------------------------|--| | | | OCTOBER | | N | OVEMBER | | DE | CEMBER | | | 1
2
3
4
5 | 6.9
3.7
3.2
2.9
3.1 | 2
3
3
1
2 | .04
.03
.02
.01 | 97
179
111
45
32 | 11
9
4
4
3 | 6.2
4.5
1.2
.45
.25 | 56
49
38
37
43 | 4
4
6
6
8 | .67
.47
.62
.56 | | 6
7
8
9
10 | 2.6
2.4
2.6
2.2
1.9 | 2
3
2
2
4 | .02
.02
.01
.01 | 22
1440
2390
527
250 | 2
54
16
7
4 | .13
321
120
11
2.7 | 45
37
33
30
33 | 5
5
8
7
5 | .65
.54
.73
.61 | | 11
12
13
14
15 | 1.7
1.9
2.4
2.0
2.4 | 3
3
2
2
2
3 | .01
.01
.01
.01 | 165
128
105
321
271 | 3
4
5
9
6 | 1.6
1.4
1.5
8.4
4.6 | 67
62
51
44
39 |
5
3
3
3 | .83
.54
.41
.35 | | 16
17
18
19
20 | 2.7
3.4
59
30
11 | 2
5
5
4
5 | .02
.04
.86
.28 | 160
117
93
79
68 | 3
3
4
5
6 | 1.4
.85
1.0
1.1 | 36
37
37
34
31 | 3
3
3
3 | .29
.30
.30
.27 | | 21
22
23
24
25 | 6.5
4.6
4.3
4.4 | 5
4
6
3
6 | .08
.05
.06
.04 | 64
197
150
123
95 | 6
9
5
3
3 | 1.0
4.6
1.9
1.1 | 26
26
63
72
328 | 4
3
4
9
23 | .26
.23
.76
1.8 | | 26
27
28
29
30
31 | 25
70
31
15
11
7.9 | 7
17
3
2
2
2 | .47
3.5
.28
.08
.06 | 77
66
54
48
47 | 3
3
4
2
3 | .72
.56
.51
.30
.39 | 213
162
223
168
171
175 | 12
8
7
7
7
6 | 7.0
3.6
4.4
3.1
3.3
2.6 | | TOTAL | 338.7 | | 6.54 | 7521 | | 502.45 | 2466 | | 58.06 | | | | JANUARY | | F | FEBRUARY | | | MARCH | | | 1
2
3
4
5 | e115
102
116
120
109 | 6
5
3
5 | e1.9
1.5
1.4
.82
1.4 | 226
187
168
1980
4700 | 21
11
6
76
42 | 13
5.8
2.6
535
565 | 163
177
569
238
182 | 7
8
40
15
10 | 3.1
3.9
70
10
5.0 | | 6
7
8
9
10 | 100
143
366
282
185 | 6
8
19
12
7 | 1.7
3.0
19
9.3
3.4 | 1490
812
439
290
224 | 21
13
8
8
8 | 89
30
10
6.2
1.9 | 153
135
795
1710
579 | 8
4
36
44
16 | 3.2
1.6
145
207
26 | | 11
12
13
14
15 | 143
121
118
110
180 | 4
6
5
3
25 | 1.7
1.9
1.7
.77 | 198
371
230
177
151 | 4
10
4
5
5 | 2.2
11
2.5
2.4
1.9 | 284
204
166
152
133 | 9
7
6
5
6 | 7.0
3.8
2.6
1.9
2.2 | | 16
17
18
19
20 | 788
322
271
203
184 | 47
11
7
5
5 | 116
10
4.9
3.0
2.6 | 136
1150
3170
781
408 | 4
88
114
32
18 | 1.3
460
1090
68
20 | 119
112
293
2150
775 | 5
5
25
121
50 | 1.6
1.5
21
747
174 | | 21
22
23
24
25 | 144
128
1810
1900
585 | 6
7
111
37
19 | 2.3
2.4
759
227
30 | 311
220
798
1700
512 | 13
9
36
41
17 | 203
24 | 4770
1420
606
327
244 | 174
41
28
16
17 | 2270
160
47
15
12 | | 26
27
28
29
30
31 | 309
247
3340
2540
635
319 | 13
17
90
52
35
26 | 11
12
897
389
60
23 | 302
215
175
 | 8
7
8
 | 6.6
4.3
3.5
 | 201
175
154
144
124
107 | 13
16
18
15
11
8 | 7.3
7.6
7.4
5.8
3.7
2.2 | | TOTAL | 16035 | | 2626.69 | 21521 | | 3318.6 | 17361 | | 3975.4 | e Estimated. # POTOMAC RIVER BASIN 01656100 CEDAR RUN NEAR ADEN, VA--Continued | DAY | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | |-------|----------------------------|--------------------------------------|-------------------------------------|----------------------------|--------------------------------------|-------------------------------------|----------------------------|--------------------------------------|-------------------------------------| | | | APRIL | | | MAY | | | JUNE | | | 1 | 118 | 11 | 3.7 | 63 | 21 | 4.1 | 37 | 19 | 2.1 | | 2 | 314 | 58 | 52 | 227 | 36 | 27 | 34 | 20 | 1.8 | | 3 | 155 | 22 | 9.2 | 496 | 67 | 109 | 24 | 14 | .90 | | 4 | 184 | 16 | 8.0 | 363 | 36 | 36 | 20 | 6 | .34 | | 5 | 222 | 16 | 9.4 | 230 | 20 | 12 | 19 | 8 | .41 | | 6 | 149 | 13 | 5.2 | 231 | 22 | 13 | 18 | 8 | .38 | | 7 | 124 | 11 | 3.8 | 158 | 23 | 9.6 | 17 | 9 | .41 | | 8 | 112 | 12 | 3.5 | 1650 | 149 | 697 | 15 | 5 | .23 | | 9 | 362 | 52 | 115 | 872 | 47 | 120 | 15 | 6 | .22 | | 10 | 744 | 64 | 167 | 370 | 22 | 22 | 33 | 10 | .89 | | 11 | 276 | 19 | 14 | 298 | 20 | 16 | 63 | 9 | 1.5 | | 12 | 189 | 14 | 6.9 | 711 | 57 | 124 | 53 | 12 | 1.7 | | 13 | 152 | 10 | 4.1 | 564 | 29 | 47 | 118 | 49 | 38 | | 14 | 133 | 12 | 4.3 | 287 | 18 | 14 | 248 | 83 | 73 | | 15 | 127 | 9 | 3.2 | 198 | 15 | 8.1 | 275 | 96 | 176 | | 16 | 114 | 9 | 2.9 | 149 | 10 | 3.9 | 1200 | 128 | 582 | | 17 | 133 | 14 | 5.3 | 123 | 10 | 3.4 | 287 | 27 | 21 | | 18 | 155 | 13 | 5.6 | 98 | 13 | 3.5 | 152 | 23 | 9.7 | | 19 | 125 | 19 | 6.6 | 78 | 12 | 2.5 | 103 | 18 | 5.0 | | 20 | 498 | 64 | 95 | 64 | 15 | 2.5 | 79 | 15 | 3.2 | | 21 | 223 | 22 | 14 | 54 | 22 | 3.1 | 53 | 13 | 1.9 | | 22 | 157 | 11 | 4.7 | 46 | 21 | 2.7 | 42 | 13 | 1.6 | | 23 | 132 | 11 | 4.1 | 38 | 18 | 1.8 | 137 | 48 | 17 | | 24 | 120 | 14 | 4.4 | 36 | 20 | 2.0 | 335 | 90 | 88 | | 25 | 100 | 15 | 4.0 | 73 | 22 | 4.7 | 107 | 29 | 8.8 | | 26 | 85 | 14 | 3.3 | 62 | 17 | 2.9 | 59 | 15 | 2.4 | | 27 | 79 | 11 | 2.3 | 44 | 14 | 1.7 | 40 | 15 | 1.6 | | 28 | 78 | 11 | 2.4 | 41 | 15 | 1.6 | 51 | 21 | 3.2 | | 29 | 66 | 14 | 2.4 | 37 | 18 | 1.8 | 76 | 20 | 4.2 | | 30 | 57 | 14 | 2.2 | 31 | 17 | 1.4 | 52 | 20 | 2.8 | | 31 | | | | 27 | 17 | 1.2 | | | | | TOTAL | 5483 | | 568.5 | 7719 | | 1299.5 | 3762 | | 1050.28 | | | | MEAN | | | MEAN | | | MEAN | | |-------|-----------|---------|------------|-----------|---------|------------|-----------|----------|------------| | | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | | | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | | DAY | (CFS) | (MG/L) | (TONS/DAY) | (CFS) | (MG/L) | (TONS/DAY) | (CFS) | (MG/L) | (TONS/DAY) | | | | JULY | | | AUGUST | | SI | EPTEMBER | | | 1 | 41 | 11 | 1.2 | 3.3 | 8 | .08 | .87 | 5 | .01 | | 2 | 30 | 15 | 1.2 | 2.8 | 9 | .07 | .92 | 5 | .01 | | 3 | 22 | 17 | 1.0 | 2.6 | 12 | .08 | 1.3 | 5 | .02 | | 4 | 17 | 10 | .49 | 1.7 | 10 | .05 | .61 | 6 | .01 | | 5 | 14 | 13 | .47 | 1.6 | 7 | .03 | .43 | 4 | .00 | | _ | 1.0 | | 2.4 | | _ | 0.0 | 4.0 | | 0.1 | | 6 | 13 | 9 | .34 | 1.4 | 7 | .03 | .49 | 4 | .01 | | 7 | 11 | 8 | . 24 | 1.2 | 6 | .02 | .44 | 6 | .01 | | 8 | 11 | 9 | .27 | 1.2 | 5 | .01 | .40 | 7 | .01 | | 9 | 14 | 10 | .39 | 2.1 | 4 | .02 | .30 | 8 | .01 | | 10 | 14 | 9 | .32 | 2.1 | 7 | .04 | .19 | 6 | .00 | | 11 | 11 | 10 | .28 | 1.6 | 5 | .02 | .16 | 6 | .00 | | 12 | 8.3 | 10 | .21 | 1.6 | 4 | .02 | .17 | 6 | .00 | | 13 | 6.8 | 8 | .14 | 1.9 | 3 | .02 | .21 | 6 | .00 | | 14 | 5.3 | 9 | .14 | 1.8 | 6 | .03 | .21 | 6 | .00 | | 15 | 4.8 | 5 | .07 | 1.4 | 5 | .02 | .21 | 6 | .00 | | | | | | | | | | | | | 16 | 4.5 | 3 | .04 | 1.9 | 9 | .05 | .21 | 4 | .00 | | 17 | 4.5 | 5 | .06 | 1.8 | 8 | .04 | .31 | 6 | .01 | | 18 | 4.7 | 7 | .09 | 2.4 | 8 | .05 | 42 | 9 | 1.1 | | 19 | 4.9 | 4 | .06 | 2.0 | 7 | .04 | 12 | 9 | .27 | | 20 | 3.9 | 3 | .03 | 1.8 | 8 | .04 | 2.5 | 5 | .04 | | 21 | 2.9 | 4 | .03 | 1.1 | 12 | .04 | .99 | 5 | .01 | | 22 | 2.1 | 5 | .03 | .94 | 7 | .02 | .87 | 6 | .01 | | | | 9 | .06 | | 8 | | | 5 | | | 23 | 2.4 | | | 1.3 | | .03 | .73 | | .01 | | 24 | 20 | 16 | 1.0 | 1.2 | 8 | .03 | .62 | 6 | .01 | | 25 | 14 | 16 | .65 | .90 | 6 | .01 | .60 | 5 | .01 | | 26 | 6.5 | 14 | .24 | .93 | 8 | .02 | .83 | 7 | .02 | | 27 | 4.5 | 11 | .14 | 1.4 | 7 | .03 | 2.1 | 12 | .07 | | 28 | 4.2 | 11 | .12 | 1.2 | 5 | .02 | .70 | 6 | .01 | | 29 | 2.9 | 9 | .07 | .98 | 8 | .02 | .64 | 5 | .01 | | 30 | 2.6 | 8 | .05 | 1.0 | 7 | .02 | .64 | 5 | .01 | | 31 | 2.8 | 10 | .08 | 1.1 | 7 | .02 | | | | | TOTAL | 310.6 | | 9.51 | 50.25 | | 1.02 | 72.65 | | 1.68 | | | | | | 50.25 | | 1.02 | ,2.03 | | 1.00 | | YEAR | 82640.20 | | 13418.23 | | | | | | | ### 01656120 CEDAR RUN AT ROUTE 646 NEAR ADEN, VA LOCATION.--Lat. 38°38'29", long 77°30'46", Prince William County, Hydrologic unit 02070010, on left bank at upstream side of bridge on State Highway 646, 2.0 miles southeast of Aden. DRAINAGE AREA. -- Not determined. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1996 to current year. GAGE.--Water stage recorder. Elevation of gage is 160 ft above sea level, from topographic map. REMARKS.--No estimated daily discharges. Records good. EXTREMES FOR CURRENT YEAR.--Maximum discharge 7,000 $\mathrm{ft^3/s}$ Mar. 21, gage height 16.17 ft ; minimum 0.46 $\mathrm{ft^3/s}$, Sept. 14-16. REVISION.--The maximum discharge for period of record is 7,820 ft^3/s , Oct. 19, 1996; gage height, 16.61 ft . DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-------|------|------|-------|-------|-------|------|------|------|-------|------|-------| | 1 | 9.6 | 97 | 62 | 131 | 304 | 224 | 123 | 78 | 40 | 51 | 5.5 | 2.5 | | 2 | 5.4 | 275 | 58 | 106 | 239 | 220 | 386 | 272 | 47 | 40 | 4.7 | 2.1 | | 3 | 3.7 | 149 | 47 | 120 | 205 | 707 | 205 | 608 | 31 | 30 | 3.9 | 2.0 | | 4 | 3.2 | 64 | 45 | 126 | 1780 | 322 | 230 | 469 | 25 | 23 | 3.3 | 2.9 | | 5 | 3.3 | 47 | 50 | 114 | 5720 | 231 | 314 | 309 | 24 | 20 | 2.6 | 1.5 | | 6 | 3.4 | 34 | 53 | 103 | 2240 | 184 | 199 | 327 | 23 | 18 | 2.7 | .93 | | 7 | 2.8 | 1150 | 46 | 153 | 1040 | 159 | 160 | 211 | 20 | 16 | 2.4 | .80 | | 8 | 2.7 | 2910 | 41 | 457 | 567 | 737 | 143 | 1700 | 18 | 17 | 2.1 | 1.1 | | 9 | 3.1 | 708 | 38 | 377 | 381 | 2120 | 390 | 1190 | 17 | 20 | 2.1 | 1.1 | | 10 | 2.6 | 328 | 41 | 233 | 290 | 798 | 998 | 503 | 30 | 20 | 3.2 | .85 | | 11 | 2.7 | 190 | 69 | 164 | 251 | 389 | 396 | 399 | 90 | 16 | 2.8 | .68 | | 12 | 2.4 | 135 | 69 | 131 | 466 | 276 | 266 | 817 | 69 | 14 | 2.1 | .61 | | 13 | 2.0 | 106 | 60 | 123 | 302 | 223 | 205 | 741 | 112 | 12 | 2.0 | .56 | | 14 | 2.4 |
374 | 52 | 114 | 222 | 200 | 174 | 390 | 333 | 11 | 2.7 | .53 | | 15 | 2.9 | 369 | 47 | 157 | 181 | 170 | 162 | 271 | 231 | 9.3 | 3.0 | .46 | | 16 | 2.8 | 195 | 42 | 1000 | 157 | 145 | 143 | 199 | 1390 | 9.5 | 2.9 | .49 | | 17 | 4.0 | 127 | 44 | 439 | 1090 | 133 | 163 | 157 | 362 | 9.2 | 4.1 | .54 | | 18 | 82 | 98 | 44 | 357 | 3570 | 377 | 202 | 120 | 192 | 9.8 | 6.0 | 20 | | 19 | 52 | 83 | 41 | 262 | 1100 | 2380 | 156 | 95 | 125 | 9.3 | 3.9 | 12 | | 20 | 20 | 73 | 38 | 232 | 540 | 1010 | 594 | 79 | 95 | 8.8 | 3.4 | 4.2 | | 21 | 9.6 | 68 | 34 | 171 | 425 | 5150 | 303 | 68 | 67 | 7.2 | 2.9 | 2.0 | | 22 | 6.0 | 230 | 33 | 146 | 304 | 2160 | 203 | 59 | 52 | 5.5 | 2.2 | 2.3 | | 23 | 4.9 | 177 | 61 | 1620 | 835 | 769 | 164 | 49 | 209 | 5.5 | 1.9 | 1.5 | | 24 | 5.0 | 131 | 80 | 2600 | 2200 | 444 | 141 | 47 | 520 | 23 | 2.6 | 1.1 | | 25 | 10 | 98 | 390 | 794 | 689 | 335 | 112 | 82 | 157 | 27 | 2.5 | .96 | | 26 | 44 | 83 | 277 | 430 | 403 | 274 | 93 | 79 | 85 | 12 | 1.8 | .94 | | 27 | 90 | 74 | 184 | 331 | 302 | 238 | 85 | 57 | 57 | 8.9 | 1.7 | 1.6 | | 28 | 54 | 63 | 278 | 3160 | 252 | 201 | 82 | 52 | 66 | 7.9 | 1.8 | 1.4 | | 29 | 28 | 57 | 202 | 3670 | | 170 | 70 | 48 | 98 | 6.3 | 2.1 | .91 | | 30 | 18 | 56 | 197 | 858 | | 151 | 63 | 41 | 65 | 4.9 | 1.9 | .99 | | 31 | 13 | | 213 | 443 | | 133 | | 35 | | 5.6 | 1.7 | | | TOTAL | 495.5 | 8549 | 2936 | 19122 | 26055 | 21030 | 6925 | 9552 | 4650 | 477.7 | 88.5 | 69.55 | | MEAN | 16.0 | 285 | 94.7 | 617 | 931 | 678 | 231 | 308 | 155 | 15.4 | 2.85 | 2.32 | | MAX | 90 | 2910 | 390 | 3670 | 5720 | 5150 | 998 | 1700 | 1390 | 51 | 6.0 | 20 | | MIN | 2.0 | 34 | 33 | 103 | 157 | 133 | 63 | 35 | 17 | 4.9 | 1.7 | .46 | ### 01656120 CEDAR RUN AT ROUTE 646 NEAR ADEN, VA--Continued | STATISTICS | OF | MONTHI.V | MEAN | מדמת | FOR | WATER | YEARS | 1996 | _ | 1998 | RV | WATER | VEAR | (WV |) | |------------|----|----------|------|------|-----|-------|-------|------|---|------|----|-------|------|-----|---| | | | | | | | | | | | | | | | | | 290 53 | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|------------|----------|------|------------|----------|------|------------|----------|--------------| | MEAN | 191 | 263 | 346 | 436 | 621 | 507 | 178 | 178 | 93.4 | 18.0 | 4.21 | 5.13 | | MAX | 366 | 285 | 597 | 617 | 931 | 678 | 231 | 308 | 155 | 20.7 | 5.57 | 7.94 | | (WY) | 1997 | 1998 | 1997 | 1998 | 1998 | 1998 | 1998 | 1998 | 1998 | 1997 | 1997 | 1997 | | MIN | 16.0 | 241 | 94.7 | 255 | 311 | 336 | 125 | 47.7 | 31.7 | 15.4 | 2.85 | 2.32 | | (WY) | 1998 | 1997 | 1998 | 1997 | 1997 | 1997 | 1997 | 1997 | 1997 | 1998 | 1998 | 1998 | | SUMMARY | STATIST | ICS | FOR 1 | 1997 CALEN | DAR YEAR | F | OR 1998 WA | TER YEAR | | WATER YE | ARS 1996 | - 1998 | | ANNUAL | TOTAL | | | 46241.0 | | | 99950.25 | | | | | | | ANNUAL | MEAN | | | 127 | | | 274 | | | 235 | | | | | T ANNUAL N | | | | | | | | | 274
195 | | 1998
1997 | | HIGHEST | DAILY ME | EAN | | 2910 | Nov 8 | | 5720 | Feb 5 | | 5720 | Feb | 5 1998 | | LOWEST | DAILY MEA | AN | | 2.0 | Oct 13 | | .46 | Sep 15 | | .46 | Sep 1 | .5 1998 | | ANNUAL | SEVEN-DAY | MUMINIM Y | | 2.5 | Sep 4 | | .55 | _ | | .55 | Sep 1 | 1 1998 | | INSTANT | TANEOUS PI | EAK FLOW | | | = | | 7000 | Mar 21 | | a7820 | Oct 1 | 9 1996 | 16.17 Mar 21 600 79 2.2 .46 bSep 14 16.61 467 82 .46 Oct 19 1996 bSep 14 1998 INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Revised. b Also Sept. 15-16, 1998. ### 01656120 CEDAR RUN AT ROUTE 646 NEAR ADEN, VA--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1996 to current year. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | CENT
SATUR-
ATION) | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | |----------------|------|---|---|---|------|---|-----|--|--------------------------|--| | OCT 1997 | | | | | | | | | | | | 16
NOV | 0900 | 2.9 | 163 | 7.0 | 10.5 | 12.7 | 770 | 4.9 | 45 | | | 26
JAN 1998 | 1130 | 83 | 162 | 6.6 | 9.5 | 6.0 | 745 | 14.7 | 121 | 1.5 | | 09 | 1015 | 385 | 160 | 7.1 | 14.5 | 13.2 | 749 | 9.9 | 96 | 1.1 | | 30 | 1005 | 909 | 91 | 7.1 | 6.0 | 6.0 | 757 | 12.2 | 99 | .98 | | FEB | | | | | | | | | | | | 04 | 1515 | 2600 | 90 | 7.1 | 2.0 | 4.8 | 749 | 12.6 | 100 | .91 | | 24 | 1345 | 2240 | 78 | 6.8 | 8.0 | 6.5 | 752 | 12.1 | 100 | .75 | | MAR | 1045 | 0.650 | 0.0 | | 2 5 | | 720 | 10.1 | 100 | 1 0 | | 19 | 1045 | 2670 | 83 | 7.0 | 9.5 | 6.3 | 730 | 12.1 | 102 | 1.3 | | APR
22 | 0900 | 205 | 98 | 7.0 | 17.5 | 13.9 | 735 | 9.8 | 98 | .45 | | MAY | 0900 | 203 | 90 | 7.0 | 17.5 | 13.9 | 733 | 9.0 | 90 | .43 | | 13 | 0900 | 769 | 112 | 6.9 | 14.5 | 14.5 | 735 | 8.9 | 91 | 1.0 | | JUN | | | | | | | | | | | | 16 | 1000 | 1970 | 103 | 6.9 | 27.3 | 19.7 | 754 | 7.5 | 83 | 3.0 | | JUL | | | | | | | | | | | | 22 | 0900 | 5.2 | 145 | 7.3 | 27.5 | 25.1 | 752 | 5.6 | 69 | | | AUG | | | | | | | | | | | | 11 | 1020 | 2.5 | 172 | 7.2 | 27.5 | 24.4 | 749 | 6.8 | 83 | | | SEP | | | | | | | | | | | | 16 | 0930 | .54 | 245 | 7.2 | 20.3 | 22.8 | 755 | 3.8 | 45 | DATE | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | |----------------|--|--|--|--|---|--|---|--|--| | OCT 1997 | | | | | | | | | | | 16 | | <.010 | <.050 | <.015 | .34 | .28 | <.010 | <.010 | <.010 | | 26
JAN 1998 | | <.010 | 1.26 | <.020 | .32 | .28 | .017 | <.010 | .043 | | 09 | .549 | .010 | .559 | <.020 | .64 | .52 | .078 | .035 | .044 | | 30 | | <.010 | .707 | .041 | .39 | . 27 | .061 | .016 | <.010 | | FEB | | | | | | | | | | | 04 | | <.010 | .508 | <.020 | .81 | .40 | .190 | .064 | .056 | | 24 | | <.010 | .330 | .060 | .69 | .42 | .134 | .061 | .038 | | MAR
19 | | <.010 | .347 | .305 | 1.6 | .96 | .464 | .199 | .162 | | APR | | <.010 | .34/ | .305 | 1.0 | .90 | .404 | .199 | .102 | | 22 | | <.010 | .165 | .037 | .39 | . 28 | .047 | .016 | .018 | | MAY | | | | | | | | | | | 13 | .430 | .010 | .440 | .047 | .69 | .57 | .080 | .044 | .039 | | JUN | | | | | | | | | | | 16 | 2.10 | .032 | 2.13 | .095 | 1.5 | .86 | .326 | .107 | .094 | | JUL
22 | | <.010 | <.050 | .048 | . 28 | .22 | .027 | <.010 | .016 | | AUG | | <.010 | <.030 | .040 | .20 | . 22 | .027 | <.010 | .010 | | 11 | | <.010 | <.050 | .061 | .31 | . 29 | <.010 | .017 | <.010 | | SEP | | | | | | | | | | | 16 | | .012 | <.050 | .038 | .34 | .30 | .013 | .015 | .012 | | | | | | | | | | | | < Actual value is known to be less than the value shown. * The constituent reporting level was changed during this water year.</pre> | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDEI
(MG/L) | |--|---|--|--| | OCT 1997 01 02 04 05 06 07 08 09 10 11 12 13 14 15 16 16 16 21 22 23 24 25 24 25 28 29 30 31 | 1200 1200 1200 1200 1200 1200 1200 1200 | 1.63
1.50
1.39
1.39
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.36
1.35
1.36
1.35
1.36
1.35
1.36
1.35
1.36
1.35
1.35
1.36
1.35
1.36
1.35
1.36
1.37
1.39
1.39
1.39
1.39
1.39
1.39
1.39
1.39 | 15
11
15
16
12
26
10
7
20
20
18
13
11
5
2
10
8
72
68
15
14
13
17
9
9
13
11
21
4
7 | | NOV 1997 01 01 02 02 02 02 03 04 05 06 07 07 07 07 08 08 08 08 09 09 10 11 12 14 14 14 | 1200 2045 0045 0045 0445 0845 1200 1200 1200 1200 1200 1530 1930 0330 0730 1200 1530 1930 0330 1200 1530 1930 0330 1200 1530 1900 1200
1200 1200 1200 1200 1200 120 | 1.99 3.71 5.11 4.29 3.70 3.40 2.98 2.37 2.21 2.05 3.57 4.90 9.83 11.09 11.74 12.54 13.02 12.74 12.11 10.04 6.30 5.67 5.65 4.78 3.96 3.59 3.31 3.01 2.79 3.52 4.37 4.51 4.82 5.11 5.22 | 8
53
58
39
37
107
55
30
60
174
286
330
163
64
51
40
18
33
31
27
23
22
61
15
21
14
18
23
34
51
30
30
28 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|--|--|--| | NOV 1997 15 15 16 16 18 19 20 21 22 22 22 22 22 22 23 24 25 26 26 26 27 28 29 DEC 1997 | 0300 1200 1500 0300 1200 1200 1200 1200 1200 1200 12 | 4.92
4.13
3.97
3.57
3.35
2.95
2.75
2.63
2.54
2.47
3.40
3.86
3.90
3.78
3.63
3.24
3.01
2.74
2.62
2.62
2.62
2.62
2.63
2.55
2.39 | 21
50
18
11
23
12
12
18
23
10
48
22
20
13
26
18
12
5
7
7
7
8 | | 01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 25 25 25 26 26 27 28 28 28 28 | 1200 1200 1200 1200 1200 1200 1200 1200 | 2.47 2.40 2.27 2.25 2.31 2.35 2.25 2.18 2.17 2.18 2.54 2.50 2.42 2.34 2.27 2.21 2.24 2.25 2.30 2.18 2.12 2.10 2.31 2.59 3.51 5.15 5.32 5.31 4.93 4.49 4.18 3.73 3.54 3.22 3.51 3.85 4.03 3.92 3.88 | 11
10
6
8
8
16
14
10
10
13
11
9
13
4
7
8
13
8
7
7
6
4
9
7
6
4
9
3
10
10
10
10
10
10
10
10
10
10
10
10
10 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|--|---|---| | DEC 1997 29 30 31 31 31 | 0300
1200
1200
2045
0045
0445
0845
1200 | 3.56
3.38
3.34
3.50
3.64
3.66
3.55
3.46 | 12
12
7
9
8
8
8 | | | | | | | 19
19
20
21
23
23
23
23
23 | 1200
1645
1200
1200
1200
0630
1030
1200
1430
1830
2230 | 3.69
3.64
3.58
3.21
3.08
3.50
6.40
8.81
11.01
11.99
12.63 | 16
11
7
14
4
13
117
189
319
277
170 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|--|--|--| | JAN 1998 24 24 24 24 24 24 24 24 25 25 25 25 26 26 27 27 28 28 29 29 29 29 29 30 30 30 30 30 30 31 5FEB 1998 | 0230
0630
0920
0925
0948
1030
1200
1430
1230
1230
1200
1200
1200
1215
0115
0115
1200
1315
1715
1215
0115
0115
1200
1315
1715
1215
0115
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215
1215 | 13.11 13.20 12.99 12.98 12.87 12.63 12.15 10.46 7.47 6.87 6.61 6.14 5.97 5.12 4.43 4.35 4.10 3.91 12.28 13.65 14.44 14.85 14.70 14.09 13.40 13.03 11.24 8.36 7.38 6.98 6.67 6.54 6.54 6.50 6.39 6.31 4.72 4.55 | 115
43
52
41
50
39
76
40
43
37
35
27
24
25
29
17
22
16
12
121
111
111
87
76
33
30
42
35
40
40
43
40
43
40
40
40
40
40
40
40
40
40
40
40
40
40 | | 01 01 02 03 04 04 04 04 04 04 04 04 04 05 05 05 05 05 05 |
1115
1200
1200
0315
0715
1115
1206
1215
1221
1353
1400
1404
1515
1915
2315
0715
1000
1015
1025
1125
1221
1353
1400
1515
1215
1221
1353
1400
1515
1515
1515
1515
1515
1515
1515 | 3.89 3.87 3.57 3.40 3.50 4.12 8.44 9.29 9.34 9.52 9.10 10.61 10.74 10.79 11.30 12.48 13.45 14.89 15.70 15.89 15.89 15.89 15.90 15.87 15.89 15.63 14.98 14.11 | 18 185 64 16 22 45 125 127 153 38 138 153 173 155 125 118 177 131 85 53 71 72 65 51 45 29 28 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|--|--|--| | FEB 1998 06 06 06 06 06 06 06 06 07 07 07 07 07 10 11 11 11 11 11 11 12 12 12 13 14 15 17 17 17 17 17 18 18 18 18 18 18 18 19 | 0315 0715 1045 1055 1115 1200 1225 1230 1235 1515 1915 2315 0715 1115 1200 1200 1200 1200 1200 1200 12 | 13.09 11.77 7.40 7.33 9.20 8.83 8.70 8.68 8.55 7.91 7.98 8.25 7.40 6.98 6.90 5.64 5.26 5.24 5.12 4.93 4.55 4.27 3.92 3.80 3.63 3.62 3.73 4.36 5.10 5.13 5.09 4.88 4.61 4.18 3.90 3.84 3.70 3.63 3.62 3.73 4.36 5.10 5.13 5.09 4.88 4.61 4.18 3.90 3.80 3.67 3.50 3.15 3.50 3.29 3.15 3.55 4.20 7.05 10.77 11.69 12.47 12.89 13.35 13.41 13.43 13.52 13.70 13.25 11.88 8.72 7.31 6.90 6.77 6.59 6.23 5.75 | 32
26
31
31
36
37
35
38
32
24
19
20
17
20
20
14
10
16
6
11
13
16
5
4
10
3
8
3
1
5
12
12
14
14
8
8
15
16
16
16
16
16
16
16
16
16
16
16
16
16 | | | | | | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|---|--|--| | FEB 1998 20 20 20 21 21 22 23 24 24 24 24 25 25 25 25 25 27 27 27 27 28 | 0230
0630
1200
1430
2230
0630
1200
1200
1220
1225
1235
1305
1315
0115
0915
1200
2115
0915
1200
2115
0915 | 5.35
5.09
4.85
4.82
4.94
4.66
4.46
3.84
3.74
10.93
8.67
8.58
10.67
10.55
10.46
8.75
7.42
6.60
6.08
5.70
5.49
5.40
5.16
4.95
4.71
4.44
4.37
4.17
3.94
3.90
3.89
3.71 | 21
16
31
23
9
12
16
13
34
38
42
41
39
38
39
38
34
30
24
22
16
26
11
11
9
30
10
11
8 | | 28 MAR 1998 01 01 02 03 03 03 04 05 06 07 08 09 | 0515
1200
0515
1200
2015
0015
0415
0415
1200
1200
1200
1200
1200
1200
1245
0445
0445
0945
0945
1200
1215
1200
1200
1200
1200
1200
120 | 3.56 3.54 3.50 3.45 3.50 4.22 6.16 7.01 6.26 6.21 3.97 3.55 3.30 3.16 3.39 3.50 6.99 9.77 10.34 9.23 9.53 9.61 9.71 9.86 10.39 10.44 10.48 10.50 10.54 10.78 10.00 | 8
9
11
11
20
96
77
32
64
18
9
14
8
15
22
80
89
123
118
74
83
54
91
55
77
84
69
70
52
45 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|---|--|--| | MAR 1998 10 10 10 11 11 12 12 13 14 15 18 18 19 19 19 19 19 19 19 19 20 20 20 20 21 21 21 21 21 21 21 22 22 22 22 23 23 23 23 23 23 23 23 23 23 24 25 26 26 | 0045 0845 1200 1245 1645 0845 1200 1645 0845 1200 1200 1200 1200 1200 1200 1200 120 | 7.95 6.26 5.84 5.76 5.39 4.42 4.31 4.00 3.81 3.75 3.63 3.49 3.40 3.21 3.06 2.99 3.52 4.56 4.64 5.36 5.02 4.83 8.47 11.00 11.35 11.39 11.46 11.72 11.74 12.23 12.10 9.76 7.22 6.42 5.99 5.98 5.66 5.93 10.92 12.87 7.22 6.42 5.99 5.98 5.66 5.93 10.92 12.87 7.15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 15.98 15.97 15.13 11.24 8.97 8.66 8.60 6.26 5.97 5.94 5.52 4.54 4.42 3.86 3.69 3.54 3.551 | 39 36 15 21 21 12 24 12 10 9 11 10 21 14 10 10 8 71 19 31 37 27 28 200 212 439 182 115 51 41 35 39 47 12 15 51 130 316 268 133 185 130 63 41 44 48 37 41 27 25 27 24 20 23 32 30 20 19 17 13 | | 27 | 1200
1200 | 3.34
3.13 | 12
27 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |----------------------------|--|-------------------------------------|---| | MAR 1998
29
30
31 | 1200
1200
1200 | 2.95
2.83
2.83 | 27
22
23 | | | 1200 1200 0345 0745 1145 1200 1545 12945 2345 1200 1200 1515 1200 1200 1200 1200 120 | | 23
14
61
49
47
65
59
61
25
23
46
20
27
19
21
15
28
19
22
14
379
286
120
21
23
46
40
21
21
22
23
46
46
47
47
47
47
47
47
47
47
47
47 | | 28
29
30 | 1200
1200
1200 | 2.40
2.31
2.25 | 15
19
19 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |---|--
---|---| | MAY 1998 01 02 02 02 02 03 03 03 03 03 04 04 04 04 05 05 06 06 06 07 08 08 08 09 09 09 10 11 11 12 12 12 12 13 13 13 13 13 13 13 14 15 15 15 16 17 | 1200 0330 0730 1130 1200 2230 0230 0630 1030 1200 1430 1830 0230 1200 1430 1200 1430 1200 1430 1200 1430 1200 1430 1200 1430 1200 1430 1200 1430 1200 1430 1200 1200 1315 1215 0515 0845 1200 1205 1215 0915 1200 1315 1715 2115 0515 0845 1215 0515 0845 1200 1215 0915 1200 1315 1715 2115 0515 0815 0845 1200 1201 1201 1201 1201 1201 1201 120 | 2.21 3.51 4.07 3.66 3.62 3.50 6.28 6.64 5.41 5.05 4.65 4.30 4.18 5.59 4.95 4.75 4.51 4.21 3.98 3.80 3.66 3.78 4.01 3.99 4.08 3.98 3.63 3.15 3.51 6.49 9.96 10.03 10.25 10.12 8.59 7.49 7.01 6.32 8.59 7.49 7.01 8.59 8.59 8.60 8.60 8.60 8.60 8.60 8.60 8.60 8.60 | 16 77 57 34 107 27 115 93 71 52 45 36 25 38 32 35 24 33 35 24 33 35 24 33 35 24 33 35 24 33 35 24 33 35 24 33 35 24 33 35 24 33 35 24 33 35 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 19 31 27 38 29 27 18 24 22 18 21 42 21 81 21 42 | | 18 | 1200 | 2.64 | 35 | | MAY 1998
19 1200 2.48 38
21 1200 2.29 24
22 1200 2.22 22 | DED
/L)
54) | |--|---| | 23 1200 2.13 20 24 1200 2.11 22 25 1200 2.26 19 26 1200 2.36 18 27 1200 2.19 21 28 1200 2.16 20 29 1200 2.13 17 31 1200 1.99 33 | 4
2
0
2
9
8
1
0 | | JUN 1200 1.98 29 02 1200 2.08 26 03 1200 1.92 30 04 1200 1.85 26 05 1200 1.83 18 06 1200 1.82 16 07 1200 1.77 14 08 1200 1.70 20 10 1200 1.70 20 10 1200 1.70 20 11 1200 2.39 61 12 1200 2.27 53 13 1200 2.31 59 13 1200 2.31 59 13 1200 2.31 59 13 1200 2.31 59 13 1200 2.67 38 14 0630 4.47 240 14 1030 3.68 287 15 <td>50585440413913077815465935559845431150044833548138561</td> | 50585440413913077815465935559845431150044833548138561 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|---|---|---| | JUL 1998 01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 19 20 21 22 22 22 22 22 23 24 25 26 27 28 29 30 31 AUG | 1200 1200 1200 1200 1200 1200 1200 1200 | 2.16 2.04 1.93 1.80 1.75 1.72 1.69 1.72 1.75 1.69 1.65 1.61 1.58 1.56 1.56 1.56 1.56 1.54 1.50 1.46 1.46 1.43 1.41 1.48 1.86 1.61 1.58 1.55 1.61 1.46 1.43 1.41 1.48 1.86 1.61 1.54 | 15
12
14
22
27
26
30
19
20
17
21
17
16
10
13
7
6
5
8
10
7
6
12
4
5
7
5
7
8
8
9
8
9
8
9
8
9
8
9
8
9
8
9
8
8
9
8
9
8
9
8
9
8
8
9
8
9
8
8
9
8
8
9
8
8
9
8
8
8
9
8
8
9
8
8
9
8
8
8
8
9
8
8
8
8
9
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | | 01 02 03 04 05 06 07 08 09 11 11 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 | 1200 1200 1200 1200 1200 1200 1200 1200 | 1.42 1.41 1.36 1.35 1.32 1.31 1.29 1.38 1.34 1.31 1.35 1.32 1.31 1.28 1.26 1.31 1.28 1.26 1.31 1.28 1.26 1.31 1.28 1.26 1.31 1.22 1.30 1.34 1.39 1.34 1.39 1.34 1.39 1.34 1.33 1.30 1.27 1.24 1.23 1.23 1.23 1.23 1.23 1.23 1.22 1.24 1.23 1.22 | 7 3 5 3 14 12 20 14 20 10 7 4 10 5 5 9 5 9 12 5 7 11 9 6 11 6 8 6 9 6 6 | | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |------|--|---| | | | | | 1200 | 1.27 | 9 | | 1200 | 1.24 | 4 | | 1200 | 1.22 | 5 | | 1200 | 1.29 | 5 | | 1200 | 1.23 | 4 | | 1200 | 1.19 | 12 | | 1200 | 1.17 | 8 | | 0910 | 1.23 | 3 | | 0915 | 1.23 | 2 | | 0920 | 1.23 | 2 | | | 1200
1200
1200
1200
1200
1200
1200
0910 | TIME HEIGHT (FEET) (00065) 1200 1.27 1200 1.24 1200 1.29 1200 1.23 1200 1.19 1200 1.17 0910 1.23 0915 1.23 | POTOMAC RIVER BASIN 01656120 CEDAR RUN AT ROUTE 646 NEAR ADEN, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | | MEAN | | | MEAN | | | MEAN | | |-------|-----------|----------|------------|-----------|-------------|------------|-----------|---------|------------| | | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | | | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | | DAY | (CFS) | (MG/L) | (TONS/DAY) | (CFS) | (MG/L) | (TONS/DAY) | (CFS) | (MG/L) | (TONS/DAY) | | | | OCTOBER | | 1 | IOVEMBER | | DF | ECEMBER | | | | | 00102210 | | - | .0.12112211 | | 2- | | | | 1 | 9.6 | 6 | .15 | 97 | 12 | 7.0 | 62 | 8 | 1.4 | | 2 | 5.4 | 5 | .08 | 275 | 21 | 17 | 58 | 8 | 1.2 | | 3 | 3.7 | 5 | .05 | 149 | 13 | 5.6 | 47 | 5 | .68 | | 4 | 3.2 | 6 | .05 | 64 | 9 | 1.6 | 45 | 6 | .71 | | 5 | 3.3 | 7 | .06 | 47 | 6 | .77 | 50 | 7 | .89 | | 6 | 3.4 | 6 | .05 | 34 | 4 | .37 | 53 | 11 | 1.6 | | 7 | 2.8 | 9 | .06 | 1150 | 90 | 493 | 46 | 11 | 1.3 | | 8 | 2.7 | 4 | .03 | 2910 | 31 | 253 | 41 | 8 | .92 | | 9 | 3.1 | 4 | .03 | 708 | 17 | 32 | 38 | 8 | .86 | | 10 | 2.6 | 7 | .05 | 328 | 12 | 11 | 41 | 10 | 1.2 | | 11 | 2.7 | 8 | .06 | 190 | 12 | 6.2 | 69 | 9 | 1.6 | | 12 | 2.4 | 8 | .05 | 135 | 9 | 3.5 | 69 | 7 | 1.3 | | 13 | 2.0 | 5 | .03 | 106 | 8 | 2.4 | 60 | 5 | .74 | | 14 | 2.4 | 5 | .03 | 374 | 18 | 20 | 52 | 3 | .47 | | 15 | 2.9 | 4 | .04 | 369 | 14 | 14 | 47 | 5 | .61 | | 16 | 2.8 | 3 | .02 | 195 | 11 | 5.8 | 42 | 6 | .67 | | 17 | 4.0 | 5 | .06 | 127 | 9 | 3.2 | 44 | 6 | .71 | | 18 | 82 | 23 | 5.5 | 98 | 9 | 2.4 | 44 | 6 | .69 | | 19 | 52 | 15 | 2.3 | 83 | 9 | 1.9 | 41 | 5 | .55 | | 20 | 20 | 8 | .42 | 73 | 8 | 1.6 | 38 | 4 | .41 | | 21 | 9.6 | 7 | .18 | 68 | 9 | 1.7 | 34 | 3 | .30 | |
22 | 6.0 | 6 | .10 | 230 | 20 | 12 | 33 | 4 | .35 | | 23 | 4.9 | 7 | .09 | 177 | 9 | 4.4 | 61 | 7 | 1.4 | | 24 | 5.0 | 5 | .06 | 131 | 8 | 2.7 | 80 | 7 | 1.5 | | 25 | 10 | 9 | .27 | 98 | 5 | 1.4 | 390 | 39 | 47 | | 26 | 44 | 9 | 1.1 | 83 | 4 | .91 | 277 | 15 | 12 | | 27 | 90 | 10 | 2.4 | 74 | 4 | .84 | 184 | 6 | 3.2 | | 28 | 54 | 7 | 1.0 | 63 | 6 | .97 | 278 | 10 | 7.2 | | 29 | 28 | 4 | .31 | 57 | 6 | .92 | 202 | 8 | 4.6 | | 30 | 18 | 3 | .15 | 56 | 6 | .95 | 197 | 6 | 3.0 | | 31 | 13 | 3 | .11 | | | | 213 | 6 | 3.4 | | TOTAL | 495.5 | | 14.89 | 8549 | | 909.13 | 2936 | | 102.46 | POTOMAC RIVER BASIN 01656120 CEDAR RUN AT ROUTE 646 NEAR ADEN, VA--Continued | DAY | MEAN
DISCHARGE
(CFS) | | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | | DISCHARGE | MEAN
DISCHARGE
(CFS) | | SEDIMENT
DISCHARGE
(TONS/DAY) | |----------------------------------|--|----------------------------------|-------------------------------------|------------------------------------|----------------------------------|--|--|----------------------------------|-------------------------------------| | | | JANUARY | | | FEBRUARY | | | MARCH | | | 1
2
3
4
5 | 131
106
120
126
114 | 5
5
4
4
3 | 1.9
1.4
1.4
1.3 | 304
239
205
1780
5720 | 20
19
19
107
79 | 16
12
11
723
1200 | 224
220
707
322
231 | 8
10
49
17
8 | 5.0
6.2
103
15
4.9 | | 6
7
8
9
10 | 103
153
457
377
233 | 3
7
26
16
8 | .84
3.7
33
17
5.0 | 2240
1040
567
381
290 | 30
19
13
8
4 | 188
54
20
8.0
3.4 | 184
159
737
2120
798 | 7
7
28
62
32 | 3.4
2.8
104
359
73 | | 11
12
13
14
15 | 164
131
123
114
157 | 5
3
5
3
15 | 2.1
1.2
1.7
1.0 | 251
466
302
222
181 | 3
11
6
4
3 | 2.1
14
4.7
2.2
1.5 | 389
276
223
200
170 | 14
11
12
13
10 | 14
8.2
7.1
7.1
4.8 | | 16
17
18
19
20 | 1000
439
357
262
232 | 69
17
11
8
5 | 205
20
11
5.5
3.3 | 157
1090
3570
1100
540 | 4
61
100
30
15 | 1.6
324
970
92
22 | 145
133
377
2380
1010 | 10
9
22
118
88 | 3.8
3.3
26
780
339 | | 21
22
23
24
25 | 171
146
1620
2600
794 | 4
4
113
45
22 | 1.8
1.5
776
346
49 | 425
304
835
2200
689 | 10
15
48
49
23 | 12
12
188
297
45 | 5150
2160
769
444
335 | 221
35
25
23
18 | 2530
215
51
28
16 | | 26
27
28
29
30
31 | 430
331
3160
3670
858
443 | 16
19
97
53
36
23 | 19
17
907
568
86
27 | 403
302
252
 | 9
8
8
 | 10
6.6
5.4
 | 274
238
201
170
151
133 | 14
13
24
25
22
21 | 11
8.0
13
12
8.9
7.5 | | TOTAL | 19122 | | 3130.60 | 26055 | | 4245.5 | 21030 | | 4770.0 | | | | APRIL | | | MAY | | | JUNE | | | 1
2
3
4
5 | 123
386
205
230
314 | 21
54
31
29
20 | 7.1
56
18
20
18 | 78
272
608
469
309 | 24
44
60
33
33 | 6.0
33
115
42
28 | 40
47
31
25
24 | 38
31
29
25
19 | 4.4
4.2
2.4
1.7 | | 6
7
8
9
10 | 199
160
143
390
998 | 13
11
10
123
91 | 6.9
4.6
3.8
231
318 | 327
211
1700
1190
503 | 36
28
100
44
23 | 32
16
488
154
32 | 23
20
18
17
30 | 16
14
15
19 | .98
.78
.72
.89 | | 11
12
13
14
15 | 396
266
205
174
162 | 23
20
21
22
24 | 25
14
12
10
10 | 399
817
741
390
271 | 22
41
30
20
18 | 24
103
63
21
13 | 90
69
112
333
231 | 54
58
76
283
207 | 12
11
29
260
158 | | 16
17
18
19
20 | 143
163
202
156
594 | 26
48
42
22
65 | 10
22
23
9.5
107 | 199
157
120
95
79 | 19
35
33
34
28 | 10
15
11
8.6
6.0 | 1390
362
192
125
95 | 166
30
23
14
21 | 803
30
12
4.8
5.4 | | 21
22
23
24
25 | 303
203
164
141
112 | 36
8
9
16
16 | 31
4.6
3.8
5.9
4.8 | 68
59
49
47
82 | 23
21
19
17
20 | 4.3
3.3
2.5
2.1
4.6 | 67
52
209
520
157 | 28
39
90
110
32 | 5.0
5.4
70
179
14 | | 26
27
28
29
30
31 | 93
85
82
70
63 | 15
15
15
18
19 | 3.8
3.4
3.5
3.5 | 79
57
52
48
41
35 | 18
20
20
18
24
31 | 3.9
3.0
2.8
2.4
2.6
2.9 | 85
57
66
98
65 | 20
20
41
38
21 | 4.6
3.0
7.5
10
3.8 | | TOTAL | 6925 | | 993.2 | 9552 | | 1255.0 | 4650 | | 1646.47 | POTOMAC RIVER BASIN 01656120 CEDAR RUN AT ROUTE 646 NEAR ADEN, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L)
JULY | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN CONCEN- TRATION (MG/L) AUGUST | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN CONCEN- TRATION (MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | |----------|----------------------------|--|-------------------------------------|----------------------------|------------------------------------|-------------------------------------|----------------------------|-----------------------------|-------------------------------------| | | | JULY | | | AUGUSI | | 51 | FPIEMBER | | | 1 | 51 | 16 | 2.2 | 5.5 | 7 | .10 | 2.5 | 8 | .05 | | 2 | 40 | 12 | 1.3 | 4.7 | 4 | .05 | 2.1 | 5 | .03 | | 3 | 30 | 12 | .99 | 3.9 | 4 | .05 | 2.0 | 5 | .03 | | 4 | 23 | 15 | .91 | 3.3 | 4 | .04 | 2.9 | 5 | .04 | | 5 | 20 | 22 | 1.2 | 2.6 | 12 | .08 | 1.5 | 5 | .02 | | | | | | | | | | | | | 6 | 18 | 27 | 1.3 | 2.7 | 13 | .09 | .93 | 10 | .03 | | 7 | 16 | 28 | 1.2 | 2.4 | 18 | .12 | .80 | 8 | .02 | | 8 | 17 | 29 | 1.3 | 2.1 | 15 | .09 | 1.1 | 8 | .03 | | 9 | 20 | 20 | 1.1 | 2.1 | 18 | .10 | 1.1 | 11 | .03 | | 10 | 20 | 19 | 1.0 | 3.2 | 10 | .09 | .85 | 12 | .03 | | 11 | 16 | 18 | .79 | 2.8 | 8 | .06 | .68 | 12 | .02 | | 12 | 14 | 20 | .73 | 2.1 | 9 | .05 | .61 | 21 | .03 | | 13 | 12 | 17 | .54 | 2.0 | 5 | .03 | .56 | 19 | .03 | | 14 | 11 | 15 | .43 | 2.7 | 5 | .04 | .53 | 14 | .02 | | 15 | 9.3 | 11 | .28 | 3.0 | 5 | .04 | .46 | 12 | .01 | | 13 | 7.5 | 11 | .20 | 3.0 | 3 | .01 | .40 | 12 | .01 | | 16 | 9.5 | 12 | .30 | 2.9 | 8 | .06 | .49 | 10 | .01 | | 17 | 9.2 | 7 | .18 | 4.1 | 6 | .06 | .54 | 14 | .02 | | 18 | 9.8 | 6 | .16 | 6.0 | 9 | .14 | 20 | 37 | 2.3 | | 19 | 9.3 | 5 | .14 | 3.9 | 10 | .11 | 12 | 36 | 1.2 | | 20 | 8.8 | 8 | .18 | 3.4 | 6 | .05 | 4.2 | 17 | .21 | | 0.1 | 7.0 | 9 | .18 | 0.0 | 7 | 0.6 | 2.0 | 1.0 | 0.6 | | 21
22 | 7.2
5.5 | 6 | .18 | 2.9
2.2 | 10 | .06
.06 | 2.0
2.3 | 12
13 | .06
.08 | | 23 | | - | .08 | | | .05 | | | | | | 5.5 | 5 | | 1.9 | 9 | | 1.5 | 15 | .06 | | 24 | 23 | 33 | 3.4 | 2.6 | 7 | .05 | 1.1 | 11 | .03 | | 25 | 27 | 46 | 3.5 | 2.5 | 9 | .06 | .96 | 10 | .03 | | 26 | 12 | 12 | .39 | 1.8 | 7 | .03 | .94 | 12 | .03 | | 27 | 8.9 | 8 | .19 | 1.7 | 7 | .04 | 1.6 | 13 | .07 | | 28 | 7.9 | 6 | .13 | 1.8 | 7 | .03 | 1.4 | 17 | .07 | | 29 | 6.3 | 5 | .08 | 2.1 | 8 | .05 | .91 | 12 | .03 | | 30 | 4.9 | 5 | .07 | 1.9 | 6 | .03 | .99 | 8 | .02 | | 31 | 5.6 | 12 | .19 | 1.7 | 6 | .03 | | | | | | | | | | | | | | | | TOTAL | 477.7 | | 24.53 | 88.5 | | 1.94 | 69.55 | | 4.64 | | YEAR | 99950.25 | | 17098.36 | | | | | | | #### 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA LOCATION.--Lat 38°35'14", long 77°25'44", Prince William County, Hydrologic Unit 02070011, on left bank at upstream side of bridge on State Highway 619, 3.4 mi south of Independent Hill, 5.6 mi west of Dumfries, and 6.5 mi upstream from mouth. DRAINAGE AREA. -- 7.64 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1951 to current year. REVISED RECORDS. -- WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 238.88 ft above sea level. REMARKS.--No estimated daily discharges. Records good. No flow at times in 1954, 1957, 1962-66, 1983, 1985, 1987, 1988, 1991, 1993, and 1998. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 200 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 7 | 2030 | 409 | 5.72 | Feb. 23 | 2130 | 282 | 5.01 | | Jan. 23 | 1700 | 521 | 6.23 | Mar. 9 | 0930 | 214 | 4.51 | | Jan. 28 | 1630 | 616 | 6.60 | Mar. 19 | 0600 | 253 | 4.81 | | Feb. 5 | 0415 | 652 | 6.73 | Mar. 21 | 0400 | *799 | *7.21 | | Feb. 18 | 0145 | 712 | 6.94 | Apr. 9 | 1915 | 280 | 5.00 | No flow part or all of each day Aug. 26-28, Aug. 30 to Sept. 8, and Sept. 13-17, 29-30. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 17 8.7 7.3 2.1 .50 3.6 4.1 9.1 11 2.4 .51 .00 8 7 .42 2 72 3.3 3 9 7.8 9.3 6 8 31 1.9 1.7 .00 7.1 3 .82 3.9 3.2 4.5 2.6 6.0 29 1.7 1.4 .36 .00 238 4 90 2 4 3 4 4 4 12 19 22 1 6 1 2 3.0 0.0 5 .93 1.9 3.4 4.2 355 8.9 12 16 1.5 1.2 .25 .00 7 8 7 8 6 1.0 1.5 3 1 4 2 52 35 1.4 1.1 .22 .00 .97 .18 7 1.0 174 3.0 8.1 31 7.5 6.8 1.0 1.3 .00 8 1.1 71
2.9 14 17 35 6.2 44 1.1 1.3 .16 .11 .18 9 1.1 2.8 3.0 8.4 12 102 87 39 1.1 1.6 .10 10 1.1 10 3.6 5.3 9.8 25 38 15 2.8 .45 .07 1.2 11 1.2 5.7 4.5 4.3 9.5 13 14 14 2.8 1.0 .47 .06 12 1.2 4.1 3.8 4.0 17 9.8 9.4 39 3.0 .86 .41 .04 13 3.8 4.3 10 8.5 7.8 25 .78 .01 1.3 7.8 .30 8.4 .72 14 1.3 22 3.1 3.9 8.2 7.2 5.4 .20 .00 11 15 10 1.5 3.0 15 7.3 7.2 6.7 7.2 25 .69 .16 .00 16 1.6 5.6 2.9 6.9 6.7 5.9 5.4 32 .69 .17 .00 36 17 3.0 4.3 3.0 11 139 6.5 12 4.3 6.2 .68 .44 .03 18 26 3.9 2.9 8.5 222 35 7.6 3.5 3.1 .65 .60 .04 19 2.9 3.6 2.7 7.2 129 7.8 3.1 3.3 .63 .38 .05 20 1.7 3.4 2.7 7.4 18 48 20 2.8 2.8 .61 .32 .06 21 1.5 4.1 2.5 5.8 14 287 8.2 2.7 1.9 .52 .22 .04 22 1.5 2.4 2.5 17 2.8 4.4 10 51 6.2 .47 .16 .13 198 23 1.7 7.6 4.5 89 22 5.3 2.2 5.7 .47 .11 .11 24 2.0 5.4 3.9 49 129 16 4.7 2.4 23 .49 .07 .09 25 4.4 4.4 19 20 27 12 4.0 3.4 4.0 .93 .05 .08 26 4.2 8.0 10 15 3.7 2.7 .71 .02 .07 4.4 11 2.4 27 8 9 3 9 6 5 9.1 12 11 3 9 2 5 1 8 51 .01 .08 .04 2.8 2.6 3.8 8.6 328 1.0 9.6 3.5 2.6 4.9 .44 .05 .40 29 1.6 3.3 6.5 56 ___ 8.8 3.3 2.2 3.9 .06 .02 .01 30 1.4 3.4 6.2 18 ___ 8.1 3.3 1.9 2.7 .36 .02 31 1.4 ---5.8 11 ___ 7.6 ---1.9 .56 .00 ---TOTAL 82.27 441.9 138.8 872.0 1511 5 958 6 341 4 394 2 161 0 26.94 7 23 1 26 MEAN 2.65 14.7 4.48 28.1 54.0 30.9 11.4 12.7 5.37 .87 .23 .042 MAX 26 174 19 328 355 287 87 44 32 2.1 .60 .13 MIN .50 1.5 2.5 3.9 6.9 6.5 3.3 1.9 1.1 .36 .00 .00 CFSM .35 1.93 .59 3.68 7.07 4.05 1.49 1.66 .70 .11 .03 .01 .40 2.15 .68 4.25 7.36 4.67 1.66 1.92 .78 .13 .04 .01 #### 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued | STATIST | CICS OF M | ONTHLY MEAN | DATA FO | R WATER Y | EARS 1951 | - 1998, | BY WATER | YEAR (WY) | | | | | |---------|-----------|-------------|---------|-----------|-----------|---------|------------|-----------|------|-----------|----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 3.30 | 5.88 | 8.11 | 10.4 | 12.3 | 14.0 | 11.6 | 8.15 | 4.83 | 2.52 | 2.59 | 3.02 | | MAX | 23.9 | 19.2 | 24.4 | 31.2 | 54.0 | 35.0 | 33.0 | 42.8 | 48.8 | 15.1 | 24.5 | 37.2 | | (WY) | 1980 | 1953 | 1997 | 1996 | 1998 | 1994 | 1983 | 1989 | 1972 | 1975 | 1955 | 1975 | | MIN | .070 | .34 | .58 | 1.01 | 3.60 | 1.77 | 2.90 | 1.57 | .40 | .055 | .010 | .000 | | (WY) | 1989 | 1955 | 1966 | 1981 | 1968 | 1981 | 1969 | 1956 | 1991 | 1963 | 1963 | 1964 | | | | | | | | | | | | | | | | SUMMARY | STATIST | ICS | FOR 1 | 997 CALEN | DAR YEAR | F | OR 1998 WA | TER YEAR | | WATER YEA | ARS 1951 | - 1998 | | ANNUAL | TOTAL | | | 2786.20 | ı | | 4937.10 | ı | | | | | | ANNUAL | MEAN | | | 7.63 | | | 13.5 | | | 7.18 | | | | HIGHEST | ANNUAL | MEAN | | | | | | | | 13.5 | | 1998 | | LOWEST | ANNUAL M | IEAN | | | | | | | | 2.55 | | 1981 | | HIGHEST | DAILY M | IEAN | | 174 | Nov 7 | | 355 | Feb 5 | | 770 | Jun | 22 1972 | | LOWEST | DAILY ME | AN | | .21 | Sep 17 | | .00 | aAug 31 | | .00 | | (b) | | ANNUAL | SEVEN-DA | Y MINIMUM | | .23 | Sep 22 | | .00 | Aug 31 | | .00 | | (b) | | INSTANT | ANEOUS P | EAK FLOW | | | | | 799 | Mar 21 | | 4160 | May | 6 1989 | | INSTANT | ANEOUS P | EAK STAGE | | | | | 7.21 | Mar 21 | | 11.62 | May | 6 1989 | | INSTANT | ANEOUS L | OW FLOW | | | | | .00 | aAug 26 | | .00 | | (b) | | ANNUAL | RUNOFF (| CFSM) | | 1.00 | l | | 1.77 | ' | | .94 | | | | ANNUAL | RUNOFF (| INCHES) | | 13.57 | ' | | 24.04 | | | 12.78 | | | | 10 PERC | ENT EXCE | EDS | | 16 | | | 25 | | | 14 | | | | 50 PERC | CENT EXCE | EDS | | 3.6 | | | 3.6 | | | 2.8 | | | | 90 PERC | ENT EXCE | EDS | | .31 | | | .11 | | | .20 | | | a No flow many days August to September. See EXTREMES FOR CURRENT YEAR. b No flow at times many years. See REMARKS. ### 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1951, 1953, 1955-56, 1969, 1973-75, 1983-85, 1994 to current year. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | |----------------|------|---|---|---|---|---|---|--|---|---|--| | OCT 1997 | | | | | | | | | | | | | 15
NOV | 1020 | 1.6 | 77 | 6.8 | 14.0 | 14.5 | 770 | 4.2 | 41 | 320 | 270 | | 25
JAN 1998 | 1100 | 4.3 | 58 | 6.8 | 6.0 | 4.0 | 750 | 15.3 | 119 | K21 | K25 | | 08 | 1001 | 14 | 97 | 6.8 | 19.0 | 12.0 | 749 | 10.2 | 96 | 140 | 170 | | 27 | 1030 | 7.2 | 46 | 6.6 | 4.5 | 3.3 | 742 | 13.2 | 102 | K17 | K24 | | FEB | | | | | | | | | | | | | 04 | 1430 | 283 | 37 | 6.1 | 2.0 | 4.5 | 749 | 12.6 | 99 | | | | 24 | 1050 | 156 | 31 | 5.7 | 7.5 | 5.6 | 752 | 12.1 | 97 | 49 | 51 | | MAR | | | | | | | | | | | | | 18 | 1015 | 68 | 42 | 6.9 | 9.0 | 5.3 | 745 | 12.6 | 102 | 70 | 140 | | APR | | | | | | | | | | | | | 21 | 0940 | 8.2 | 45 | 6.7 | 19.5 | 12.0 | 750 | 10.3 | 97 | 84 | 84 | | MAY | 0010 | 2.0 | | <i>-</i> - | 15.0 | 10.4 | 706 | | 0.4 | | 100 | | 12
JUN | 0910 | 38 | 44 | 6.5 | 15.0 | 13.4 | 726 | 9.3 | 94 | 550 | 190 | | 17 | 0930 | 6.9 | 44 | 6.4 | 28.0 | 18.7 | 760 | 7.8 | 84 | 340 | 360 | | JUL | 0930 | 0.9 | 44 | 0.4 | 20.0 | 10.7 | 760 | 7.0 | 04 | 340 | 300 | | 21 | 1000 | .54 | 42 | 7.0 | 25.5 | 22.9 | 753 | 5.4 | 64 | 170 | 190 | | AUG | 1000 | .51 | 12 | 7.0 | 23.3 | 22.7 | , 55 | 5.1 | 01 | 170 | 100 | | 12 | 1030 | .42 | 62 | 7.0 | 25.5 | 22.1 | 752 | 6.7 | 78 | 19 | 23 | | SEP | | | - - | | | | | | | | | | 15 | 0945 | 0 | 54 | 6.8 | 24.5 | 20.4 | 754 | 4.8 | 54 | 640 | 780 | | | | | | | | | | | | | | | DATE | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) | |------------------|--|--|--|--|--|--|---|--|---| | OCT 1997 | | | | | | | | | | | 15
NOV | | <.010 | <.050 | <.015 | .23 | <.20 | <.010 | <.010 | <.010 | | 25
JAN 1998 | | <.010 | <.050 | <.020 | .16 | .14 | <.010 | <.010 | .024 | | 08 | | <.010 | <.050 | <.020 | .25 | .22 | .032 | .028 | .034 | | 27
FEB | | <.010 | <.050 | .041 | .13 | .13 | <.010 | <.010 | .016 | | 04 | .34 | <.010 | .098 | <.020 | .44 | .25 | .049 | <.010 | .018 | | 24
MAR | | <.010 | <.050 | .021 | .30 | .22 | .011 | <.010 | <.010 | | 18
APR | .24 | <.010 | .078 | .022 | .36 | .16 | .032 | <.010 | <.010 | | 21
MAY | .25 | <.010 | .083 | .030 | .24 | .17 | .027 | <.010 | <.010 | | 12
JUN | | <.010 | <.050 | .028 | .39 | .26 | .019 | <.010 | <.010 | | 17 | | <.010 | <.050 | .053 | .35 | .24 | .029 | <.010 | .015 | | JUL
21 | .23 | <.010 | .060 | .040 | .27 | .17 | <.010 | .011 | .011 | | AUG
12
SEP | | <.010 | <.050 | .055 | .22 | .19 | .013 | <.010 | <.010 | | 15 | | .013 | <.050 | .033 | .15 | .21 | .022 | .019 | .013 | < Actual value is known to be less than the value shown. K results based on colony count outside the acceptance range (non-ideal colony count). #### 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |---|---|--
--| | OCT 1997 01 02 03 04 05 06 07 08 09 11 12 13 14 15 15 16 17 18 18 18 18 18 18 18 19 20 21 22 23 24 25 26 27 28 29 30 31 NOV 1997 | 1200 1200 1200 1200 1200 1200 1200 1200 | 1.61
1.49
1.50
1.52
1.53
1.54
1.55
1.55
1.55
1.55
1.55
1.57
1.57
1.58
1.58
1.60
1.61
1.61
1.61
1.61
1.61
1.60
1.59
1.60
1.61
1.60
1.61
1.60
1.69
1.60
1.61
1.60
1.60
1.61
1.60
1.61
1.60
1.61
1.60
1.61
1.60
1.61
1.60
1.61
1.60
1.61
1.60
1.61
1.60
1.61
1.61 | 9 6 5 10 3 10 8 3 32 17 5 13 23 20 9 3 7 10 20 22 266 313 155 344 69 18 10 8 9 18 8 13 7 6 7 7 4 5 | | 01 01 01 01 01 01 01 01 01 01 02 03 04 05 06 07 07 07 07 07 07 07 07 07 07 07 07 07 09 09 09 08 08 08 09 10 | 1200
1418
1518
1618
1718
1818
1918
1200
1200
1200
1200
1200
1200
1230
1430
1630
1930
2030
2230
0030
0330
0330
0330
1200
120 | 1.85
2.55
2.83
2.77
2.65
2.53
1.92
1.77
1.69
1.67
1.63
2.68
3.63
4.44
4.38
4.44
4.88
5.37
5.68
5.77
5.08
3.61
3.48
3.88
3.01
2.54
1.94
1.94 | 13
81
156
101
191
66
67
12
16
8
4
5
33
19
190
289
118
200
161
105
103
124
98
37
69
100
10
101
17
12 | 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |----------|--------------|-------------------------------------|---| | NOV 1997 | | | | | 12 | 1200 | 1.71 | 8 | | 13
14 | 1200
1200 | 1.67
2.40 | 3
18 | | 15 | 1200 | 1.94 | 10 | | 16 | 1200 | 1.77 | 5 | | 17 | 1200 | 1.71 | 7 | | 18
19 | 1200
1200 | 1.69
1.67 | 4
6 | | 20 | 1200 | 1.65 | 4 | | 21 | 1200 | 1.64 | 10 | | 22
23 | 1200
1200 | 2.16
1.84 | 9
8 | | 24 | 1200 | 1.74 | 7 | | 25 | 1105 | 1.68 | 6 | | 25
25 | 1106
1107 | 1.68
1.68 | 4 | | 25 | 1200 | 1.69 | 6
18 | | 26 | 1200 | 1.68 | 5 | | 27 | 1200 | 1.67 | 6 | | 28
29 | 1200
1200 | 1.66
1.65 | 5
1 | | 30 | 1200 | 1.64 | 8 | | DEC 1997 | | | | | 01
02 | 1200
1200 | 1.66
1.64 | 3
4 | | 03 | 1200 | 1.63 | 5 | | 04 | 1200 | 1.65 | 5 | | 05
06 | 1200
1200 | 1.65
1.64 | 11
8 | | 07 | 1200 | 1.63 | 4 | | 08 | 1200 | 1.62 | 4 | | 09 | 1200
1200 | 1.63 | 3 | | 10
11 | 1200 | 1.65
1.72 | 8
4 | | 12 | 1200 | 1.68 | 6 | | 13 | 1200 | 1.66 | 7 | | 14
15 | 1200
1200 | 1.65
1.64 | 7
7 | | 16 | 1200 | 1.63 | 2 | | 17 | 1200 | 1.64 | 2 | | 18
19 | 1200
1200 | 1.64
1.63 | 4 | | 20 | 1200 | 1.63 | 1 | | 21 | 1200 | 1.62 | 4 | | 22
23 | 1200
1200 | 1.63
1.77 | 3
3 | | 24 | 1200 | 1.70 | 2 | | 25 | 0730 | 2.50 | 48 | | 25
25 | 0830 | 2.51
2.35 | 53
17 | | 26 | 1200
1200 | 1.89 | 6 | | 27 | 1200 | 1.80 | 5 | | 28 | 1200 | 1.93 | 6 | | 29
30 | 1200
1200 | 1.84
1.81 | 1
1 | | 31 | 1200 | 1.81 | 1 | | JAN 1998 | | | | | 03 | 1200
1200 | 1.73
1.71 | 5
2 | | 05 | 1200 | 1.69 | 2 | | 06 | 1200 | 1.68 | 3 | | 07 | 1200 | 1.85 | 3
12 | | 08
08 | 1000
1001 | 2.02 | 8 | | 08 | 1002 | 2.02 | 11 | | 08 | 1200 | 2.03 | 5 | | 09 | 1200 | 1.87 | 4 | #### 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|--|--|---| | JAN 1998 10 11 12 13 14 15 15 15 16 16 16 16 16 20 23 | 1200 1200 1200 1200 1200 1200 1200 2015 2115 2215 2315 0015 0115 0215 0315 0415 0515 0615 1200 1200 1200 1200 1200 1200 1200 12 | (FEET) | (MG/L) | | 24 24 24 25 26 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28 | 0415
0715
1200
1200
1013
1015
1017
1200
1245
1345
1445
1545
1645
1745
1845
1945
2045
2045
2145
2245 | 3.15
2.88
2.61
2.20
1.97
1.86
1.86
1.88
5.45
5.54
5.70
6.03
6.63
6.63
6.65
6.60
6.48
6.33
6.10
5.78
5.08 | 59
51
270
87
29
11
6
11
9
37
155
93
113
99
88
70
61
61
51
46
49
59 | #### 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDE
(MG/L
(80154 | |---|--|---|---| | JAN 1998 29 29 29 29 29 29 30 31 | 0045
0145
0245
0345
0445
1045
1200
1200 | 3.93
3.68
3.51
3.37
3.25
2.76
2.70
2.17
1.98 | 61
62
61
56
52
27
123
28
12 | | FEB 1998 01 02 03 04 04 04 04 04 04 04 04 04 04 04 04 04 05 06 06 06 06 06 06 06 06 07 07 | 1200 1200 1200 0730 0830 0930 1030 1225 1230 1300 1330 1430 1530 1635 1645 1655 1730 1830 0130 0230 0430 0630 0730 1100 1105 1110 1130 1200 1505 1515 1530 1630 1830 2030 2330 0430 0730 1830 1830 1830 1830 1830 1830 1830 18 | 1.89 1.85 1.92 2.57 3.16 3.65 4.06 4.61 4.49 4.58 4.61 4.71 4.81 5.10 5.38 5.62 5.63 5.69 5.76 6.40 6.48 6.62 6.79 6.61 6.46 6.11 5.88 5.76 5.70 5.66 5.61 5.44 4.85 4.42 4.40 4.35 4.16 3.82 3.43 3.32 3.17 3.03 2.91 2.76 2.65 2.62 2.71 2.68 2.58 2.51 | 14
9
8
22
32
39
54
85
166
36
158
115
120
113
123
102
140
51
69
129
86
60
44
47
46
34
35
28
26
51
60
60
60
60
60
60
60
60
60
60 | | 07 | 1200 | 2.43 | 11 | #### 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDE
(MG/L
(80154 | |--|--|--|---| | FEB 1998 08 09 10 11 12 13 14 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 | 1200
1200
1200
1200
1200
1200
1200
1200 | 2.14
2.00
1.93
1.90
2.14
1.93
1.87
1.83
1.81
2.53
3.03
3.17
3.99
4.45
4.68
4.81
4.95
5.03
5.05
5.04 | 66
64
3
3
2
2
2
1
1
24
96
47
67
104
103
92
81
79
69 | |
17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 | 2215
2315
0015
0115
0215
0315
0415
0615
0715
0815
0945
1000
1015
1115
1200
1315
1515
1915 | 5.17
5.77
6.49
6.49
6.92
6.71
6.40
5.97
5.28
4.42
4.03
3.79
3.69
3.65
3.61
3.47
3.26
3.23
3.07
2.82 | 53
59
117
194
125
92
74
66
106
55
54
47
72
55
58
51
91
33
31
24 | | 18 19 19 20 21 22 23 23 23 23 23 24 24 24 24 | 2115 2315 0315 0615 1200 1200 1200 1200 1400 1500 1600 1700 1800 2000 2100 2200 2300 0100 0300 0500 0700 1030 1035 1045 | 2.71
2.65
2.58
2.52
2.37
2.15
2.05
1.95
2.07
2.54
3.01
3.53
3.98
4.37
4.71
4.89
5.01
5.04
4.96
4.57
4.45
4.32
4.26
4.08
4.08 | 21
14
12
17
12
6
4
8
11
28
30
76
86
75
74
66
55
33
32
27
49
33
39 | 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDE
(MG/L
(80154 | |---|--|--|--| | FEB 1998 24 24 25 25 26 27 28 MAR 1998 | 1100
1200
1300
1200
1200
1200
1200 | 4.01
3.81
3.62
2.33
2.09
2.00
1.95 | 26
33
28
19
6
5 | | 01 02 03 03 03 03 03 03 03 03 04 05 06 07 08 08 08 08 08 09 09 09 09 09 09 09 09 09 09 09 09 10 11 12 13 14 15 18 18 18 18 18 18 18 | 1200 1200 0230 0330 0430 0530 0630 0730 0830 1200 1200 1200 1200 1215 1615 1715 1815 2115 2315 0115 0245 0315 0415 0615 0715 0815 0915 0930 0935 0945 1015 1200 1245 1445 1200 1200 1200 1200 1200 1200 1200 120 | 1.92 1.89 2.51 2.65 2.71 2.69 2.63 2.57 2.50 2.35 2.01 1.92 1.87 1.85 2.23 2.52 2.78 3.02 3.16 3.21 3.19 2.92 2.77 2.69 2.55 2.79 3.16 3.78 4.13 4.50 4.46 4.25 4.05 3.86 3.49 3.03 2.73 2.29 2.03 1.89 1.89 1.85 1.82 2.54 3.13 3.09 3.06 3.03 2.84 2.81 2.51 | 6
6
6
31
31
31
36
33
29
25
16
9
4
4
4
3
14
23
27
27
30
44
4
49
22
21
9
21
30
40
70
92
133
131
137
147
95
53
90
56
76
147
147
147
147
147
147
147
147
147
147 | | ±0 | 1013 | 4.51 | ۷ / | #### 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDEI
(MG/L
(80154 | |--|--|--|--| | MAR 1998 19 19 19 19 19 19 19 19 20 20 20 21 21 21 21 21 21 21 21 22 22 22 23 24 25 28 29 30 APR 1998 | 0015 0215 0415 0615 0815 0900 0915 0930 1015 1200 1415 1200 1200 1200 1200 1200 1200 1200 12 | 2.52
3.66
4.67
4.83
4.56
4.45
4.40
4.30
3.95
3.51
3.05
2.78
2.55
2.37
2.54
3.09
3.55
6.24
7.24
6.76
5.88
4.42
3.99
3.75
3.53
3.22
4.90
3.12
2.78
2.78
2.70
2.59
3.12
2.78
2.79
2.70
2.70
2.70
2.78
2.78
2.70
2.70
2.70
2.70
2.70
2.70
2.70
2.70 | 19 35 19 77 114 66 70 65 79 67 54 43 30 27 34 22 18 19 64 112 100 73 57 109 52 57 35 35 30 24 20 27 41 8 8 4 10 13 10 3 6 | | 01 02 03 04 04 05 06 07 08 09 09 09 10 10 11 12 13 | 1200 1200 1200 1200 1230 1430 1200 1200 1200 1200 1201 1201 1202 1205 1715 1915 2115 2315 0315 0715 1200 1200 1200 1200 1200 1200 1200 | 1.82
1.82
1.78
2.42
2.50
2.57
1.98
1.87
1.82
1.80
2.29
2.56
3.44
4.81
5.03
4.57
3.63
2.96
2.68
2.48
2.06
1.93
1.87
1.85 | 6
6
6
44
52
48
12
7
4
9
26
35
33
64
129
151
100
61
36
47
16
9
5
7 | 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDEI
(MG/L) | |----------------------|--------------|-------------------------------------|--| | APR 1998
15
16 | 1200
1200 | 1.83 | 7
10 | | 17 | 1200 | 2.19 | 37 | | 18 | 1200 | | 13 | | 19 | 1200 | 1.81 | 7 34 | | 20 | 0245 | 2.54 | 50 | | 20 | 1200 | 2.15 | 11 | | | 0910 | 1.86 | 7 | | 21 | 0915 | 1.86 | 8 | | 21 | 0930 | 1.86 | 6 | | 21 | 1200 | 1.89 | 7 | | 22 | 1200 | 1.81 | 7 | | 23 | 1200 | 1.78 | 8 | | 24 | 1200 | 1.75 | 7 | | 25 | 1200 | 1.72 | 6 | | 26 | 1200 | 1.71 | 7 | | 27 | 1200 | 1.73 | 9 | | 28 | 1200 | 1.69 | 6 | | 29 | 1200 | 1.68 | 9 | | 30 | 1200 | 1.67 | | | MAY 1998
01 | 1200 | 1.67 | 8 | | 01 | 1945
2145 | 2.51 | 70
76 | | 02 | 1200
1845 | 1.98 | 30
51 | | 02 | 2045 | 3.39 | 67 | | 02 | 2245
0045 | 3.36 | 34
52 | | 03 | 0245
0445 | 2.74 | 34
53 | | 03 | 1200
2245 | 2.24 | 28
21 | | 04 | 0045 | 2.62 | 11 | | | 0245 | 2.53 | 32 | | 04 | 1200 | 2.21 | 23 | | 05 | 1200 | 1.94 | 216 | | 05 | 2245 | 2.57 | 39 | | 06 | 0045 | 3.61 | 47 | | 06 | 0245 | 3.05 | 98 | | 06 | 0445 | 2.77 | 169 | | 06 | 0645 | 2.59 | 83 | | 06 | 1200 | 2.34 | 258 | | 07 | 1200 | 1.94 | 16 | | 08 | 0100 | 2.58 | 38 | | 08 | 0300 | 3.08 | 48 | | | 0500 | 3.02 | 57 | | 08 | 0700
0900 | 2.82 | 58
41 | | 08 | 1200
1300 | 2.81 | 31
26 | | 08 | 1700 | 2.56 | 26 | | 08 | 2345
0145 | 2.50 | 22
22 | | 09 | 0345
0745 | 3.10 | 36
42 | | 09 | 1145 | 2.52 | 25 | | 09 | 1200 | 2.81 | 31 | | 10 | 1200 | 2.09 | 17 | | 11 | 1200 | 2.09 | 16 | | 12 | 0815 | 2.51 | 37 | | 12 | 1000 | 2.66 | 50 | | 12 | 1005 | 2.66 | 40 | | 12 | 1010 | 2.66 | 48 | | 12 | 1015
1200 | 2.70 | 46
63 | | | | | | #### 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | |--|---|--|--| | MAY 1998 12 12 12 12 13 13 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 | 1215 1415 1615 1815 2015 2215 0015 0215 0215 1200 1200 12 | 2.90
3.02
2.92
2.77
2.70
2.73
2.54
2.31
2.00
1.86
1.78
1.65
1.63
1.62
1.66
1.57
1.59
1.68
1.61
1.60
1.57 | 40
46
49
44
36
29
23
23
26
27
17
19
13
13
17
10
7
20
13
13
10
7
22
15
16 | | 30 31 31 31 31 31 31 31 31 31 02 03 04 05 06 07 08 09 11 12 13 14 15 15 16 16 16 17 17 17 17 17 18 19 20 21 22 23 24 24 24 | 1200 1200 1200 1200 1200 1200 1200 1200 | 1.55 1.54 1.60 1.53 1.52 1.50 1.49 1.47 1.46 1.66 1.62 1.65 1.60 2.53 1.74 1.71 2.58 3.62 3.81 3.53 3.17 2.78 2.51 2.20 1.81 1.81 1.81 1.85 1.70 1.76 1.66 1.60 1.56 1.67 2.62 3.15 2.77 2.09 | 28
20
14
13
11
5
3
5
5
4
4
12
10
12
26
156
74
35
205
304
482
343
293
151
109
45
17
13
14
13
10
12
11
11
12
16
16
17
18
18
19
19
19
19
19
19
19
19
19
19
19
19
19 | #### 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDE
(MG/L) | |---|--|--
--| | JUN 1998
25
26
27
28
29
30
JUL 1998 | 1200
1200
1200
1200
1200
1200 | 1.73
1.63
1.57
1.87
1.71 | 12
8
8
17
11
8 | | 01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 19 20 21 21 21 21 21 21 22 23 24 25 26 27 28 29 30 31 AUG 1998 | 1200 1200 1200 1200 1200 1200 1200 1200 | 1.58 1.53 1.51 1.49 1.47 1.46 1.50 1.52 1.50 1.46 1.45 1.44 1.43 1.42 1.42 1.42 1.41 1.41 1.41 1.41 1.40 1.40 1.40 1.38 1.37 1.38 1.49 1.42 1.39 1.37 1.36 1.34 1.39 | 11
10
8
8
8
12
10
9
9
11
12
11
9
8
8
12
15
34
37
31
18
18
15
38
15
38
16
9
9
5
11
11
12
11
11
11
11
11
11
11
11
11
11 | | 01 02 03 04 05 06 07 08 09 11 12 12 13 14 15 16 17 18 19 20 21 22 | 1200 1200 1200 1200 1200 1200 1200 1200 | 1.38 1.36 1.34 1.32 1.30 1.29 1.28 1.27 1.38 1.37 1.36 1.36 1.36 1.36 1.36 1.37 1.38 1.37 1.38 1.37 1.38 1.37 1.38 1.37 1.38 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39 | 9
10
3
19
8
9
6
6
4
13
12
6
6
13
7
5
10
8
8
6
12
14
15
9
9
12
14
15
9
9
12
14
15
15
16
16
16
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | #### 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued | | | | SEDI-
MENT, | |----------|------|---------|----------------| | | | GAGE | SUS- | | DATE | TIME | HEIGHT | | | DAIL | TIME | (FEET) | (MG/L) | | | | (00065) | | | | | (00003) | (00134) | | AUG 1998 | | | | | 23 | 1200 | 1.29 | 9 | | 24 | 1200 | 1.28 | 17 | | 25 | 1200 | 1.26 | 24 | | 26 | 1200 | 1.25 | 11 | | 27 | 1200 | 1.25 | 13 | | 28 | 1200 | 1.26 | 19 | | 29 | 1200 | 1.29 | 9 | | 30 | 1200 | 1.27 | 6 | | 31 | 1200 | 1.25 | 39 | | SEP 1998 | | | | | 01 | 1200 | 1.24 | 10 | | 02 | 1200 | 1.25 | 25 | | 03 | 1200 | 1.24 | 8 | | 04 | 1200 | 1.23 | 6 | | 05 | 1200 | 1.23 | 7 | | 06 | 1200 | 1.22 | 8 | | 07 | 1200 | 1.21 | 7 | | 15 | 0925 | 1.29 | 9 | | 15 | 0930 | 1.29 | 18 | | 15 | 0935 | 1.29 | 8 | ### 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued | | | MEAN | | | MEAN | | | MEAN | | |-------|-----------|---------|------------|-----------|----------|------------|-----------|---------|------------| | | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | | | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | | DAY | (CFS) | (MG/L) | (TONS/DAY) | (CFS) | (MG/L) | (TONS/DAY) | (CFS) | (MG/L) | (TONS/DAY) | | | | OCTOBER | | 1 | NOVEMBER | | DE | ECEMBER | | | 1 | .50 | 4 | .00 | 17 | 20 | 1.9 | 3.6 | 2 | .02 | | 2 | .72 | 2 | .00 | 8.7 | 9 | .24 | 3.3 | 2 | .02 | | 3 | .82 | 2 | .00 | 3.9 | 7 | .08 | 3.2 | 3 | .02 | | 4 | .90 | 3 | .01 | 2.4 | 4 | .03 | 3.4 | 3 | .03 | | 5 | .93 | 1 | .00 | 1.9 | 2 | .01 | 3.4 | 6 | .06 | | 6 | 1.0 | 3 | .01 | 1.5 | 4 | .02 | 3.1 | 5 | .04 | | 7 | 1.0 | 3 | .01 | 174 | 46 | 32 | 3.0 | 2 | .02 | | 8 | 1.1 | 2 | .00 | 71 | 32 | 6.1 | 2.9 | 2 | .01 | | 9 | 1.1 | 9 | .03 | 28 | 23 | 1.8 | 3.0 | 2 | .02 | | 10 | 1.1 | 7 | .02 | 10 | 10 | .28 | 3.6 | 4 | .04 | | | | , | .02 | 10 | | .20 | 3.0 | - | .01 | | 11 | 1.2 | 3 | .01 | 5.7 | 6 | .09 | 4.5 | 3 | .04 | | 12 | 1.2 | 5 | .01 | 4.1 | 4 | .04 | 3.8 | 4 | .04 | | 13 | 1.3 | 8 | .03 | 3.8 | 3 | .03 | 3.4 | 4 | .04 | | 14 | 1.3 | 7 | .03 | 22 | 8 | .48 | 3.1 | 4 | .03 | | 15 | 1.5 | 5 | .02 | 10 | 6 | .17 | 3.0 | 3 | .03 | | 16 | 1.6 | 8 | .03 | 5.6 | 3 | .05 | 2.9 | 1 | .01 | | 17 | 3.0 | 19 | .25 | 4.3 | 4 | .04 | 3.0 | 1 | .01 | | 18 | 26 | 55 | 5.7 | 3.9 | 2 | .02 | 2.9 | 3 | .02 | | 19 | 2.9 | 9 | .08 | 3.6 | 3 | .03 | 2.7 | 2 | .01 | | 20 | 1.7 | 4 | .02 | 3.4 | 2 | .02 | 2.7 | 1 | .01 | | 21 | 1.5 | 3 | .01 | 4.1 | 5 | .06 | 2.5 | 3 | .02 | | 22 | 1.5 | 4 | .02 | 17 | 5 | .23 | 2.8 | 2 | .02 | | 23 | 1.7 | 7 | .02 | 7.6 | 5 | .10 | 4.5 | 2 | .02 | | 24 | 2.0 | 5 | .03 | 5.4 | 4 | .06 | 3.9 | 2 | .02 | | 25 | 4.4 | 5 | .06 | 4.4 | 4 | .05 | 19 | 14 | .88 | | 25 | 4.4 | 5 | .00 | 4.4 | 4 | .05 | 19 | 14 | .00 | | 26 | 4.4 | 5 | .07 | 4.2 | 3 | .04 | 8.0 | 4 | .10 | | 27 | 8.9 | 4 | .10 | 3.9 | 4 | .04 | 6.5 | 3 | .06 | | 28 | 2.6 | 3 | .02 | 3.8 | 3 | .03 | 8.6 | 3 | .08 | | 29 | 1.6 | 3 | .01 | 3.3 | 5 | .04 | 6.5 | 1 | .02 | | 30 | 1.4 | 2 | .01 | 3.4 | 4 | .04 | 6.2 | 1 | .02 | | 31 | 1.4 | 2 | .01 | | | | 5.8 | 1 | .02 | | TOTAL | 82.27 | | 6.63 | 441.9 | | 44.12 | 138.8 | | 1.79 | POTOMAC RIVER BASIN ## 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 MEAN MEAN MEAN MEAN MEAN CONCEN- SEDIMENT MEAN CONCEN- | | | MEAN | | | MEAN | | | MEAN | | | |-------|-----------|-----------|-----------------|-----------|----------|-------------|-----------|----------|-------------|--| | | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | | | | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | | | DAY | (CFS) | | (TONS/DAY) | (CFS) | (MG/L) | (TONS/DAY) | (CFS) | (MG/L) | (TONS/DAY) | | | DIII | (CID) | (110/11) | (IOND / DIII) | (010) | (110/11) | (IOND/DIII) | (CLD) | (110/11) | (IOND/DIII) | | | | | JANUARY | | 1 | FEBRUARY | | | MARCH | | | | | | OTHVOTHEL | | | BBROING | | | rancen | | | | 1 | 4.1 | 1 | .02 | 8.7 | 14 | .32 | 9.1 | 5 | .12 | | | 2 | 3.9 | 2 | .02 | 7.8 | 11 | .22 | 9.3 | 8 | . 22 | | | 3 | 4.5 | 3 | .03 | 7.1 | 12 | .23 | 26 | 18 | 1.4 | | | 4 | 4.4 | 1 | .01 | 238 | 61 | 46 | 12 | 8 | . 26 | | | 5 | 4.2 | 1 | .01 | 355 | 42 | 41 | 8.9 | 4 | .11 | | | 3 | 1.2 | _ | .01 | 333 | 12 | 11 | 0.5 | - | | | | 6 | 4.2 | 2 | .02 | 52 | 15 | 2.1 | 7.8 | 4 | .08 | | | 7 | 8.1 | 4 | .11 | 31 | 9 | .74 | 7.5 | 4 | .08 | | | 8 | 14 | 7 | .29 | 17 | 6 | .29 | 35 | 21 | 2.9 | | | 9 | 8.4 | 3 | .08 | 12 | 4 | .14 | 102 | 47 | 16 | | | 10 | 5.3 | 2 | .03 | 9.8 | 3 | .08 | 25 | 24 | 1.7 | | | | 3.3 | - | .03 | 3.0 | 3 | | 23 | | | | | 11 | 4.3 | 2 | .02 | 9.5 | 3 | .07 | 13 | 12 | .45 | | | 12 | 4.0 | 3 | .03 | 17 | 2 | .10 | 9.8 | 5 | .12 | | | 13 | 4.3 | 3 | .03 | 10 | 2 | .05 | 8.5 | 3 | .07 | | | 14 | 3.9 | 2 | .02 | 8.4 | 2 | .04 | 8.2 | 3 | .06 | | | 15 | 15 | 13 | 1.3 | 7.3 | 1 | .02 | 7.2 | 2 | .04 | | | 1.5 | 23 | | 1.5 | ,.5 | _ | .02 | 7.2 | _ | .01 | | | 16 | 36 | 20 | 2.7 | 6.9 | 2 | .03 | 6.7 | 2 | .03 | | | 17 | 11 | 5 | .14 | 139 | 38 | 24 | 6.5 | 2 | .04 | | | 18 | 8.5 | 3 | .08 | 222 | 47 | 46 | 35 | 23 | 2.5 | | | 19 | 7.2 | 1 | .03 | 29 | 12 | .90 | 129 | 52 | 21 | | | 20 | 7.4 | 2 | .04 | 18 | 10 | .47 | 48 | 29 | 3.8 | | | | | | | | | | | | | | | 21 | 5.8 | 3 | .04 | 14 | 5 | .20 | 287 | 64 | 64 | | | 22 | 4.4 | 2 | .02 | 10 | 4 | .10 | 51 | 30 | 4.0 | | | 23 | 198 | 53 | 48 | 89 | 22 | 12 | 22 | 11 | .72 | | | 24 | 49 | 81 | 9.1 | 129 | 24 | 9.1 | 16 | 6 | .24 | | | 25 | 20 | 47 | 2.7 | 27 | 14 | 1.0 | 12 | 8 | .25 | | | | | | | | | | | | | | | 26 | 10 | 16 | .44 | 15 | 6 | .23 | 11 | 5 | .15 | | | 27 | 9.1 | 10 | .32 | 12 | 4 | .13 | 11 | 10 | . 29 | | | 28 | 328 | 38 | 37 | 10 | 4 | .11 | 9.6 | 14 | .36 | | | 29 | 56 | 49 | 6.6 | | | | 8.8 | 10 | .24 | | | 30 | 18 | 26 | 1.3 | | | | 8.1 | 4 | .09 | | | 31 | 11 | 13 | .38 | | | | 7.6 | 6 | .13 | | | | | _3 | | | | | | Ü | | | | TOTAL | 872.0 | | 110.91 | 1511.5 | | 185.67 | 958.6 | | 121.45 | | | | | | | | | | | | | | POTOMAC RIVER BASIN # 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | | MEAN | | | MEAN | | | MEAN | | |-------|-----------|---------|------------|-----------|---------|------------|-----------|---------|------------| | | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | | | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | | DAY | (CFS) | (MG/L) | (TONS/DAY) | (CFS) | (MG/L) | (TONS/DAY) | (CFS) | (MG/L) | (TONS/DAY) | | | | | | | | | | | | | | | APRIL | | | MAY | | | JUNE | | | 1 | 7.3 | 7 | .14 | 11 | 27 | 1.7 | 2.4 | 12 | .08 | | 2 | 6.8 | 7 | .13 | 31 | 46 | 4.1 | 1.9 | 11 | .06 | | 3 | 6.0 | 7 | .12 | 29 | 32 | 2.7 | 1.7 | 8 | .04 | | 4 | 19 | 33 | 2.2 | 22 | 25 | 1.5 | 1.6 | 4 | .02 | | 5 | 12 | 16 | .55 | 16 | 25 | 1.3 | 1.5 | 2 | .01 | | 6 | 7.8 | 8 | .17 | 35 | 124 | 10 | 1.4 | 4 | .01 | | 7 | 6.8 | 6 | .11 | 10 | 28 | .81 | 1.3 | 4 | .01 | | 8 | 6.2 | 11 | .18 | 44 | 32 | 4.1 | 1.1 | 3 | .01 | | 9 | 87 | 58 | 26 | 39 | 26 | 2.8 | 1.1 | 4 | .01 | | 10 | 38 | 53 | 6.1 | 15 | 16 | .65 | 2.8 | 9 | .07 | | 10 | 30 | 33 | 0.1 | | | .03 | 2.0 | | | | 11 | 14 | 21 | .82 | 14 | 15 | .57 | 2.8 | 8 | .06 | | 12 | 9.4 | 11 | .28 | 39 | 31 | 3.5 | 3.0 | 11 | .09 | | 13 | 7.8 | 7 | .14 | 25 | 20 | 1.4 | 7.8 | 49 | 2.0 | | 14 | 7.2 | 8 | .15 | 11 | 15 | .46 | 5.4 | 66 | 1.1 | | 15 | 6.7 | 9 | .17 | 7.2 | 15 | .29 | 25 | 99 | 18 | | 16 | 5.9 | 14 | .22 | 5.4 | 12 | .17 | 32 | 86 | 14 | | 17 | 12 | 34 | 1.2 | 4.3 | 11 | .13 | 6.2 | 13 | .23 | | 18 | 7.6 | 17 | .37 | 3.5 | 13 | .12 | 3.1 | 9 | .07 | | 19 | 7.8 | 15 | .41 | 3.1 | 8 | .07 | 3.3 | 10 | .09 | | 20 | 20 | 24 | 1.6 | 2.8 | 7 | .05 | 2.8 | 9 | .07 | | 20 | 20 | 21 | 1.0 | 2.0 | , | .03 | 2.0 | 9 | .07 | | 21 | 8.2 | 9 | .20 | 2.7 | 14 | .10 | 1.9 | 9 | .05 | | 22 | 6.2 | 9 | .15 | 2.4 | 12 | .08 | 2.5 | 18 | .16 | | 23 | 5.3 | 10 | .14 | 2.2 | 11 | .06 | 5.7 | 46 | 1.4 | | 24 | 4.7 | 8 | .10 | 2.4 | 8 | .05 | 23 | 63 | 7.1 | | 25 | 4.0 | 7 | .08 | 3.4 | 7 | .07 | 4.0 | 10 | .11 | | 26 | 3.7 | 8 | .08 | 2.7 | 15 | .11 | 2.4 | 6 | .04 | | 27 | 3.9 | 9 | .10 | 2.5 | 13 | .09 | 1.8 | 7 | .03
 | 28 | 3.5 | 8 | .07 | 2.6 | 14 | .09 | 4.9 | 16 | .19 | | 29 | 3.3 | 9 | .09 | 2.2 | 20 | .12 | 3.9 | 8 | .09 | | 30 | 3.3 | 9 | .08 | 1.9 | 22 | .11 | 2.7 | 6 | .05 | | 31 | | | | 1.9 | 17 | .09 | | | | | TOTAL | 341.4 | | 42.15 | 394.2 | | 37.39 | 161.0 | | 45.25 | POTOMAC RIVER BASIN #### 01658500 SOUTH FORK QUANTICO CREEK NEAR INDEPENDENT HILL, VA--Continued | | | MEAN | | | MEAN | | | MEAN | | | | |-------|-----------|-----------|-----------|-----------|---------|------------|-----------|----------|------------|--|--| | | MEAN | CONCEN- S | SEDIMENT | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | | | | | DISCHARGE | TRATION I | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | | | | DAY | (CFS) | (MG/L) (5 | FONS/DAY) | (CFS) | (MG/L) | (TONS/DAY) | (CFS) | (MG/L) | (TONS/DAY) | | | | | | JULY | | | AUGUST | | Q. | PTEMBER | | | | | | | 0001 | | | AUGUSI | | 51 | PLIEMPEK | | | | | 1 | 2.1 | 8 | .04 | .51 | 7 | .01 | .00 | 0 | .00 | | | | 2 | 1.7 | 8 | .04 | .42 | 7 | .01 | .00 | 0 | .00 | | | | 3 | 1.4 | 6 | .02 | .36 | 4 | .00 | .00 | 0 | .00 | | | | 4 | 1.2 | 6 | .02 | .30 | 13 | .01 | .00 | 0 | .00 | | | | 5 | 1.2 | 8 | .03 | .25 | 8 | .01 | .00 | 0 | .00 | | | | 6 | 1.1 | 7 | .02 | .22 | 8 | .00 | .00 | 0 | .00 | | | | 7 | .97 | 7 | .02 | .18 | 6 | .00 | .00 | 0 | .00 | | | | 8 | 1.3 | 7 | .03 | .16 | 6 | .00 | .11 | 10 | .00 | | | | 9 | 1.6 | 8 | .03 | .18 | 5 | .00 | .10 | 10 | .00 | | | | 10 | 1.2 | 9 | .03 | .45 | 11 | .01 | .07 | 8 | .00 | | | | | | | | | | | | | | | | | 11 | 1.0 | 8 | .02 | .47 | 11 | .01 | .06 | 8 | .00 | | | | 12 | .86 | 6 | .01 | .41 | 6 | .01 | .04 | 7 | .00 | | | | 13 | .78 | 6 | .01 | .30 | 9 | .01 | .01 | 8 | .00 | | | | 14 | .72 | 8 | .02 | .20 | 8 | .00 | .00 | 9 | .00 | | | | 15 | .69 | 11 | .02 | .16 | 7 | .00 | .00 | 0 | .00 | | | | | | | | | | | | | | | | | 16 | .69 | 21 | .04 | .17 | 11 | .00 | .00 | 0 | .00 | | | | 17 | .68 | 22 | .04 | .44 | 14 | .02 | .03 | 16 | .00 | | | | 18 | .65 | 24 | .04 | .60 | 14 | .02 | .04 | 20 | .00 | | | | 19 | .63 | 20 | .03 | .38 | 10 | .01 | .05 | 13 | .00 | | | | 20 | .61 | 13 | .02 | .32 | 11 | .01 | .06 | 9 | .00 | | | | 0.1 | 50 | 1.0 | 0.0 | 22 | 11 | 0.1 | 0.4 | 1.0 | 0.0 | | | | 21 | .52 | 12 | .02 | . 22 | 11 | .01 | .04 | 10 | .00 | | | | 22 | . 47 | 22 | .03 | .16 | 9 | .00 | .13 | 14 | .00 | | | | 23 | . 47 | 16 | .02 | .11 | 10 | .00 | .11 | 12 | .00 | | | | 24 | .49 | 15 | .02 | .07 | 17 | .00 | .09 | 14 | .00 | | | | 25 | .93 | 12 | .03 | .05 | 21 | .00 | .08 | 9 | .00 | | | | 26 | .71 | 7 | .01 | .02 | 12 | .00 | .07 | 7 | .00 | | | | 27 | .51 | 5 | .01 | .01 | 13 | .00 | .08 | 5 | .00 | | | | 28 | . 44 | 9 | .01 | .04 | 17 | .00 | .05 | 6 | .00 | | | | 29 | .40 | 22 | .02 | .06 | 9 | .00 | .02 | 4 | .00 | | | | 30 | .36 | 14 | .01 | .01 | 8 | .00 | .02 | 5 | .00 | | | | 31 | .56 | 8 | .01 | .00 | 0 | .00 | | | | | | | TOTAL | 26.94 | | 0.72 | 7.23 | | 0.15 | 1.26 | | 0.00 | | | | | | | | | | | | | | | | | YEAR | 4937.10 | | 596.23 | | | | | | | | | #### 01660100 CHOPAWAMSIC CREEK AT RUSSELL ROAD NEAR JOPLIN, VA LOCATION.--Lat. 38°31'23", long 77°22'26", Prince William County, Hydrologic unit 02070011, on left bank at upstream side of Russell Road, 4.5 miles southwest of Dumfries and 2.6 miles upstream from mouth. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD. -- February 1996 to current year. GAGE.--Water stage recorder. Elevation of gage is 30 ft above sea level, from topographic map. REMARKS.--Records fair. EXTREMES FOR CURRENT YEAR.--Maximum discharge 851 $\rm ft^3/s$ Feb. 5, gage height 6.55 ft, minimum daily 0.02 $\rm ft^3/s$ Sept. 24-26, 28, 29. | | | DISCHARGE | ;, IN C | CUBIC FEET | PER SECOND |), WATER
MEAN VA | | BER 1997 | TO SEPTEM | MBER 1998 | | | |-------|-------|-----------|---------|------------|------------|---------------------|------|----------|-----------|-----------|-------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | .59 | 11 | 11 | 11 | 36 | 40 | 29 | 35 | 11 | 10 | .61 | .07 | | 2 | .81 | 23 | 6.3 | 11 | 29 | 38 | 27 | 67 | 9.8 | 7.5 | .45 | .07 | | 3 | 1.0 | 7.3 | 5.1 | 11 | 26 | 61 | 25 | 89 | e8.5 | 6.1 | .43 | .05 | | 4 | .84 | 4.2 | 6.1 | 11 | 281 | 44 | 56 | 76 | e7.0 | 5.5 | .41 | .05 | | 5 | .14 | 3.1 | 6.8 | 10 | 555 | 36 | 52 | 53 | 7.4 | 5.1 | .39 | .05 | | 6 | .17 | 2.8 | 5.7 | 9.6 | 146 | 31 | 37 | 67 | 7.0 | 4.4 | .39 | .05 | | 7 | .17 | e100 | 5.5 | 11 | 101 | 29 | 32 | 45 | 6.1 | 3.7 | .41 | .05 | | 8 | .18 | e110 | 5.0 | 20 | 68 | 66 | 29 | 96 | 5.7 | 5.0 | .39 | .04 | | 9 | .27 | 61 | 4.6 | 18 | 51 | 208 | 132 | 96 | 5.4 | 6.7 | .40 | .04 | | 10 | .37 | 34 | 5.0 | 13 | 40 | 95 | 130 | 63 | 15 | 5.3 | .57 | .05 | | 11 | .39 | 18 | 5.9 | 11 | 36 | 58 | 67 | 54 | 16 | 3.7 | 1.8 | .05 | | 12 | .46 | 12 | 6.1 | 9.1 | 49 | 45 | 50 | 75 | 18 | 2.6 | 2.6 | .05 | | 13 | .54 | 8.3 | 5.7 | 9.5 | 36 | 39 | 43 | 77 | 17 | 2.0 | 1.9 | .05 | | 14 | .71 | 28 | 5.6 | 8.7 | 29 | 38 | 39 | 51 | 27 | 1.8 | 1.6 | .05 | | 15 | .95 | 26 | 5.2 | 14 | 26 | 33 | 38 | 40 | 65 | 1.6 | 1.2 | .05 | | 16 | 1.3 | 14 | 5.2 | 63 | 24 | 29 | 34 | 33 | 122 | 1.6 | 1.6 | .05 | | 17 | 2.2 | 9.6 | 5.1 | 35 | 142 | 27 | 56 | 28 | 42 | 1.8 | 3.0 | .05 | | 18 | 8.1 | 8.2 | 5.1 | 25 | 294 | 60 | 45 | 23 | 21 | 4.7 | 4.3 | .05 | | 19 | .91 | 7.9 | 5.1 | 20 | 92 | 184 | 42 | 20 | 16 | 3.0 | .92 | .05 | | 20 | .92 | 6.6 | 5.1 | 19 | 65 | 108 | 67 | 18 | 15 | 2.5 | .31 | .05 | | 21 | 1.2 | 6.4 | 4.9 | 16 | 54 | 415 | 46 | 17 | 10 | 1.7 | .20 | .05 | | 22 | 1.4 | 27 | 5.0 | 14 | 43 | 136 | 38 | 15 | 8.4 | 1.2 | .17 | .05 | | 23 | 1.7 | 19 | 9.1 | 211 | 107 | 80 | 34 | 15 | 11 | .92 | .18 | .03 | | 24 | 1.9 | 10 | 8.2 | 137 | 245 | 61 | 31 | 15 | 82 | .85 | .43 | .02 | | 25 | 3.8 | 8.1 | 40 | 69 | 99 | 52 | 27 | 20 | 28 | .72 | .29 | .02 | | 26 | 3.5 | 8.5 | 25 | 44 | 65 | 46 | 26 | e17 | 14 | .69 | .23 | .02 | | 27 | 6.6 | 9.0 | 18 | 35 | 53 | 43 | 25 | 13 | 9.5 | .61 | .20 | .03 | | 28 | 4.0 | 7.2 | 20 | 408 | 45 | 39 | 23 | 14 | 26 | 1.1 | .20 | .02 | | 29 | 2.1 | 6.1 | 18 | 174 | | 36 | 22 | 14 | 19 | 2.2 | .16 | .02 | | 30 | 1.4 | 6.8 | 16 | 73 | | 33 | 22 | 12 | 14 | .74 | .09 | .03 | | 31 | 1.3 | | 15 | 48 | | 30 | | 11 | | .76 | .08 | | | TOTAL | 49.92 | 603.1 | 294.4 | 1568.9 | 2837 | 2240 | 1324 | 1269 | 663.8 | 96.09 | 25.91 | 1.31 | | MEAN | 1.61 | 20.1 | 9.50 | 50.6 | 101 | 72.3 | 44.1 | 40.9 | 22.1 | 3.10 | .84 | .044 | | MAX | 8.1 | 110 | 40 | 408 | 555 | 415 | 132 | 96 | 122 | 10 | 4.3 | .07 | | MIN | .14 | 2.8 | 4.6 | 8.7 | 24 | 27 | 22 | 11 | 5.4 | .61 | .08 | .02 | e Estimated. #### 01660100 CHOPAWAMSIC CREEK AT RUSSELL ROAD NEAR JOPLIN, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1996 | - | 1998, | BY | WATER | YEAR | (WY) |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------|---| |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------|---| 39 8.5 .83 | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|-------------|----------|------|------------|----------|------|--------------|----------|--------------| | MEAN | 16.7 | 27.5 | 32.1 | 41.3 | 71.0 | 51.7 | 38.3 | 29.8 | 13.5 | 8.57 | 5.25 | 11.5 | | MAX | 31.7 | 34.9 | 54.7 | 50.6 | 101 | 72.3 | 44.1 | 40.9 | 22.1 | 18.6 | 13.9 | 33.0 | | (WY) | 1997 | 1997 | 1997 | 1998 | 1998 | 1998 | 1998 | 1998 | 1998 | 1996 | 1996 | 1996 | | MIN | 1.61 | 20.1 | 9.50 | 32.0 | 40.7 | 35.0 | 29.6 | 13.7 | 7.98 | 3.10 | .84 | .044 | | (WY) | 1998 | 1998 | 1998 | 1997 | 1997 | 1996 | 1997 | 1997 | 1997 | 1998 | 1998 | 1998 | | SUMMARY | STATIST: | ICS | FOR 1 | 1997 CALENI | DAR YEAR | F | OR 1998 WA | TER YEAR | | WATER YE | ARS 1996 | - 1998 | | ANNUAL | TOTAL | | | 6311.63 | | | 10973.43 | 1 | | | | | | ANNUAL | MEAN | | | 17.3 | | | 30.1 | | | 27.5 | | | | | ANNUAL 1 | | | | | | | | | 30.1
24.9 | | 1998
1997 | | HIGHEST | C DAILY M | EAN | | 145 | Mar 3 | | 555 | Feb 5 | | 555 | Feb | 5 1998 | | LOWEST | DAILY ME | AN | | .14 | Oct 5 | | .02 | aSep 24 | | .02 | aSep 2 | 24 1998 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | .24 | Oct 5 | | .02 | Sep 23 | | .02 | Sep 2 | 23 1998 | | INSTANT | TANEOUS PI | EAK FLOW | | | | | 851 | Feb 5 | | 851 | Feb | 5 1998 | Feb 8 .02 bSep 6.55 .17 67 11 59 18 6.55 .02 .83 Feb bSep 5 1998 8 1998 INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Sept. 25, 26, 28, 29, 1998. b Also Sept. 9, 23-30, 1998. ## 01660110 CHOPAWAMSIC CREEK AT I-95 NEAR JOPLIN, VA WATER QUALITY RECORDS PERIOD OF RECORD. -- February 1996 to current year. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | ATURE
WATER | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | |---|--|--|--|---|---|--|--
--|--|---| | OCT 1997 | | | | | | | | | | | | 15 | 1145 | 1.2 | 434 | 3.6 | 15.0 | 15.0 | 770 | 4.2 | 41 | | | NOV
26 | 0830 | 8.2 | 58 | 6.6 | 4.0 | 4.5 | 745 | 14.7 | 116 | .17 | | JAN 1998
08 | 1245 | 21 | 60 | 6.8 | 16.5 | 12.2 | 744 | 12.1 | 116 | | | 27
FEB | 1145 | 31 | 55 | 6.4 | 5.0 | 4.3 | 742 | 12.7 | 100 | .26 | | 04 | 1330 | 288 | 38 | 6.4 | 2.5 | 4.9 | 749 | 12.8 | 102 | .31 | | 24
MAR | 1430 | 229 | 38 | 5.8 | 10.0 | 7.1 | 747 | 12.4 | 104 | | | 18
APR | 1200 | 73 | 41 | 6.7 | 8.5 | 6.9 | 743 | 12.5 | 99 | | | 21
MAY | 1045 | 48 | 47 | 6.5 | 19.0 | 13.2 | 755 | 10.8 | 104 | .22 | | 12
JUN | 1110 | 72 | 47 | 6.4 | 15.0 | 15.0 | 731 | 9.3 | 96 | | | 17
JUL | 1115 | 43 | 43 | 6.6 | 25.0 | 21.0 | 761 | 8.3 | 93 | | | 21
AUG | 1210 | 1.7 | 81 | 6.5 | 27.0 | 26.3 | 753 | 5.8 | 73 | .21 | | 11
SEP | 0900 | .93 | 145 | 6.3 | 23.5 | 22.6 | 749 | 6.6 | 77 | .24 | | 15 | 1115 | .05 | 953 | 3.0 | 26.5 | 22.4 | 755 | 3.6 | 42 | | | DATE | CALCIUM
DIS-
SOLVED | MAGNE-
SIUM,
DIS- | SODIUM,
DIS- | | SULFATE | CHLO-
RIDE, | FLUO-
RIDE,
DIS- | SILICA,
DIS-
SOLVED | AT 180 | NITRO-
GEN,
NITRATE | | | (MG/L
AS CA)
(00915) | SOLVED
(MG/L
AS MG) | SOLVED
(MG/L
AS NA)
(00930) | (MG/L
AS K) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | DIS-
SOLVED
(MG/L
AS CL)
(00940) | SOLVED
(MG/L
AS F)
(00950) | | DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(MG/L
AS N)
(00618) | | OCT 1997 | (MG/L
AS CA) | SOLVED
(MG/L
AS MG) | SOLVED
(MG/L
AS NA) | SOLVED
(MG/L
AS K) | SOLVED
(MG/L
AS SO4) | SOLVED
(MG/L
AS CL) | SOLVED
(MG/L
AS F) | (MG/L
AS
SIO2) | DIS-
SOLVED
(MG/L) | SOLVED
(MG/L
AS N) | | 15 | (MG/L
AS CA) | SOLVED
(MG/L
AS MG) | SOLVED
(MG/L
AS NA) | SOLVED
(MG/L
AS K) | SOLVED
(MG/L
AS SO4) | SOLVED
(MG/L
AS CL) | SOLVED
(MG/L
AS F) | (MG/L
AS
SIO2) | DIS-
SOLVED
(MG/L) | SOLVED
(MG/L
AS N) | | 15
NOV
26 | (MG/L
AS CA)
(00915) | SOLVED
(MG/L
AS MG)
(00925) | SOLVED
(MG/L
AS NA)
(00930) | SOLVED
(MG/L
AS K)
(00935) | SOLVED
(MG/L
AS SO4)
(00945) | SOLVED
(MG/L
AS CL)
(00940) | SOLVED
(MG/L
AS F)
(00950) | (MG/L
AS
SIO2)
(00955) | DIS-
SOLVED
(MG/L)
(70300) | SOLVED
(MG/L
AS N)
(00618) | | 15
NOV | (MG/L
AS CA)
(00915) | SOLVED
(MG/L
AS MG)
(00925) | SOLVED
(MG/L
AS NA)
(00930) | SOLVED
(MG/L
AS K)
(00935) | SOLVED
(MG/L
AS SO4)
(00945) | SOLVED
(MG/L
AS CL)
(00940) | SOLVED
(MG/L
AS F)
(00950) | (MG/L
AS
SIO2)
(00955) | DIS-
SOLVED
(MG/L)
(70300) | SOLVED
(MG/L
AS N)
(00618) | | 15
NOV
26
JAN 1998
08
27 | (MG/L
AS CA)
(00915)
17
4.6 | SOLVED
(MG/L
AS MG)
(00925)
11 | SOLVED
(MG/L
AS NA)
(00930)
3.9 | SOLVED
(MG/L
AS K)
(00935)
2.8 | SOLVED
(MG/L
AS SO4)
(00945) | SOLVED
(MG/L
AS CL)
(00940)
6.4
4.9 | SOLVED
(MG/L
AS F)
(00950)
<.10 | (MG/L
AS
SIO2)
(00955) | DIS-
SOLVED
(MG/L)
(70300) | SOLVED
(MG/L
AS N)
(00618) | | 15
NOV
26
JAN 1998
08
27
FEB | (MG/L
AS CA)
(00915)
17
4.6
3.5
3.0 | SOLVED
(MG/L
AS MG)
(00925)
11
2.5
1.9 | SOLVED
(MG/L
AS NA)
(00930)
3.9
3.7
3.5
2.4 | SOLVED (MG/L AS K) (00935) 2.8 1.5 1.2 1.4 | SOLVED
(MG/L
AS SO4)
(00945)
170
18
10 | SOLVED
(MG/L
AS CL)
(00940)
6.4
4.9
3.5
2.6 | SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 | (MG/L
AS
SIO2)
(00955)
15
11
14
9.6 | DIS-
SOLVED
(MG/L)
(70300)
298
62
51
58 | SOLVED
(MG/L
AS N)
(00618) | | 15
NOV
26
JAN 1998
08
27 | (MG/L
AS CA)
(00915)
17
4.6
3.5 | SOLVED
(MG/L
AS MG)
(00925)
11
2.5 | SOLVED
(MG/L
AS NA)
(00930)
3.9
3.7 | SOLVED
(MG/L
AS K)
(00935)
2.8
1.5 | SOLVED
(MG/L
AS SO4)
(00945)
170
18 | SOLVED
(MG/L
AS CL)
(00940)
6.4
4.9
3.5 | SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 | (MG/L
AS
SIO2)
(00955)
15
11 | DIS-
SOLVED
(MG/L)
(70300)
298
62
51 | SOLVED
(MG/L
AS N)
(00618) | | 15 NOV 26 JAN 1998 08 27 FEB 04 24 MAR | (MG/L
AS CA)
(00915)
17
4.6
3.5
3.0 | SOLVED
(MG/L
AS MG)
(00925)
11
2.5
1.9
1.8 | SOLVED (MG/L AS NA) (00930) 3.9 3.7 3.5 2.4 1.9 2.0 | SOLVED
(MG/L
AS K)
(00935)
2.8
1.5
1.2
1.4 | SOLVED (MG/L AS SO4) (00945) 170 18 10 13 7.7 6.4 | SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6 2.2 2.0 | SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 | (MG/L
AS
SIO2)
(00955)
15
11
14
9.6
7.1
9.1 | DIS-
SOLVED (MG/L) (70300)
298
62
51
58
41 | SOLVED
(MG/L
AS N)
(00618) | | 15 NOV 26 JAN 1998 08 27 FEB 04 24 MAR 18 APR | (MG/L
AS CA)
(00915)
17
4.6
3.5
3.0
2.1
2.0 | SOLVED
(MG/L
AS MG)
(00925)
11
2.5
1.9
1.8
1.3
1.2 | SOLVED
(MG/L
AS NA)
(00930)
3.9
3.7
3.5
2.4
1.9
2.0 | SOLVED
(MG/L
AS K)
(00935)
2.8
1.5
1.2
1.4 | SOLVED (MG/L AS SO4) (00945) 170 18 10 13 7.7 6.4 7.0 | SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6 2.2 2.0 | SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1 | (MG/L
AS
SIO2)
(00955)
15
11
14
9.6
7.1
9.1 | DIS-
SOLVED
(MG/L)
(70300)
298
62
51
58
41
41 | SOLVED
(MG/L
AS N)
(00618) | | 15 NOV 26 JAN 1998 08 27 FEB 04 24 MAR 18 APR 21 MAY | (MG/L
AS CA)
(00915)
17
4.6
3.5
3.0
2.1
2.0
2.3 | SOLVED (MG/L AS MG) (00925) 11 2.5 1.9 1.8 1.3 1.2 1.4 | SOLVED (MG/L AS NA) (00930) 3.9 3.7 3.5 2.4 1.9 2.0 2.3 | SOLVED
(MG/L
AS K)
(00935)
2.8
1.5
1.2
1.4
1.2
1.0 | SOLVED (MG/L AS SO4) (00945) 170 18 10 13 7.7 6.4 7.0 7.9 | SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6 2.2 2.0 2.3 | SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1 | (MG/L
AS
SIO2)
(00955)
15
11
14
9.6
7.1
9.1 | DIS-
SOLVED (MG/L) (70300)
298
62
51
58
41
41
38 | SOLVED
(MG/L
AS N)
(00618)

.053 | | 15 NOV 26 JAN 1998 08 27 FEB 04 24 MAR 18 APR 21 MAY 12 JUN | (MG/L
AS CA)
(00915)
17
4.6
3.5
3.0
2.1
2.0
2.3
2.8 | SOLVED
(MG/L
AS MG)
(00925)
11
2.5
1.9
1.8
1.3
1.2
1.4 | SOLVED (MG/L AS NA) (00930) 3.9 3.7 3.5 2.4 1.9 2.0 2.3 2.5 | SOLVED
(MG/L
AS K)
(00935)
2.8
1.5
1.2
1.4
1.2
1.0
.85 | SOLVED (MG/L AS SO4) (00945) 170 18 10 13 7.7 6.4 7.0 7.9 8.4 | SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6 2.2 2.0 2.3 2.5 | SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1 | (MG/L
AS
S102)
(00955)
15
11
14
9.6
7.1
9.1 | DIS-
SOLVED
(MG/L)
(70300)
298
62
51
58
41
41
38
43 | SOLVED
(MG/L
AS N)
(00618) | | 15 NOV 26 JAN 1998 08 27 FEB 04 24 MAR 18 APR 21 MAY 12 | (MG/L
AS CA)
(00915)
17
4.6
3.5
3.0
2.1
2.0
2.3 | SOLVED (MG/L AS MG) (00925) 11 2.5 1.9 1.8 1.3 1.2 1.4 | SOLVED (MG/L AS NA) (00930) 3.9 3.7 3.5 2.4 1.9 2.0 2.3 | SOLVED
(MG/L
AS K)
(00935)
2.8
1.5
1.2
1.4
1.2
1.0 | SOLVED (MG/L AS SO4) (00945) 170 18 10 13 7.7 6.4 7.0 7.9 | SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6 2.2 2.0 2.3 | SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1 | (MG/L
AS
SIO2)
(00955)
15
11
14
9.6
7.1
9.1 | DIS-
SOLVED (MG/L) (70300)
298
62
51
58
41
41
38 | SOLVED
(MG/L
AS N)
(00618)

.053 | | 15 NOV 26 JAN 1998 08 27 FEB 04 24 MAR 18 APR 21 MAY 12 JUN 17 | (MG/L
AS CA)
(00915)
17
4.6
3.5
3.0
2.1
2.0
2.3
2.8 | SOLVED
(MG/L
AS MG)
(00925)
11
2.5
1.9
1.8
1.3
1.2
1.4 | SOLVED (MG/L AS NA) (00930) 3.9 3.7 3.5 2.4 1.9 2.0 2.3 2.5 | SOLVED
(MG/L
AS K)
(00935)
2.8
1.5
1.2
1.4
1.2
1.0
.85 | SOLVED (MG/L AS SO4) (00945) 170 18 10 13 7.7 6.4 7.0 7.9 8.4 | SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6 2.2 2.0 2.3 2.5 | SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1 | (MG/L
AS
S102)
(00955)
15
11
14
9.6
7.1
9.1 | DIS-
SOLVED
(MG/L)
(70300)
298
62
51
58
41
41
38
43
39
47 | SOLVED
(MG/L
AS N)
(00618)

.053

.026 | | 15 NOV 26 JAN 1998 08 27 FEB 04 24 MAR 18 APR 21 MAY 12 JUN 17 JUL 21 | (MG/L
AS CA)
(00915)
17
4.6
3.5
3.0
2.1
2.0
2.3
2.8
3.0 | SOLVED (MG/L AS MG) (00925) 11 2.5 1.9 1.8 1.3 1.2 1.4 1.7 1.6 1.6 | SOLVED (MG/L AS NA) (00930) 3.9 3.7 3.5 2.4 1.9 2.0 2.3 2.5 2.7 | SOLVED
(MG/L
AS K)
(00935)
2.8
1.5
1.2
1.4
1.2
1.0
.85
1.0 | SOLVED (MG/L AS SO4) (00945) 170 18 10 13 7.7 6.4 7.0 7.9 8.4 5.2 | SOLVED (MG/L AS CL) (00940) 6.4 4.9 3.5 2.6 2.2 2.0 2.3 2.5 2.4 | SOLVED (MG/L AS F) (00950) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1 | (MG/L
AS
SIO2)
(00955)
15
11
14
9.6
7.1
9.1
11
12 | DIS-
SOLVED (MG/L) (70300)
298
62
51
58
41
41
38
43
39 | SOLVED
(MG/L
AS N)
(00618)

.053

.026 | < Actual value is known to be less than the value shown. POTOMAC RIVER BASIN ## 01660110
CHOPAWAMSIC CREEK AT I-95 NEAR JOPLIN, VA WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | |-----------|--|--|--|---|--|---|--|--|---|--| | OCT 1997 | | | | | | | | | | | | 15
NOV | <.010 | <.050 | .023 | .21 | <.20 | <.010 | <.010 | <.010 | 3400 | <1 | | 26 | <.010 | .051 | <.020 | .17 | .11 | <.010 | <.010 | .023 | 360 | <1 | | JAN 1998 | | | | | | | | | | | | 08 | <.010 | <.050 | <.020 | .14 | < .10 | <.010 | <.010 | .018 | 200 | <1 | | 27 | .013 | .066 | .073 | .19 | .19 | <.010 | <.010 | .015 | 410 | <1 | | FEB | | | | | | | | | | | | 04 | <.010 | .088 | <.020 | .35 | .22 | .022 | <.010 | .014 | 990 | <1 | | 24 | <.010 | <.050 | .033 | .20 | .17 | <.010 | <.010 | <.010 | 430 | <1 | | MAR | . 010 | <.050 | .026 | .14 | <.10 | <.010 | <.010 | <.010 | 240 | <1 | | 18
APR | <.010 | <.050 | .026 | .14 | <.10 | <.010 | <.010 | <.010 | 240 | < 1 | | 21 | .053 | .079 | .033 | .36 | .14 | .021 | .014 | <.010 | 210 | <1 | | MAY | .033 | .075 | .033 | .50 | | .021 | .011 | 1.010 | 210 | 1 | | 12 | <.010 | <.050 | .026 | .23 | .13 | <.010 | <.010 | <.010 | 270 | <1 | | JUN | | | | | | | | | | | | 17 | <.010 | <.050 | .051 | .25 | .16 | <.010 | <.010 | .015 | 170 | <1 | | JUL | | | | | | | | | | | | 21 | <.010 | .071 | .045 | .18 | .14 | <.010 | <.010 | <.010 | 200 | <1 | | AUG | | | | | | | | | | | | 11 | <.010 | .107 | .070 | .21 | .14 | <.010 | <.010 | <.010 | 420 | <1 | | SEP
15 | .012 | <.050 | .349 | .38 | .35 | <.010 | .013 | .017 | 2500 | <1 | | тэ | .012 | <.050 | . 349 | .38 | .35 | <.010 | .013 | .01/ | 2500 | < T | $[\]mbox{\ensuremath{$<$}}$ Actual value is known to be less than the value shown. POTOMAC RIVER BASIN 01660110 CHOPAWAMSIC CREEK AT I-95 NEAR JOPLIN, VA | | | BERYL- | | | CHRO- | | | | | | |-----------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------| | | BARIUM, | LIUM, | BORON, | CADMIUM | MIUM, | COBALT, | COPPER, | IRON, | | LEAD, | | | TOTAL | TOTAL | TOTAL | WATER | TOTAL | TOTAL | TOTAL | TOTAL | IRON, | TOTAL | | | RECOV- | RECOV- | RECOV- | UNFLTRD | RECOV- | RECOV- | RECOV- | RECOV- | DIS- | RECOV- | | | ERABLE | ERABLE | ERABLE | TOTAL | ERABLE | ERABLE | ERABLE | ERABLE | SOLVED | ERABLE | | DATE | (UG/L | | AS BA) | AS BE) | AS B) | AS CD) | AS CR) | AS CO) | AS CU) | AS FE) | AS FE) | AS PB) | | | (01007) | (01012) | (01022) | (01027) | (01034) | (01037) | (01042) | (01045) | (01046) | (01051) | | OCT 1997 | | | | | | | | | | | | 15 | <100 | <10 | 20 | <1 | 1 | 80 | 9 | 26000 | 20900 | <1 | | NOV | | | | | | | | | | | | 26 | <100 | <10 | 20 | <1 | <1 | 7 | 4 | 3200 | 2900 | 1 | | JAN 1998 | | | | | | | | | | | | 08 | <100 | <10 | <10 | <1 | <1 | 3 | 1 | 1800 | 1400 | 2 | | 27 | <100 | <10 | <10 | <1 | <1 | 5 | 3 | 2300 | 1300 | 5 | | FEB | 100 | 1.0 | 1.0 | | | 2 | _ | 0000 | 000 | | | 04 | <100 | <10 | <10 | <1 | 2 | 3 | 5 | 2000 | 280 | 6 | | 24 | <100 | <10 | <10 | <1 | <1 | 2 | 4 | 880 | 400 | 7 | | MAR
18 | <100 | <10 | <10 | <1 | <1 | 1 | 2 | 790 | 420 | 2 | | APR | <100 | ~10 | <±0 | ~1 | <u> </u> | | 2 | 790 | 420 | 2 | | 21 | <100 | <10 | 10 | <1 | <1 | 2 | 2 | 1300 | 670 | 2 | | MAY | -100 | -10 | | | | - | - | 1300 | 0.0 | - | | 12 | <100 | <10 | <10 | <1 | <1 | 2 | 2 | 1400 | 620 | 2 | | JUN | | | | | | | | | | | | 17 | <100 | <10 | 20 | <1 | <1 | 2 | 2 | 1600 | 790 | 4 | | JUL | | | | | | | | | | | | 21 | <100 | <10 | 20 | <1 | <1 | 6 | 2 | 4300 | 2400 | 1 | | AUG | | | | | | | | | | | | 11 | <100 | <10 | 10 | <1 | <1 | 20 | 5 | 7800 | 6800 | <1 | | SEP | | | | _ | _ | | _ | | | _ | | 15 | <100 | <10 | 20 | <1 | <1 | 100 | 5 | 67000 | 60000 | <1 | $^{\,}$ $\,$ Actual value is known to be less than the value shown. POTOMAC RIVER BASIN # 01660110 CHOPAWAMSIC CREEK AT I-95 NEAR JOPLIN, VA WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | | MANGA- | | | MOLYB- | | | | STRON- | | |-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | LITHIUM | NESE, | MANGA- | MERCURY | DENUM, | NICKEL, | | SILVER, | TIUM, | ZINC, | | | TOTAL | TOTAL | NESE, | TOTAL | TOTAL | TOTAL | SELE- | TOTAL | TOTAL | TOTAL | | | RECOV- | RECOV- | DIS- | RECOV- | RECOV- | RECOV- | NIUM, | RECOV- | RECOV- | RECOV- | | | ERABLE | ERABLE | SOLVED | ERABLE | ERABLE | ERABLE | TOTAL | ERABLE | ERABLE | ERABLE | | DATE | (UG/L | | AS LI) | AS MN) | AS MN) | AS HG) | AS MO) | AS NI) | AS SE) | AS AG) | AS SR) | AS ZN) | | | (01132) | (01055) | (01056) | (71900) | (01062) | (01067) | (01147) | (01077) | (01082) | (01092) | | OCT 1997 | | | | | | | | | | | | 15 | <10 | 5100 | 5090 | <.10 | <1 | 68 | <1 | <1 | 100 | 90 | | NOV | | | | | | | | | | | | 26 | <10 | 460 | 498 | < .10 | 2 | 5 | <1 | <1 | 50 | <10 | | JAN 1998 | | | | | | | | | | | | 08 | <10 | 230 | 240 | < .10 | <1 | 3 | <1 | <1 | 50 | <10 | | 27 | <10 | 280 | 289 | <.10 | <1 | 5 | <1 | <1 | 30 | 10 | | FEB | | | | | | | | | | | | 04 | <10 | 230 | 147 | < .10 | <1 | 4 | <1 | <1 | 30 | 20 | | 24 | <10 | 130 | 110 | <.10 | <1 | 3 | <1 | <1 | 20 | 10 | | MAR | 1.0 | 110 | 110 | 1.0 | - | | - | - | | 1.0 | | 18 | <10 | 110 | 117 | <.10 | <1 | 2 | <1 | <1 | 50 | <10 | | APR
21 | <10 | 120 | 160 | <.10 | <1 | 2 | <1 | <1 | <10 | <10 | | MAY | <10 | 120 | 100 | <.10 | < 1 | 2 | < 1 | < T | <10 | <10 | | 12 | <10 | 160 | 159 | <.10 | <1 | 3 | <1 | <1 | 60 | <10 | | JUN | 110 | 100 | 133 | 1.10 | ** | 5 | 1. | `- | 00 | 110 | | 17 | <10 | 160 | 199 | <.10 | <1 | 2 | <1 | <1 | 40 | <10 | | JUL | | | | | | | | | | | | 21 | <10 | 450 | 506 | < .10 | <1 | 5 | <1 | <1 | 20 | <10 | | AUG | | | | | | | | | | | | 11 | <10 | 1600 | 1670 | < .10 | <1 | 15 | <1 | <1 | 70 | 20 | | SEP | | | | | | | | | | | | 15 | <10 | 10000 | 9960 | < .10 | <1 | 60 | <1 | <1 | 90 | 80 | $^{\,{\}mbox{<}}\,$ Actual value is known to be less than the value shown. ### 01660500 BEAVERDAM RUN NEAR GARRISONVILLE, VA LOCATION.--Lat. 38°30'25", long 77°25'46", Stafford County, Hydrologic unit 02070011, on left bank 3.4 miles upstream from mouth and 2.2 miles north of Garrisonville. DRAINAGE AREA.--12.7 \min^2 . ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1951 to June 1957, and March 1997 to current year. GAGE.--Water stage recorder. Datum of gage is 150.43 ft above sea level. May 1951 to June 1957, at site 500 ft. upstream at same datum. REMARKS.--Records fair. Flow regulated by Lunga Reservoir 2.5 mi upstream, capacity 420 acre-ft. EXTREMES FOR CURRENT YEAR.--Maximum discharge 276 ${\rm ft}^3/{\rm s}$ Feb. 5, gage height 2.74 ${\rm ft}$; minimum 0.74 ${\rm ft}^3/{\rm s}$, Oct. 1. | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | | | | | | | | | | | | | |--|-------|-------|-------|-------|------|------|------|-------|-------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1.8 | 13 | 7.2 | 7.0 | 47 | 30 | 18 | 17 | 8.2 | 12 | 7.3 | 7.2 | | 2 | 1.7 | 9.0 | 7.4 | 7.2 | 36 | 28 | 17 | 31 | 8.3 | 9.8 | 7.2 | 7.4 | | 3 | 2.3 | 7.7 | 7.6 | 7.2 | 30 | 39 | 15 | 42 | 8.3 | 8.6 | 7.2 | 7.4 | | 4 | 2.8 | 7.6 | 8.2 | 7.5 | 97 | 35 | 26 | 46 | 8.3 | 8.5 | 7.1 | 7.3 | | 5 | 2.8 | 7.3 | 8.4 | 7.2 | 250 | 30 | 28 | 41 | 8.5 | 8.8 | 7.1 | 7.3 | | 6 | 3.2 | e6.0 | 8.4 | 7.2 | 173 | 26 | 23 | 40 | 8.5 | 8.6 | 7.0 | 7.6 | | 7 | 3.1 | e29 | 8.5 | 7.4 | 117 | 23 | 20 | 34 | 8.7 | 8.5 | 7.0 | 7.5 | | 8 | 3.5 | 18 | 6.7 | 7.8 | 82 | 34 | 18 | 49 | 8.1 | 9.1 | 7.2 | 7.8 | | 9 | 3.3 | 13 | 7.1 | 7.6 | 58 | 74 | 42 | 53 | 8.2 | 8.8 | 7.2 | 7.6 | | 10 | 3.0 | 11 | 7.7 | 7.2 | 44 | 68 | 64 | 43 | 13 | 8.4 | 7.3 | 7.7 | | 11 | 3.2 | 10 | 7.2 | 7.3 | 36 | 50 | 51 | 36 | 9.5 | 8.5 | 7.4 | 7.4 | | 12 | 3.6 | 10 | 7.0 | 7.2 | 36 | 38 | 39 | 43 | 10 | 8.5 | 7.3 | 6.1 | | 13 | 3.6 | 10 | 6.9 | 7.1 | 30 | 30 | 31 | 45 | 11 | 8.3 | 7.0 | 5.9 | | 14 | 3.2 | 13 | 6.8 | 7.2 | 25 | 27 | 26 | 38 | 9.8 | 8.3 | 7.1 | 5.8 | | 15 | 3.2 | 11 | 6.6 | 10 | 21 | 23 | 24 | 31 | 11 | 8.3 | 7.1 | 5.8 | | 16 | 4.0 | 10 | 6.8 | 13 | 19 | 19 | 21 | 24 | 19 | 8.3 | 7.1 | 5.7 | | 17 | 5.6 | 9.6 | 7.5 | 8.9 | 55 | 18 | 29 | 20 | 25 | 8.5 | 8.1 | 5.5 | | 18 | 13 | 9.3 | e6.8 | 8.5 | 146 | 28 | 28 | 16 | 20 | 8.7 | 8.3 | 5.7 | | 19 | 3.6 | 8.7 | 5.9 | 8.5 | 108 | 71 | 26 | 14 | 16 | 8.7 | 7.7 | 5.9 | | 20 | 3.1 | 8.8 | 6.1 | 7.8 | 76 | 75 | 33 | 12 | 15 | 8.3 | 7.7 | 5.9 | | 21 | 2.9 | 9.6 | 6.1 | 7.4 | 58 | 177 | 28 | 10 | 11 | 7.9 | 7.8 | 5.7 | | 22 | 3.1 | 12 | 6.5 | e7.0 | 43 | 131 | 24 | 9.5 | 9.6 | 8.2 | 7.6 | 6.0
| | 23 | 3.1 | 9.6 | 6.9 | e25 | 57 | 91 | 21 | 8.3 | 10 | 8.3 | 7.4 | 5.7 | | 24 | 3.7 | 8.4 | 6.9 | 20 | 110 | 65 | 19 | 8.4 | 45 | 8.1 | 7.2 | 5.7 | | 25 | 7.9 | 8.4 | 12 | 23 | 86 | 48 | 17 | 12 | 38 | 8.0 | 7.1 | 5.9 | | 26 | 7.8 | 8.8 | 8.6 | 23 | 60 | 38 | 15 | 11 | 27 | 7.8 | 7.2 | 5.9 | | 27 | 7.5 | 8.3 | 8.8 | 24 | 46 | 31 | 15 | 9.0 | 20 | 7.6 | 7.1 | 6.0 | | 28 | 6.0 | 8.6 | 8.9 | 127 | 37 | 28 | 12 | 5.6 | 17 | 8.5 | 7.0 | 5.5 | | 29 | 7.3 | 8.5 | 8.0 | 144 | | 24 | 11 | 7.0 | 16 | 8.1 | 7.2 | 5.5 | | 30 | 6.9 | 8.6 | 8.3 | 98 | | 21 | 10 | 9.3 | 13 | 7.7 | 7.4 | 5.7 | | 31 | 7.2 | | 7.9 | 67 | | 19 | | 8.6 | | 8.2 | 7.4 | | | TOTAL | 137.0 | 312.8 | 233.7 | 724.2 | 1983 | 1439 | 751 | 773.7 | 441.0 | 263.9 | 226.8 | 192.1 | | MEAN | 4.42 | 10.4 | 7.54 | 23.4 | 70.8 | 46.4 | 25.0 | 25.0 | 14.7 | 8.51 | 7.32 | 6.40 | | MAX | 13 | 29 | 12 | 144 | 250 | 177 | 64 | 53 | 45 | 12 | 8.3 | 7.8 | | MIN | 1.7 | 6.0 | 5.9 | 7.0 | 19 | 18 | 10 | 5.6 | 8.1 | 7.6 | 7.0 | 5.5 | | CFSM | .35 | .82 | .59 | 1.84 | 5.58 | 3.66 | 1.97 | 1.97 | 1.16 | .67 | .58 | .50 | | IN. | .40 | .92 | .68 | 2.12 | 5.81 | 4.22 | 2.20 | 2.27 | 1.29 | .77 | .66 | .56 | e Estimated. ### 01660500 BEAVERDAM RUN NEAR GARRISONVILLE, VA--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951*, 1952 - 1956, 1957*, BY WATER YEAR (WY) [UNREGULATED] | | | | | | | [UNREGULAT | ED] | | | | | | |--|--|--|---|---|--|--|--|---|---|--|---|---| | MEAN
MAX
(WY)
MIN
(WY) | OCT
2.95
6.79
1957
.33
1955 | NOV
9.63
27.1
1953
.64
1955 | 4.68 | JAN
13.4
25.0
1953
3.42
1955 | FEB
14.5
25.5
1957
5.17
1954 | 21.8
37.0 | APR
20.3
42.2
1952
9.87
1955 | MAY
9.45
19.5
1953
3.50 | JUN
7.61
18.6
1951
1.58
1954 | JUL
3.18
7.16
1952
.20
1954 | AUG
11.9
64.0
1955
.088
1954 | SEP
2.02
5.88
1952
.040
1954 | | SUMMAR | Y STATIST | TICS | | WZ | ATER YEAR | RS 1951* - | 1957* | | | | | | | ANNUAL ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN INSTAN ANNUAL 10 PER 50 PER 90 PER | TOTAL MEAN T ANNUAL T ANNUAL T DAILY ME DAILY ME TANEOUS I TANEOUS I TANEOUS I TANEOUS I TANEOUS I CENT EXCE | MEAN MEAN MEAN MEAN MEAN MEAN MY MINIMUM MEAK FLOW MEAK STAGE LOW FLOW MINIMUM MEAK MEAK MEAK MEAK MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN | | 1 | 10.4
14.4
5.24
564
.01
.01
1370
7.03
.01
.82
11.12
20
5.0
.38 | Aug 13
aSep 26
Sep 26
Aug 15
Aug 15
aSep 26 | 1953
1954
1955
1954
1954
1955
1955
1955 | | | | | | | STATIST | ICS OF MO | NTHLY MEAN | DATA FOR V | ATER YEAR | S 1997* - | 1998, BY W | ATER YEAR | (WY) [REGU | LATED, UN | ADJUSTED] | | | | MEAN
MAX
(WY)
MIN
(WY) | 4.42 | NOV
10.4
10.4
1998
10.4
1998 | DEC
7.54
7.54
1998
7.54
1998 | JAN
23.4
23.4
1998
23.4
1998 | FEB
70.8
70.8
1998
70.8
1998 | MAR
46.4
46.4
1998
46.4
1998 | APR
20.9
25.0
1998
16.8
1997 | MAY
17.8
25.0
1998
10.6
1997 | JUN
11.0
14.7
1998
7.35
1997 | JUL
6.91
8.51
1998
5.30
1997 | AUG
4.64
7.32
1998
1.97
1997 | SEP
4.23
6.40
1998
2.05
1997 | | SUMMARY | STATIST | | | | FOR 1 | .998 WATER | YEAR | | | WATER YEA | ARS 1997 | * - 1998 | | ANNUAL
ANNUAL
HIGHEST
LOWEST
ANNUAL
INSTANT
INSTANT
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN | MEAN EAN EAN AN MINIMUM EAK FLOW EAK STAGE OW FLOW CFSM) EDS EDS | | | | 1.7 O
2.5 O
2.76 F
2.74 F | eb 5
ct 2
ct 1
eb 5
eb 5
ct 1 | | | 20.5
20.5
20.5
250
1.4
1.7
276
2.74
.74
1.61
21.92
38
8.3
2.1 | Aug 1
Aug 1
Feb
Feb | 1998
1998
5 1998
5 1997
13 1997
5 1998
5 1998
1 1997 | ^{*} Partial water year, March to September 1997. a Many days in 1954 and 1955. ### 01660500 BEAVERDAM RUN NEAR GARRISONVILLE, VA--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- March 1997 to current year. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | TIME | DIS
CHARG
INST
CUBI
FEE
PEF
SECC
(0006 | SE, SPE- C. CIF C CON- ET DUCT ANCION (US/O | IC WHO
- FIE
I- (STA
E AR
CM) UNI | ER LE LD TEMI ND- AT LD A TS) (DE | JRE A'
IR W.
3 C) (D: | MPER-
TURE
ATER
EG C)
0010) | BARO-
METRI
PRES-
SURI
(MM
OF
HG) | IC
-
E OXYG
DI
SOL
(MG | SC
EN, (P
S- C
VED SA
/L) AT | GEN,
IS-
DLVED
ER-
ENT
TUR-
TON)
301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | |-----------------------|--------------|---|--|--|-----------------------------------|------------------------------------|---|---|--|--|--|---|--| | OCT 1997
15 | 0840 | 2.9 | 9 38 | 6. | 7 11 | c 1 | 5.9 | 770 | 6. | 6 | 66 | 190 | 170 | | NOV | 0040 | 2.3 | , 30 | 0. | , 11 | | 5.9 | 770 | 0. | 0 | 00 | 190 | 170 | | 25 | 0900 | 8.3 | 38 | 6. | 7 | . 5 | 3.8 | 755 | 11. | 7 | 90 | K23 | K28 | | JAN 1998 | 0044 | 7.0 | - 40 | _ | 0 10 | F 1 | 1.1 | 7.47 | 1.0 | c | 99 | 67 | 70 | | 08
27 | 0844
0830 | 7.6
21 | 5 42
38 | 6.
6. | | | 3.8 | 747
742 | 10.
12. | | 99 | 67
K16 | 70
K4 | | 30 | 0845 | 103 | 35 | | | 5.5 | 6.0 | 757 | | | 101 | | | | *30 | 0846 | 103 | 35 | | | | 6.0 | 757 | 12. | | 01 | | | | FEB | | | | | | | | | | | | | | | 04 | 1145 | 80 | 35 | 6. | 6 3 | . 0 | 4.6 | 749 | 12. | 8 1 | 01 | | | | 24 | 0900 | 117 | 29 | 6. | 4 4 | . 0 | 6.6 | 752 | 12. | 2 1 | 01 | 67 | K40 | | MAR | | | | _ | _ | | | | | | | | | | 18 | 0900 | 30 | 33 | 7. | 0 5 | . 0 | 6.5 | 745 | 12. | 8 1 | 06 | 77 | K34 | | APR
21 | 0840 | 29 | 29 | 6. | 9 17 | 5 1. | 4.0 | 750 | 10. | 2 1 | .01 | к31 | 80 | | MAY | 0040 | 2,5 | 2,5 | ٠. | J 17. | . 5 | 1.0 | 750 | 10. | | .01 | KJI | 00 | | 12 | 0900 | 42 | 30 | 6. | 6 15 | .5 1 | 6.7 | 730 | 9. | 1 | 98 | 120 | 120 | | JUN | | | | | | | | | | | | | | | 17 | 0835 | 25 | 31 | 6. | 5 27 | . 5 2 | 0.6 | 760 | 7. | 5 | 84 | 140 | 160 | | JUL | | | | | | | | | | | | | | | 21 | 0845 | 7.6 | 33 | 6. | 7 24 | . 5 2 | 2.9 | 754 | 7. | 4 | 87 | 96 | 67 | | AUG
12 | 0020 | 7.0 | 33 | 6. | 4 25 | 0 0 | 2 0 | 752 | 5. | 0 | 71 | 56 | 65 | | SEP | 0830 | /. (|) 33 | ٥. | 4 25 | .0 2 | 3.8 | /52 | э. | 9 | / 1 | 50 | 0.5 | | 15 | 0915 | 5.7 | 7 34 | 6. | 6 24 | .3 2 | 2.6 | 754 | 6. | 1 | 72 | 260 | 320 | | | | | | • | | _ | | | | = | - | | | | DATE | D
SO
(| ITRO-
GEN
IS-
LVED
MG/L
S N)
0602) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | DIS-
SOLVED
(MG/L
AS N) | ORGANIO
TOTAL
(MG/L
AS N) | GEN H MONI C ORGA DIS (MO | S.
G/L
N) | PHOS-PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | (MG/
AS P | US
PHO,
E-
EED
L | | | | | | | | | | | | | | | | | | OCT 1997
15
NOV | | | <.010 | <.050 | <.015 | .31 | < | 20 | <.010 | <.010 | <.0 | 10 | | | 25 | | | <.010 | <.050 | <.020 | .24 | | 18 | <.010 | <.010 | .0 | 22 | | | JAN 1998
08 | | | <.010 | <.050 | <.020 | . 28 | | 22 | .012 | <.010 | ^ | 18 | | | 27 | | .29 | <.010 | .074 | .068 | .28 | | 22
22 | <.012 | <.010 | | 12 | | | 30 | | .31 | <.010 | .062 | .078 | .36 | | 25 | <.010 | <.010 | | 12 | | | 30 | | .34 | <.010 | .059 | .067 | .29 | | 28 | <.010 | <.010 | .0 | 14 | | | FEB | | .32 | <.010 | .114 | <.020 | .37 | | 21 | .038 | <.010 | .0 | 1 2 | | | 04
24 | | . 28 | <.010 | .066 | .050 | .31 | | 22 | <.010 | <.010 | <.0 | | | | MAR | | | | | | | | | | | | | | | 18
APR | | | <.010 | <.050 | .039 | . 27 | | 17 | .012 | <.010 | <.0 | 10 | | | 21 | | .24 | <.010 | .077 | .034 | .23 | | 16 | <.010 | <.010 | .0 | 10 | | | MAY
12 | | | <.010 | <.050 | .030 | .31 | .: | 17 | <.010 | <.010 | <.0 | 10 | | | JUN
17 | | | <.010 | <.050 | .041 | .33 | | 16 | <.010 | <.010 | .0 | 15 | | | JUL
21 | | .33 | <.010 | .069 | .048 | .31 | | 26 | <.010 | <.010 | .0 | | | | AUG
12 | | .33 | <.010 | .078 | .061 | .35 | | 25 | <.010 | <.010 | <.0 | 1.0 | | | SEP | | | ~.U±U | .070 | .001 | | | 23 | ~.UIU | ~.U±U | ×.0 | 10 | | | 15 |
| | .013 | <.050 | .040 | .36 | .: | 23 | .719 | <.010 | <.0 | 10 | | ^{*} Replicate sample. < Actual value is known to be less than the value shown. K Results based on colony count outside the acceptance range (non-ideal colony count). | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |---|---|--|---| | OCT 1997 01 02 03 04 05 06 07 08 09 11 12 13 14 15 15 15 15 18 18 18 18 18 18 18 20 21 22 23 24 25 26 27 28 29 30 31 NOV 1997 | 1200 1200 1200 1200 1200 1200 1200 1200 | .78 .75 .77 .80 .78 .78 .78 .78 .77 .76 .77 .77 .76 .77 .75 .75 .75 .75 .75 .76 .78 .79 .77 .77 .76 .78 .77 .77 .77 .76 .78 .75 .76 .78 .78 .79 .70 .77 .77 .77 .77 .77 .77 .77 .77 .77 | 19 21 14 13 20 24 18 18 19 29 17 21 6 3 10 24 14 155 69 116 57 34 28 172 40 24 25 17 24 22 20 30 29 11 11 10 | | 01 02 03 04 05 06 07 07 07 07 07 07 07 10 11 12 13 14 15 16 18 19 20 21 22 23 | 1200 1200 1200 1200 1200 1200 1115 1200 1400 1500 1600 2000 1200 1200 1200 1200 1200 12 | .91
.80
.79
.77
.77
.77
1.07
1.07
1.13
1.24
1.47
1.40
.23
1.07
1.00
.91
.85
.80
.80
.79
.78
.84
.80
.81
.79
.86
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80 | 30
41
4
13
13
38
50
114
54
156
576
214
78
65
58
113
39
14
9
42
30
25
15
18
17
39
11
14
15
15
15
15
15
15
15
15
15
15
15
15
15 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|--|---|---| | NOV 1997 25 25 25 25 26 27 28 29 30 | 0905
0906
0907
1200
1200
1200
1200
1200 | .82
.82
.80
.79
.80
.80
.79 | 2
2
2
101
34
24
24
28
27 | | DEC 1997 01 02 04 05 06 07 08 09 10 11 12 16 17 20 21 22 23 24 25 26 27 30 | 1200
1200
1200
1200
1200
1200
1200
1200 | .78 .79 .80 .83 .80 .89 .77 .78 .78 .80 .81 .79 .76 .77 .76 .77 .76 .77 .77 .85 .81 .79 .78 | 19 24 16 20 19 98 31 14 13 16 14 17 17 11 12 14 8 13 22 24 19 | | JAN 1998 02 03 04 05 06 08 08 08 10 11 12 13 14 16 17 18 20 23 | 1200 1200 1200 1200 1200 0843 0844 0845 1200 1200 1200 1200 1200 1200 1200 120 | .78 .77 .79 .79 .77 .80 .83 .83 .83 .80 .77 .77 .79 .78 .79 .78 .79 .77 .84 .79 .80 .80 .78 .77 .103 1.21 1.40 1.45 1.53 1.50 1.41 1.32 1.26 1.21 1.16 1.11 | 10 14 9 14 13 17 7 2 11 11 30 21 21 19 20 27 70 39 23 25 15 351 334 70 159 84 335 244 165 105 42 30 31 18 11 15 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|--|---|---| | JAN 1998 24 24 24 25 25 27 27 27 28 28 28 28 28 28 29 29 29 30 30 30 30 31 31 | 0015 0315 1200 0445 0715 1200 0843 0845 0847 1200 1200 1201 1300 1400 1500 1600 1700 1800 1900 2000 2100 0500 0900 01200 0825 0830 0853 0930 0853 0930 1200 1430 1900 0030 0630 1200 | 1.00
.96
.90
.96
.96
.96
1.00
1.00
1.00
1.00
2.09
2.01
2.07
2.19
2.29
2.19
2.29
2.19
2.09
2.09
2.09
2.09
2.09
2.05
1.97
1.93
1.70
1.70
1.63
1.63
1.61
1.58
1.52
1.46
1.40
1.37 | 164
309
40
331
345
17
2
4
2
318
378
64
465
316
224
172
154
132
41
79
57
48
120
97
69
49
16
11
10
7
15
10
10
10
10
10
10
10
10
10
10
10
10
10 | | FEB 1998 01 02 03 03 04 04 04 04 04 04 04 04 04 04 04 05 05 05 05 05 05 | 1200 1200 0930 1200 1530 0030 0530 0630 0730 1200 1230 1330 1355 1400 1410 1430 1530 1630 1630 0330 0230 0230 0330 0230 0530 0930 1000 1000 1005 1010 1030 1200 1530 | 1.20
1.09
1.03
1.03
1.05
1.01
1.14
1.16
1.21
1.27
1.49
1.55
1.70
1.75
1.75
1.80
1.83
1.89
1.94
1.99
2.00
2.27
2.41
2.50
2.60
2.70
2.70
2.70
2.69
2.69
2.58 | 59 30 27 49 12 15 19 22 19 25 170 57 78 51 78 82 82 73 73 57 47 117 219 246 193 197 205 207 191 52 114 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|--|---|--| | FEB 1998 05 05 06 06 06 07 07 07 07 10 11 12 13 14 15 17 17 17 18 | 1930 2330 0630 0930 1200 1500 2200 0500 1200 1200 1200 120 | 2.48 2.38 2.28 2.20 2.11 2.09 2.03 1.93 1.84 1.74 1.71 1.48 1.16 1.09 1.09 1.09 1.54 1.50 1.54 1.81 1.97 1.92 1.94 1.98 2.00 1.98 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 | 100
82
61
54
48
26
29
20
24
38
12
46
37
58
50
44
77
52
37
23
45
66
37
29
161
64
56
47
41
32
66
37
29
18
19
19
19
19
19
19
19
19
19
19
19
19
19 | | 01
02
03
04
05
06 | 1200
1200
1200
1200
1200
1200
1200 | 1.05
1.00
1.14
1.08
1.04
.99 | 21
20
20
19
7
16
24 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) |
---|--|--|---| | MAR 1998 08 09 09 09 09 09 10 11 12 13 14 15 16 17 18 18 19 20 20 20 21 | 1200 0615 0815 1030 1035 1040 1200 1215 2115 1200 1200 1200 1200 120 | 1.07 1.46 1.51 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.39 1.24 1.13 1.01 1.06 1.03 1.01 1.08 1.04 1.04 1.04 1.04 1.03 1.44 1.38 1.46 1.47 1.49 1.57 1.83 2.37 2.48 2.29 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.11 2.13 2.15 2.13 2.14 2.13 2.15 2.19 2.09 2.05 1.83 1.54 1.33 1.19 1.10 1.05 1.02 97 94 .93 | 23
54
39
27
20
17
21
37
10
12
26
9
4
20
25
14
20
15
8
9
10
19
21
17
23
20
15
23
20
40
40
40
40
40
40
40
40
40
4 | | 01 02 03 04 05 06 07 08 09 09 10 11 12 13 | 1200
1200
1200
1200
1200
1200
1200
1200 | .92
.90
.88
1.10
1.01
.96
.93
.92
.98
.91
.92
.90
1.36
1.36
1.13 | 16
31
24
61
34
42
34
33
36
184
161
128
16
22
38
38 | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDEI
(MG/L) | |----------------|--------------|-------------------------------------|--| | APR 1998 | | | | | 14
15 | 1200
1200 | 1.00
.96 | 39
43 | | 16 | 1200 | .94 | 75 | | 17 | 1200 | 1.12 | 142 | | 18 | 1200 | 1.01 | 124 | | 19
20 | 1200
1200 | .98
1.07 | 101
162 | | 21 | 0810 | 1.07 | 16 | | 21 | 0815 | 1.05 | 9 | | 21
21 | 0830
1200 | 1.05 | 20
24 | | 22 | 1200 | 1.00
.97 | 24
96 | | 23 | 1200 | .94 | 85 | | 24 | 1200 | .91 | 99 | | 25
26 | 1200
1200 | .87
.86 | 130
171 | | 27 | 1200 | .86 | 82 | | 28 | 1200 | .82 | 19 | | 29 | 1200
1200 | .80
.81 | 54 | | 30
MAY 1998 | 1200 | .81 | 43 | | 01 | 1200 | .80 | 41 | | 02 | 1200 | .98 | 69 | | 03 | 1200
1200 | 1.13
1.17 | 25
37 | | 05 | 1200 | 1.12 | 25 | | 06 | 1200 | 1.13 | 28 | | 07
08 | 1200
1200 | 1.04 | 50
50 | | 09 | 1200 | 1.20
1.24 | 24 | | 10 | 1200 | 1.16 | 19 | | 11 | 1200 | 1.08 | 17 | | 12
12 | 0845
0850 | 1.18
1.18 | 17
9 | | 12 | 0855 | 1.18 | 15 | | 12 | 1200 | 1.18 | 20 | | 13
14 | 1200
1200 | 1.17
1.09 | 19
8 | | 15 | 1200 | 1.03 | 19 | | 16 | 1200 | .96 | 23 | | 17
18 | 1200
1200 | .92
.87 | 33
53 | | 19 | 1200 | .83 | 40 | | 20 | 1200 | .81 | 17 | | 21 | 1200 | .80 | 32 | | 22 | 1200
1200 | .79
.76 | 31
32 | | 24 | 1200 | .76 | 39 | | 25 | 1200 | .82 | 55 | | 26
27 | 1200
1200 | .82
.80 | 48
59 | | 28 | 1200 | .73 | 64 | | 29 | 1200 | .74 | 94 | | 30 | 1200 | .79 | 40 | | 31
JUN 1998 | 1200 | .79 | 59 | | 01 | 1200 | .78 | 31 | | 02 | 1200 | .78 | 52 | | 03 | 1200
1200 | .78
.78 | 60
38 | | 05 | 1200 | .78 | 39 | | 06 | 1200 | .78 | 51 | | 07 | 1200 | .78 | 29 | | 08
09 | 1200
1200 | .78
.77 | 31
43 | | 10 | 1200 | .90 | 72 | | 11 | 1200 | .80 | 102 | | 12
13 | 1200
1200 | .80
.79 | 68
63 | | 14 | 1200 | .79 | 89 | | 15 | 1200 | .84 | 56 | | | | | | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |----------------|--------------|-------------------------------------|---| | JUN 1998 | 1200 | 0.0 | 23 | | 16
17 | 0815 | .92
1.03 | 25 | | 17 | 0820 | 1.03 | 17 | | 17 | 0825 | 1.03 | 24 | | 17 | 1200 | .99 | 33 | | 18 | 1200 | .93 | 95 | | 19
20 | 1200
1200 | .89
.87 | 55
36 | | 21 | 1200 | .83 | 61 | | 22 | 1200 | .80 | 62 | | 23 | 1200 | .79 | 52 | | 24 | 1200 | 1.23 | 40 | | 25
25 | 1200
1400 | 1.12
1.11 | 34
17 | | 25 | 2300 | 1.06 | 10 | | 26 | 0500 | 1.03 | 10 | | 26 | 1200 | 1.01 | 87 | | 26 | 1300
1200 | 1.00
.93 | 9 | | 27
28 | 1200 | . 89 | 14
22 | | 29 | 1200 | .88 | 31 | | 30 | 1200 | .85 | 61 | | JUL 1998 | 1000 | 0.0 | 0.0 | | 01
02 | 1200
1200 | .83
.80 | 29
25 | | 03 | 1200 | .78 | 37 | | 04 | 1200 | .77 | 52 | | 05 | 1200 | .78 | 51 | | 06 | 1200 | .77 | 45 | | 07
08 | 1200
1200 | .78
.78 | 29
68 | | 09 | 1200 | .78 | 50 | | 10 | 1200 | .78 | 60 | | 11 | 1200 | . 78 | 88 | | 12
13 | 1200
1200 | .78
.77 | 59
76 | | 14 | 1200 | .77 | 80 | | 15 | 1200 | .77 | 61 | | 16 | 1200 | . 77 | 84 | | 17
18 | 1200
1200 | .77
.78 | 180
138 | | 19 | 1200 | .78 | 97 | | 20 | 1200 | .77 | 43 | | 21 | 0822 | .82 | 28 | | 21 | 0825 | .82 | 3 | | 21
21 | 0830
1200 | .82
.77 | 11
21 | | 22 | 1200 | .77 | 88 | | 23 | 1200 | .77 | 68 | | 24 | 1200 | .76 | 52 | | 25
26 | 1200
1200 | .76
.76 | 87
88 | | 27 | 1200 | .76 | 54 | | 28 | 1200 | .78 | 54 | | 29 | 1200 | .79 | 146 | | 30
31 | 1200 | .77 | 61
50 | | 31
AUG 1998 | 1200 | .78 | 58 | | 01 | 1200 | .77 | 54 | | 02 | 1200 | .78 | 61 | | 03 | 1200 | .78 | 50 | | 04
05 | 1200
1200 | .77
.77 | 52
36 | | 06 | 1200 | .77 | 67 | | 07 | 1200 | .77 | 58 | | 08 | 1200 | .77 | 44 | | 09
10 | 1200
1200 | .78
.78 | 55
53 | | 11 | 1200 | .78 | 66 | | 12 | 0810 | .82 | 36 | | 12 | 0815 | .82 | 7 | | | | | | | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |----------|--------------|-------------------------------------|---| | AUG 1998 | | | | | 12 | 0820 | .82 | 16 | | 12 | 1200 | .77 | 27 | | 13 | 1200 | .77 | 55 | | 14 | 1200 | .77 | 65 | | 15 | 1200 | .77 | 61 | | 16 | 1200 | .77 | 57 | | 17 | 1200 | .77 | 57 | | 18 | 1200 | .78 | 106 | | 19 | 1200 | .77 | 64 | | 20 | 1200 | .77 | 76 | | 21 | 1200 | .77 | 69 | | 22 | 1200 | .77 | 119 | | 23 | 1200 | .77 | 89 | | 24 | 1200 | .77 | 77 | | 25
26 | 1200
1200 | .76
.77 | 61 | | 26 | | .77 | 88 | | 27 | 1200
1200 | . 76 | 46
42 | | 29 | 1200 | .77 | 36 | | 30 | 1200 | . 78 | 38 | | 31 | 1200 | .78 | 34 | | SEP 1998 | 1200 | . / / | 34 | | 01 | 1200 | . 77 | 26 | | 02 | 1200 | .77 | 32 | | 03 | 1200 | .77 | 32 | | 04 | 1200 | .76 | 35 | | 05 | 1200 | .78 | 39 | | 06 | 1200 | .78 | 13 | | 07 | 1200 | .77 | 39 | | 15 | 0855 | 1.78 | 25 | | 15 | 0900 | 1.78 | 8 | | 15 | 0905 | 1.78 | 8 | | | | | | POTOMAC RIVER BASIN 01660500 BEAVERDAM RUN NEAR GARRISONVILLE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 MEAN MEAN MEAN CONCEN- SEDIMENT MEAN CONCEN- SEDIMENT MEAN CONCEN- SEDIMENT MEAN DISCHARGE TRATION DISCHARGE DISCHARGE TRATION DISCHARGE DISCHARGE TRATION DISCHARGE DAY (CFS) (MG/L) (TONS/DAY) (CFS) (MG/L) (TONS/DAY) (CFS) (MG/L) (TONS/DAY) OCTOBER NOVEMBER DECEMBER 1.8 .02 13 12 7.2 18 .36 9.0 7.7 7.6 .15 7.4 7.6 8.2 .02 1.7 4 6 3 20 .40 3 .34 3 17 2.8 .02 .31 3 14 5 2.8 4 .03 7.3 10 .19 8.4 .37 16 3.2 5 .04 e6.0 19 e.31 8.5 6.7 7.1 3.1 4 .03 e29 81 e8.0 56 . 47 8 4 .04 18 58 2.8 26 3.3 .04 13 28 1.0 10 3.0 5 .04 11 11 .33 7.7 10 .21 10 9 11 3.2 4 .04 7.2 11 12 3.6 5
.05 10 25 .72 7.0 10 .19 13 3.6 3 .03 10 23 6.9 10 .19 3.2 .03 19 .68 6.8 15 3.2 2 .02 11 13 .38 6.6 11 .19 16 4.0 4 .05 10 15 .40 6.8 11 .20 9.6 15 17 7.5 e6.8 17 5.6 8 .20 .39 11 .22 13 18 11 .52 .42 9 e.17 3.6 19 10 .10 8.7 27 .65 5.9 20 3.1 8 .06 8.8 12 .29 6.1 6 .10 .06 9.6 13 21 2.9 8 .34 6.1 7 .11 2.2 3.1 7 .05 12 9.6 16 .53 6.5 .12 23 8 .07 .08 5 13 3.7 8 .08 8.4 10 .24 6.9 6 7.9 25 9 .18 8.4 4 .09 12 10 .34 7.8 7.5 12 .26 5.8 11 . 25 26 8.8 25 8.6 2.7 12 .24 8.3 24 .54 8.8 8 .19 .09 23 .54 8.9 28 6.0 6 5 8.6 .15 .58 29 7.3 .10 8.5 25 8.0 5 .11 30 6.9 5 .09 8.6 24 .56 8.3 4 .09 31 7.2 6 .12 7.9 .08 TOTAL 137.0 2.74 312.8 22.62 233.7 7.86 ---------JANUARY FEBRUARY MARCH 1 2 7.0 7.2 5.3 2.3 .06 47 42 30 28 .06 28 26 36 28 3 2.6 7.2 .09 30 18 1.5 39 25 7.5 4 5 07 97 32 11 35 21 1.9 4 250 93 30 .08 136 .83 10 7.2 7.4 173 117 6 7 4 0.8 42 20 26 17 1.2 4 .07 38 23 24 12 8 7.8 .07 82 54 12 7.6 7.2 .16 5.5 2.3 9 8 7 58 51 8 0 74 29 10 .14 44 51 6.0 68 13 7.3 7.2 .16 8.2 85 50 11 8 36 2.0 2.8 8 12 .16 36 101 38 11 1.1 7.1 9 .18 30 91 13 14 15 .30 25 82 5.6 27 23 1.6 15 10 45 1.3 21 71 4.1 23 16 .98 19 2.4 19 .96 16 13 40 1.4 46 18 .59 8.9 24 55 84 19 18 .69 17 14 18 8.5 16 146 73 29 28 15 1.2 5 3 19 8.5 16 .37 108 18 71 2.0 3 8 7.8 3.0 75 4.9 20 76 21 15 .31 15 21 7.4 63 1.2 58 2.0 3 1 177 66 35 e7.0 344 e6.6 43 20 2.3 5.7 131 7.0 19 23 e25 95 e6.8 57 33 91 13 24 20 110 6.2 110 21 6.1 65 11 1.9 25 23 3.4 48 181 11 86 15 1.5 11 20 1.3 13 2.2 26 23 60 38 22 2.2 182 46 28 24 31 2.8 127 285 85 37 25 2.5 2.8 24 1.8 24 19 1439 20 26 2.8 1.3 1.4 101.16 144 67 724.2 43 15 13 18 2.3 161.32 --- --- 1983 --- --- --- --- 292.5 29 30 31 TOTAL e Estimated. POTOMAC RIVER BASIN 01660500 BEAVERDAM RUN NEAR GARRISONVILLE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | | MEAN | | | MEAN | | | MEAN | | |-------|-----------|---------|------------|-----------|---------|------------|-----------|---------|------------| | | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | | | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | | DAY | (CFS) | (MG/L) | (TONS/DAY) | (CFS) | (MG/L) | (TONS/DAY) | (CFS) | (MG/L) | (TONS/DAY) | | | | APRIL | | | MAY | | | JUNE | | | 1 | 18 | 16 | .77 | 17 | 33 | 1.9 | 8.2 | 23 | .51 | | 2 | 17 | 22 | 1.0 | 31 | 35 | 2.8 | 8.3 | 32 | .71 | | 3 | 15 | 18 | .75 | 42 | 16 | 1.8 | 8.3 | 36 | .81 | | 4 | 26 | 32 | 2.5 | 46 | 18 | 2.3 | 8.3 | 27 | .59 | | 5 | 28 | 28 | 2.1 | 41 | 15 | 1.6 | 8.5 | 27 | .61 | | 6 | 23 | 29 | 1.8 | 40 | 16 | 1.7 | 8.5 | 31 | .70 | | 7 | 20 | 25 | 1.3 | 34 | 25 | 2.3 | 8.7 | 21 | . 49 | | 8 | 18 | 23 | 1.1 | 49 | 38 | 5.2 | 8.1 | 22 | .47 | | 9 | 42 | 47 | 7.3 | 53 | 19 | 2.7 | 8.2 | 30 | .67 | | 10 | 64 | 18 | 3.1 | 43 | 11 | 1.3 | 13 | 48 | 1.7 | | 11 | 51 | 15 | 2.0 | 36 | 9 | .92 | 9.5 | 63 | 1.6 | | 12 | 39 | 22 | 2.4 | 43 | 10 | 1.2 | 10 | 48 | 1.3 | | 13 | 31 | 23 | 1.9 | 45 | 10 | 1.2 | 11 | 45 | 1.3 | | 14 | 26 | 23 | 1.6 | 38 | 6 | .62 | 9.8 | 55 | 1.5 | | 15 | 24 | 27 | 1.7 | 31 | 10 | .85 | 11 | 37 | 1.1 | | 16 | 21 | 44 | 2.5 | 24 | 13 | .88 | 19 | 18 | .92 | | 17 | 29 | 72 | 5.8 | 20 | 19 | 1.1 | 25 | 24 | 1.6 | | 18 | 28 | 66 | 5.0 | 16 | 28 | 1.2 | 20 | 54 | 2.8 | | 19 | 26 | 58 | 4.1 | 14 | 22 | .83 | 16 | 38 | 1.7 | | 20 | 33 | 59 | 5.3 | 12 | 12 | .38 | 15 | 27 | 1.1 | | 21 | 28 | 15 | 1.1 | 10 | 18 | .49 | 11 | 37 | 1.1 | | 22 | 24 | 41 | 2.6 | 9.5 | 19 | .49 | 9.6 | 38 | .99 | | 23 | 21 | 44 | 2.5 | 8.3 | 20 | .44 | 10 | 32 | .87 | | 24 | 19 | 51 | 2.6 | 8.4 | 24 | .56 | 45 | 24 | 3.0 | | 25 | 17 | 67 | 3.0 | 12 | 32 | 1.0 | 38 | 15 | 1.6 | | 26 | 15 | 78 | 3.2 | 11 | 31 | .89 | 27 | 6 | .41 | | 27 | 15 | 40 | 1.7 | 9.0 | 36 | .88 | 20 | 8 | .42 | | 28 | 12 | 14 | .46 | 5.6 | 42 | .63 | 17 | 12 | .55 | | 29 | 11 | 24 | .73 | 7.0 | 51 | .94 | 16 | 17 | .72 | | 30 | 10 | 23 | .66 | 9.3 | 29 | .74 | 13 | 26 | .93 | | 31 | | | | 8.6 | 33 | .76 | | | | | TOTAL | 751 | | 72.57 | 773.7 | | 40.60 | 441.0 | | 32.77 | POTOMAC RIVER BASIN 01660500 BEAVERDAM RUN NEAR GARRISONVILLE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | |-------|----------------------------|--------------------------------------|-------------------------------------|----------------------------|--------------------------------------|-------------------------------------|----------------------------|--------------------------------------|-------------------------------------| | | | JULY | | | AUGUST | | SE | EPTEMBER | | | 1 | 12 | 15 | .50 | 7.3 | 14 | .28 | 7.2 | 15 | . 29 | | 2 | 9.8 | 13 | .34 | 7.2 | 15 | .30 | 7.4 | 17 | .35 | | 3 | 8.6 | 17 | .39 | 7.2 | 13 | .26 | 7.4 | 18 | .36 | | 4 | 8.5 | 22 | .51 | 7.1 | 13 | .25 | 7.3 | 20 | .40 | | 5 | 8.8 | 22 | .52 | 7.1 | 11 | .22 | 7.3 | 23 | . 45 | | 6 | 8.6 | 18 | .43 | 7.0 | 17 | .31 | 7.6 | 24 | .48 | | 7 | 8.5 | 14 | .32 | 7.0 | 16 | .30 | 7.5 | 24 | .48 | | 8 | 9.1 | 23 | .56 | 7.2 | 13 | .25 | 7.8 | 24 | .50 | | 9 | 8.8 | 20 | .48 | 7.2 | 15 | .30 | 7.6 | 29 | .60 | | 10 | 8.4 | 23 | .51 | 7.3 | 16 | .31 | 7.7 | 30 | .63 | | 11 | 8.5 | 27 | .63 | 7.4 | 18 | .35 | 7.4 | 34 | .67 | | 12 | 8.5 | 21 | .48 | 7.3 | 10 | .20 | 6.1 | 34 | .55 | | 13 | 8.3 | 23 | .52 | 7.0 | 16 | .30 | 5.9 | 25 | .40 | | 14 | 8.3 | 23 | .51 | 7.1 | 20 | .39 | 5.8 | 10 | .15 | | 15 | 8.3 | 18 | .41 | 7.1 | 21 | .40 | 5.8 | 17 | .27 | | 16 | 8.3 | 24 | .55 | 7.1 | 20 | .39 | 5.7 | 23 | .36 | | 17 | 8.5 | 41 | .94 | 8.1 | 23 | .51 | 5.5 | 26 | .40 | | 18 | 8.7 | 33 | .77 | 8.3 | 34 | .76 | 5.7 | 26 | .41 | | 19 | 8.7 | 21 | .49 | 7.7 | 27 | .56 | 5.9 | 22 | .36 | | 20 | 8.3 | 10 | .22 | 7.7 | 29 | .61 | 5.9 | 18 | .28 | | 21 | 7.9 | 6 | .12 | 7.8 | 31 | .64 | 5.7 | 21 | .33 | | 22 | 8.2 | 15 | .33 | 7.6 | 45 | .92 | 6.0 | 13 | .20 | | 23 | 8.3 | 14 | .31 | 7.4 | 39 | .78 | 5.7 | 13 | .21 | | 24 | 8.1 | 12 | .26 | 7.2 | 34 | .65 | 5.7 | 19 | . 29 | | 25 | 8.0 | 18 | .39 | 7.1 | 30 | .58 | 5.9 | 23 | .36 | | 26 | 7.8 | 19 | .39 | 7.2 | 36 | .71 | 5.9 | 21 | .33 | | 27 | 7.6 | 13 | .27 | 7.1 | 24 | .45 | 6.0 | 23 | .37 | | 28 | 8.5 | 13 | .30 | 7.0 | 21 | .39 | 5.5 | 28 | .42 | | 29 | 8.1 | 14 | .30 | 7.2 | 19 | .36 | 5.5 | 27 | .41 | | 30 | 7.7 | 15 | .31 | 7.4 | 19 | .39 | 5.7 | 40 | .61 | | 31 | 8.2 | 14 | .31 | 7.4 | 18 | .35 | | | | | TOTAL | 263.9 | | 13.37 | 226.8 | | 13.47 | 192.1 | | 11.92 | | YEAR | 7478.2 | | 772.90 | | | | | | | ### 01660810 UPPER MACHODOC CREEK AT DAHLGREN, VA LOCATION.--Lat 38°19'10" long 77°02'08", Hydrologic Unit 02070011, on pier 350 ft south of security gate at intersection of Tisdale Road and° Welch° Road, at the Naval Surface Warfare Center, Dahlgren Laboratory, in Dahlgren, and 0.5 mi upstre°am from confluence of Potomac River. PERIOD OF RECORD. -- October 1992 to September 1998 (discontinued). GAGE.--Water-stage recorder. Datum of gage is 4.86 ft below sea level; gage readings have been adjusted to sea level. REMARKS. -- Records good. EXTREMS FOR PERIOD OF RECORD.--Maximum elevation, 5.86 ft, Sept. 6, 1996. Minimum elevation, -3.31 ft, Apr. 1, 1997 EXTREMES FOR CURRENT YEAR.--Maximum elevation, 3.87 ft, Feb. 5; minimum, -2.17 ft, Dec. 31. ELEVATION, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | |-------|------|------|------|-------|------|-------|------|-------|------|-------|------|-------| | | OCT | OBER | NOVE | MBER | DEC | EMBER | JAÌ | WARY | FEBI | RUARY | MA | ARCH | | 1 | 1.12 | 68 | 2.74 | .86 | 2.16 | 72 | .05 | -2.13 | 2.27 | .13 | 2.84 | .54 | | 2 | 1.78 | 01 | 2.80 | 1.02 | 1.05 | -1.16 | .50 | -1.62 | 2.40 | .38 | 2.85 | .39 | | 3 | 1.95 | .19 | 2.17 | .55 | 1.24 | 62 | .40 | -1.65 | 2.27 | .36 | 2.21 | .13 | | 4 | 1.96 | . 25 | 1.75 | 16 | 1.24 | 57 | .81 | -1.23 | 3.62 | .61 | 2.23 | .19 | | 5 | 1.93 | .25 | 1.49 | 17 | 1.57 | 35 | 1.23 | 81 | 3.87 | 2.07 | 2.07 | .15 | | 6 | 1.60 | .01 | 1.88 | .14 | 1.02 | 52 | 1.82 | 11 | 3.78 | 2.37 | 1.94 | 13 | | 7 | 1.47 | 05 | 2.62 | .87 | .56 | -1.14 | 1.84 | .03 | 3.62 | 1.77 | 2.30 | .57 | | 8 | 1.97 | .19 | 3.30 | 1.75 | .90 | -1.39 | 2.26 | .32 | 3.18 | 1.59 | 2.64 | .35 | | 9 | 1.93 | .34 | 2.47 | .76 | 1.70 | 66 | 2.20 | .53 | 3.16 | 1.26 | 3.52 | 1.62 | | 10 | 1.83 | .35 | 2.23 | .55 | 2.24 | .17 | 1.99 | .19 | 2.72 | .42 | 2.71 | -1.26 | | 11 | 1.99 | .05 | 2.04 | .17 | 2.28 | .32 | 2.34 | .36 | 2.22 | .12 | .18 | -1.63 | | 12 | 2.29 | .52 | 1.95 | .03 | 2.31 | .33 | 2.12 | .33 | 2.39 | .10 | .28 | -1.37 | | 13 | 2.31 | .39 | 2.13 | .06 | 2.24 | .13 | 2.29 | .21 | 1.57 | 42 | 1.13 | 74 | | 14 | 2.40 | .34 | 2.69 | .46 | 1.69 | 62 | 1.28 | 38 | 1.42 | 28 | 1.57 | 29 | | 15 | 2.36 | 19 | 2.71 | .46 | 1.37 | 55 | 1.80 | .15 | 1.97 | .01 | 1.07 | 93 | | 16 | 2.13 | .02 | 2.05 | 59 | 1.37 | 51 | 1.99 | . 23 | 2.10 | .40 | 1.17 | 48 | | 17 | 2.90 | .58 | 1.07 | 78 | 1.66 | 42 | 2.81 | .47 | 3.66 | .89 | 1.76 | 24 | | 18 | 2.90 | .83 | 1.49 | 43 | 1.73 | .10 | 2.62 | 1.00 | 3.15 | 1.46 | 2.05 | .17 | | 19 | 2.84 | .93 | 1.72 | 01 | 1.79 | .03 | 2.67 | .90 | 2.44 | 1.06 | 1.85 | .10 | | 20 | 2.64 | .90 | 1.66 | .24 | 1.03 | 50 | 2.03 | .50 | 2.25 | .85 | 2.52 | .25 | | 21 | 2.64 | .78 | 1.58 | .15 | 1.51 | 35 | 1.85 | .02 | 1.83 | .05 | 3.56 | 1.93 | | 22 | 2.34 | .19 | 1.62 | .37 | 1.88 | .47 | 2.51 | 1.01 | 1.60 | 19 | 2.55 | 1.06 | | 23 | 1.37 | 27 | 2.00 | .32 | 1.37 | .10 | 3.12 | 1.47 | 2.87 | .35 | 2.56 | .76 | | 24 | 1.98 | .33 | 1.84 | 45 | 2.39 | .32 | 2.50 | .40 | 2.40 | -1.24 | 1.92 | 32 | | 25 | 1.73 | .06 | 1.15 | 76 | 2.46 | 1.06 | 1.42 | 47 | 1.26 | -1.42 | 1.80 | 51 | | 26 | 2.73 | .12 | 1.31 | 41 | 2.12 | .42 | 1.86 | 09 | 2.18 | 01 | 1.94 | 29 | | 27 | 2.60 | .95 | .37 |
-1.41 | 1.65 | 03 | 1.93 | 17 | 2.80 | .37 | 1.63 | -1.00 | | 28 | 1.30 | 80 | 1.01 | 88 | 1.62 | 85 | 2.97 | .65 | 2.92 | .57 | 1.38 | -1.04 | | 29 | 1.47 | 21 | 1.88 | 23 | 2.78 | .59 | 3.60 | .95 | | | 1.56 | 93 | | 30 | 1.25 | 44 | 2.41 | .55 | 2.46 | 18 | 3.59 | .61 | | | 1.72 | 62 | | 31 | 1.94 | 09 | | | .51 | -2.17 | 2.03 | .13 | | | 1.99 | 42 | | MONTH | 2.90 | 80 | 3.30 | -1.41 | 2.78 | -2.17 | 3.60 | -2.13 | 3.87 | -1.42 | 3.56 | -1.63 | ### 01660810 UPPER MACHODOC CREEK AT DAHLGREN, VA--Continued ELEVATION, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | |-------|------|------|------|------|------|------|------|------|------|------|------|-------| | | AF | PRIL | М | AY | JU | NE | JU | ILY | AUG | UST | SEPT | EMBER | | 1 | 1.78 | 41 | 1.97 | 30 | 2.05 | 06 | 1.30 | 41 | 2.41 | .83 | 2.40 | .65 | | 2 | 1.83 | 32 | 2.47 | .41 | 2.36 | .11 | 1.64 | .06 | 2.17 | .55 | 2.49 | 1.21 | | 3 | 2.10 | .08 | 2.13 | .63 | 2.28 | .46 | 1.75 | .24 | 2.14 | .61 | 2.49 | .40 | | 4 | 2.93 | .69 | 2.39 | .60 | 1.80 | .13 | 2.25 | . 44 | 2.14 | .46 | 2.65 | .57 | | 5 | 1.86 | .20 | 2.50 | .98 | 1.81 | 06 | 2.26 | 03 | 2.21 | .44 | 2.48 | .31 | | 6 | 2.10 | .58 | 2.36 | .28 | 1.55 | 81 | 2.00 | .37 | 2.39 | .57 | 2.31 | .03 | | 7 | 2.18 | .50 | 2.34 | .53 | .96 | 89 | 2.20 | .62 | 2.38 | .51 | 1.93 | 24 | | 8 | 2.28 | .38 | 2.68 | 1.09 | 1.01 | 62 | 2.33 | .39 | 2.39 | .48 | 1.58 | 44 | | 9 | 2.65 | .63 | 2.80 | .16 | 1.49 | 15 | 2.29 | .14 | 2.42 | .32 | 1.55 | 52 | | 10 | 2.38 | .71 | 2.39 | .73 | 2.44 | .74 | 2.35 | .15 | 2.43 | .25 | 1.57 | 42 | | 11 | 2.86 | .24 | 3.09 | 1.24 | 2.53 | .19 | 2.23 | .15 | 2.30 | .19 | 1.94 | 17 | | 12 | 2.21 | .35 | 2.93 | 1.28 | 2.25 | .38 | 2.20 | .15 | 2.02 | .05 | 1.97 | .04 | | 13 | 2.19 | .51 | 3.17 | 1.54 | 2.43 | .44 | 2.30 | .14 | 2.53 | .10 | 2.19 | .15 | | 14 | 2.42 | .62 | 3.53 | 1.23 | 2.05 | .27 | 2.48 | .56 | 2.80 | .96 | 2.46 | .67 | | 15 | 2.41 | .64 | 2.88 | .70 | 2.45 | .46 | 2.16 | .26 | 2.23 | .42 | 2.37 | .59 | | 16 | 2.42 | .64 | 2.31 | .45 | 2.53 | .51 | 2.09 | .10 | 2.16 | .31 | 2.11 | .10 | | 17 | 2.36 | .31 | 2.28 | .48 | 2.05 | .16 | 2.07 | .08 | 2.14 | .18 | 1.76 | .04 | | 18 | 1.00 | 83 | 2.23 | .44 | 1.90 | 11 | 1.89 | 16 | 1.98 | 09 | 2.21 | .52 | | 19 | 2.08 | 01 | 1.92 | .15 | 2.09 | .07 | 2.29 | .27 | 1.94 | 48 | 2.59 | .95 | | 20 | 1.30 | 50 | 2.21 | .28 | 2.10 | 04 | 2.31 | 04 | 2.16 | .48 | 2.61 | .72 | | 21 | 1.90 | 24 | 2.33 | .47 | 2.13 | 08 | 1.92 | 36 | 2.22 | .11 | 2.32 | .54 | | 22 | 2.31 | .36 | 2.25 | 18 | 2.26 | .14 | 1.88 | 30 | 1.99 | 08 | 2.23 | .37 | | 23 | 2.81 | .83 | 2.30 | .00 | 2.47 | .18 | 1.96 | 07 | 2.23 | .32 | 1.85 | .19 | | 24 | 2.96 | .76 | 2.34 | 30 | 2.53 | 01 | 1.97 | 25 | 2.24 | .14 | 2.38 | .69 | | 25 | 2.77 | 30 | 2.35 | .05 | 2.25 | 06 | 2.03 | 01 | 1.77 | 05 | 2.13 | .54 | | 26 | 2.17 | 28 | 2.49 | 16 | 2.14 | 04 | 2.14 | .22 | 1.92 | 06 | 1.71 | .26 | | 27 | 2.47 | 14 | 2.28 | .02 | 1.85 | 03 | 1.95 | .22 | 2.36 | .49 | 1.78 | .27 | | 28 | 2.39 | 39 | 2.36 | .04 | 2.61 | 08 | 2.14 | .43 | 2.93 | 1.26 | 1.46 | .02 | | 29 | 2.01 | 39 | 2.25 | .09 | 2.80 | 1.15 | 1.74 | .19 | 2.81 | 1.24 | 2.12 | .36 | | 30 | 2.12 | 18 | 2.06 | .10 | 1.86 | .27 | 1.98 | .22 | 2.04 | .36 | | | | 31 | | | 1.81 | .02 | | | 2.00 | .38 | 2.11 | .85 | | | | MONTH | 2.96 | 83 | 3.53 | 30 | 2.80 | 89 | 2.48 | 41 | 2.93 | 48 | | | ### 01664000 RAPPAHANNOCK RIVER AT REMINGTON, VA LOCATION.--Lat 38°31'50", long 77°48'50", Fauquier County, Hydrologic Unit 02080103, on left bank 80 ft upstream from bridge on alternate U.S. Highway 29, at Remington, 0.3 mi upstream from Tinpot Run, 0.4 mi downstream from Ruffans Run, and 2.5 mi downstream from Hazel River. DRAINAGE AREA. -- 620 mi². PERIOD OF RECORD. -- October 1942 to current year. REVISED RECORDS. -- WSP 1171: 1944. WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 252.53 ft above sea level. Prior to Nov. 21, 1951, nonrecording gage at bridge 80 ft downstream at same datum. REMARKS.--No estimated daily discharges. Records good. National Weather Service gage-height telemeter at station. Maximum discharge, $90,000 \text{ ft}^3/\text{s}$, from rating curve extended above $43,000 \text{ ft}^3/\text{s}$ on basis of slope-area measurement of peak flow. Minimum gage height, 2.31 ft, Sept. 13, 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum flood since at least 1828, that of Oct. 16, 1942. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 6,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|------------------|---------|------|-----------------------------------|---------------------| | Nov. 8 | 0730 | 12,700 | 16.49 | Feb. 18 | 1115 | 16,800 | 18.43 | | Jan. 9 | 0700 | 13,600 | 16.65 | Mar. 19 | 1130 | 6,280 | 11.21 | | Jan. 23 | 2200 | 7,140 | 11.99 | Mar. 21 | 1700 | *17,600 | *18.84 | | Jan. 29 | 0415 | 15,100 | 17.50 | Apr. 10 | 0245 | 6,660 | 11.56 | | Feb. 5 | 1415 | 14,600 | 17.20 | May 8 | 2345 | 12,400 | 16.01 | Minimum discharge, 15 ft³/s, Sept. 15, 17, 18. | | | DISCHAR | GE, IN CU | BIC FEET | | ID, WATER
LY MEAN VA | | BER 1997 | TO SEPTEM | BER 1998 | | | |-------|------|---------|-----------|----------|-------|-------------------------|-------|----------|-----------|----------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 221 | 187 | 400 | 463 | 2030 | 1700 | 1220 | 839 | 633 | 453 | 82 | 25 | | 2 | 160 | 988 | 374 | 465 | 1710 | 1600 | 1500 | 1520 | 632 | 387 | 74 | 24 | | 3 | 134 | 924 | 341 | 508 | 1530 | 1560 | 1170 | 1570 | 549 | 335 | 67 | 23 | | 4 | 122 | 544 | 339 | 576 | 4470 | 1390 | 1300 | 2060 | 514 | 311 | 60 | 20 | | 5 | 113 | 394 | 361 | 687 | 13200 | 1280 | 1540 | 1980 | 513 | 306 | 57 | 18 | | 6 | 105 | 320 | 340 | 679 | 7100 | 1200 | 1210 | 2060 | 510 | 297 | 51 | 18 | | 7 | 96 | 2580 | 313 | 732 | 3610 | 1130 | 1110 | 1610 | 488 | 270 | 49 | 17 | | 8 | 91 | 8640 | 301 | 3530 | 2680 | 1910 | 1070 | 8040 | 462 | 276 | 45 | 22 | | 9 | 86 | 2760 | 299 | 9740 | 2140 | 4970 | 1830 | 7400 | 447 | 342 | 46 | 21 | | 10 | 84 | 1770 | 323 | 3010 | 1860 | 3440 | 4190 | 3200 | 609 | 314 | 55 | 23 | | 11 | 85 | 1310 | 394 | 2010 | 1680 | 2280 | 2110 | 2450 | 763 | 274 | 96 | 23 | | 12 | 83 | 1060 | 372 | 1560 | 2370 | 1880 | 1680 | 2590 | 683 | 230 | 102 | 23 | | 13 | 79 | 884 | 338 | 1340 | 1920 | 1640 | 1470 | 2480 | 933 | 206 | 85 | 21 | | 14 | 77 | 972 | 318 | 1150 | 1690 | 1510 | 1350 | 1880 | 1270 | 193 | 77 | 18 | | 15 | 80 | 1120 | 303 | 1130 | 1520 | 1380 | 1290 | 1600 | 789 | 183 | 123 | 18 | | 16 | 86 | 866 | 290 | 2440 | 1390 | 1260 | 1230 | 1410 | 2520 | 178 | 118 | 17 | | 17 | 98 | 729 | 288 | 1650 | 4260 | 1190 | 1240 | 1290 | 1870 | 179 | 94 | 17 | | 18 | 146 | 652 | 285 | 1400 | 14100 | 1510 | 1180 | 1150 | 1090 | 264 | 133 | 24 | | 19 | 154 | 593 | 277 | 1200 | 5220 | 4700 | 1140 | 1050 | 806 | 210 | 131 | 35 | | 20 | 130 | 549 | 272 | 1090 | 3310 | 2870 | 2600 | 970 | 740 | 166 | 90 | 31 | | 21 | 105 | 509 | 272 | 966 | 2710 | 14200 | 1710 | 904 | 636 | 152 | 68 | 25 | | 22 | 94 | 643 | 271 | 895 | 2190 | 8060 | 1420 | 842 | 582 | 138 | 59 | 21 | | 23 | 88 | 649 | 354 | 3380 | 2320 | 3510 | 1280 | 793 | 602 | 125 | 52 | 22 | | 24 | 85 | 540 | 366 | 4000 | 4240 | 2630 | 1190 | 791 | 1080 | 170 | 48 | 21 | | 25 | 113 | 473 | 690 | 2470 | 2730 | 2170 | 1080 | 1000 | 624 | 151 | 45 | 22 | | 26 | 228 | 449 | 819 | 1810 | 2190 | 1880 | 1010 | 898 | 498 | 126 | 42 | 22 | | 27 | 270 | 435 | 630 | 1540 | 1950 | 1700 | 973 | 778 | 440 | 113 | 36 | 21 | | 28 | 273 | 404 | 688 | 8830 | 1780 | 1560 | 914 | 781 | 449 | 103 | 34 | 21 | | 29 | 183 | 392 | 603 | 11300 | | 1430 | 853 | 722 | 616 | 99 | 33 | 18 | | 30 | 148 | 388 | 613 | 3750 | | 1330 | 818 | 663 | 542 | 92 | 29 | 22 | | 31 | 134 | | 575 | 2590 | | 1250 | | 621 | | 85 | 27 | | | TOTAL | 3951 | 32724 | 12409 | 76891 | 97900 | 80120 | 42678 | 55942 | 22890 | 6728 | 2108 | 653 | | MEAN | 127 | 1091 | 400 | 2480 | 3496 | 2585 | 1423 | 1805 | 763 | 217 | 68.0 | 21.8 | | MAX | 273 | 8640 | 819 | 11300 | 14100 | 14200 | 4190 | 8040 | 2520 | 453 | 133 | 35 | | MIN | 77 | 187 | 271 | 463 | 1390 | 1130 | 818 | 621 | 440 | 85 | 27 | 17 | | CFSM | .21 | 1.76 | .65 | 4.00 | 5.64 | 4.17 | 2.29 | 2.91 | 1.23 | .35 | .11 | .04 | | IN. | .24 | 1.96 | .74 | 4.61 | 5.87 | 4.81 | 2.56 | 3.36 | 1.37 | .40 | .13 | .04 | ### 01664000 RAPPAHANNOCK RIVER AT REMINGTON, VA--Continued | STATIST | rics of Mo | NASM YLHTMC | DATA FO | OR WATER | YEARS 1 | 943 | - 1998, | BY WATER | YEAR (WY) | | | | | |---------|------------|-------------|---------|-----------|---------|-----|---------|-----------|-----------|------|-----------|----------|---------| | | OCT | NOV | DEC | JAN | FEB | 3 | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 497 | 587 | 728 | 873 | 1025 | | 1209 | 1057 | 845 | 600 | 344 | 373 | 361 | | MAX | 4895 | 2575 | 2172 | 2480 | 3496 | | 3751 | 3784 | 2177 | 3520 | 974 | 2926 | 2815 | | (WY) | 1943 | 1986 | 1951 | 1998 | 1998 | | 1993 | 1983 | 1989 | 1972 | 1949 | 1955 | 1996 | | MIN | 27.3 | 61.8 | 61.1 | 78.3 | 212 | | 292 | 248 | 198 | 71.8 | 30.1 | 13.2 | 15.4 | | (WY) | 1987 | 1966 | 1966 | 1966 | 1989 | | 1981 | 1981 | 1977 | 1977 | 1966 | 1966 | 1985 | | | | | | | | | | | | | | | | | SUMMARY | Y STATIST | ICS | FOR 1 | 1997 CALE | NDAR YE | AR | F | OR 1998 W | ATER YEAR | | WATER YEA | ARS 1943 | - 1998 | | | | | | | | | | | | | | | | | ANNUAL | TOTAL | | | 208491 | | | | 434994 | | | | | | | ANNUAL | MEAN | | | 571 | | | | 1192 | | | 707 | | | | | r annual i | | | | | | | | | | 1231 | | 1996 | | LOWEST | ANNUAL MI | EAN | | | | | | | | | 251 | | 1981 | | HIGHEST |
r daily Mi | EAN | | 8640 | Nov | 8 | | 14200 | Mar 21 | | 64000 | Oct | 16 1942 | | LOWEST | DAILY ME | AN | | 20 | Sep | 8 | | 17 | Sep 7 | | 2.9 | Sep | 12 1966 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 26 | Sep | 3 | | 20 | Sep 11 | | 3.2 | Sep | 7 1966 | | INSTANT | TANEOUS PI | EAK FLOW | | | | | | 17600 | Mar 21 | | 90000 | Oct | 16 1942 | | INSTANT | CANEOUS PI | EAK STAGE | | | | | | 18.8 | 4 Mar 21 | | a30.00 | Oct | 16 1942 | | INSTANT | CANEOUS LO | OW FLOW | | | | | | 15 | bSep 15 | | 1.1 | Sep | 10 1966 | | ANNUAL | RUNOFF (| CFSM) | | .9 | 2 | | | 1.9 | 2 | | 1.14 | | | | ANNUAL | RUNOFF (| INCHES) | | 12.5 | 1 | | | 26.1 | 0 | | 15.48 | | | | 10 PERC | CENT EXCE | EDS | | 1140 | | | | 2590 | | | 1420 | | | | 50 PERC | CENT EXCE | EDS | | 431 | | | | 616 | | | 424 | | | | 90 PERC | CENT EXCE | EDS | | 61 | | | | 44 | | | 77 | | | | | | | | | | | | | | | | | | a From floodmarks. a Also Sept. 17, 18, 1998. ### 01668000 RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA LOCATION.--Lat 38°19'20", long 77°31'05", Spotsylvania County, Hydrologic Unit 02080104, on right bank 1.6 mi upstream from Virginia Power dam, 2.2 mi downstream from Motts Run, and 3.8 mi upstream from Fredericksburg. ### DRAINAGE AREA.--1,596 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--September 1907 to current year. Monthly discharge only for some periods, published in WSP 1302. REVISED RECORDS.--WSP 801: 1924(M). WSP 951: 1937(M). WSP 1302: 1907-12, 1913(M), 1916(M), 1918(M), 1920-21(M). WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 55.18 ft above sea level. Prior to Jan. 15, 1922, nonrecording gage, and Jan. 15, 1922, to Aug. 2, 1966, water-stage recorder at same site at datum 1.00 ft higher. REMARKS.--Records good except those for periods of doubtful gage-height record, Nov. 18-21, and Dec. 2, 3, 13-17, which are fair. Maximum discharge, $140,000~{\rm ft}^3/{\rm s}$, from rating curve extended above $76,000~{\rm ft}^3/{\rm s}$ on basis of flow-over-dam and slope-area measurements at gage heights $26.1~{\rm ft}$ and $26.9~{\rm ft}$, present datum. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in June 1889 was probably several feet lower than that of Oct. 16, 1942. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $16,000~\text{ft}^3/\text{s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Nov. 8 | 1000 | 28,800 | 10.81 | Feb. 18 | 2300 | 39,900 | 12.70 | | Jan. 9 | 1400 | 20,700 | 9.26 | Mar. 19 | 1830 | 17,200 | 8.52 | | Jan. 24 | 0500 | 19,800 | 9.08 | Mar. 22 | 1300 | 40,200 | 12.75 | | Jan. 29 | 0900 | 35,300 | 11.92 | May 9 | 0800 | 29,300 | 10.90 | | Feb 5 | 1400 | *43 000 | *13 20 | - | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 75 ${\rm ft}^3/{\rm s}$, Sept. 30; minimum gage height, 1.18 ft, Sept. 17. | | | DISCE | ARGE, IN | COBIC FE | | AILY MEAN | | _10bER 193 | / IO SEPI | EMBER 1990 | 0 | | |--|--|---|--|--|---|---|---|---|--|--|---|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 679
441
349
312
291 | 406
983
1900
1350
932 | 769
e780
e720
692
709 | 1160
916
952
1030
1140 | 4160
3360
2930
10300
39800 | 3200
3120
3690
3210
2680 | 2260
2520
2290
2370
3650 | 1550
2780
4570
3650
4980 | 1150
1170
1050
988
936 | 860
707
609
559
531 | 251
233
215
196
182 | 120
112
106
100
93 | | 6
7
8
9 | 278
258
236
231
218 | 745
7200
25500
9290
4440 | 726
688
654
648
670 | 1190
1280
3400
17900
7190 | 23100
11300
7840
5440
4160 | 2440
2270
3080
13000
9850 | 2620
2250
2070
3010
9490 | 5560
3670
13600
23000
7950 | 940
920
856
816
872 | 515
496
485
557
593 | 171
162
155
155
163 | 89
86
94
92
90 | | 11
12
13
14
15 | 211
208
208
204
209 | 2930
2320
1950
2040
2660 | 735
864
e790
e685
e615 | 4050
3010
2500
2180
1890 | 3520
4780
4470
3550
3100 | 5420
4110
3440
3050
2760 | 4850
3530
2950
2630
2440 | 5460
5400
6460
4260
3410 | 1220
1190
1230
2100
1640 | 555
487
433
403
383 | 199
295
323
310
243 | 112
111
104
98
93 | | 16
17
18
19
20 | 207
215
453
557
436 | 2070
1660
e1380
e1200
e1050 | e565
e545
565
558
545 | 5940
4400
3100
2620
2290 | 2770
7620
34800
17800
7560 | 2470
2300
2640
11600
8250 | 2250
2530
2850
2220
5460 | 2920
2600
2420
2130
1940 | 3010
3200
2190
1350
1110 | 370
359
377
515
444 | 256
303
288
464
403 | 90
83
103
98
88 | | 21
22
23
24
25 | 333
275
245
232
251 | e960
1260
1580
1210
1020 | 539
540
568
761
1210 | 2000
1760
5950
14100
6360 | 6040
4650
5000
12100
6610 | 31300
25100
8450
5770
4560 | 4400
3140
2690
2420
2190 | 1790
1660
1530
1480
1610 | 1080
911
1050
3050
1640 | 371
349
340
308
321 | 293
239
212
195
183 | 92
110
113
103
92 | | 26
27
28
29
30
31 | 288
660
863
611
447
377 | 908
873
826
778
767 | 2040
1410
1440
1450
1270
1360 | 4230
3190
18300
31300
9910
5660 | 4570
3860
3450
 | 3850
3410
3090
2820
2590
2410 | 1990
1870
1770
1630
1540 | 1940
1540
1470
1460
1320
1220 | 983
801
722
798
1030 | 316
295
273
257
254
253 | 170
160
150
138
132
128 | 97
92
85
82
79 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 10783
348
863
204
.22
.25 | 82188
2740
25500
406
1.72
1.92 | 26111
842
2040
539
.53
.61 | 170898
5513
31300
916
3.45
3.98 | 248640
8880
39800
2770
5.56
5.80 | 185930
5998
31300
2270
3.76
4.33 | 87880
2929
9490
1540
1.84
2.05 | 125330
4043
23000
1220
2.53
2.92 | 40003
1333
3200
722
.84
.93 | 13575
438
860
253
.27 | 6967
225
464
128
.14
.16 | 2907
96.9
120
79
.06 | e Estimated. ### 01668000 RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA--Continued | STATIS | TICS OF M | ONTHLY MEAN | N DATA F | OR WATER | YEARS 1 | 907 | - 1998, | BY WATER | YEAR (WY) | | | | | | |--------|-----------|-------------|----------|-----------|---------|-----|---------|--------------------|-----------|------|----------|----------|--------|---| | | OCT | NOV | DEC | JAN | FEB | 3 | MAR | APR | MAY | JUN | JUL | AUG | SE | P | | MEAN | 1157 | 1335 | 1685 | 2234 | 2538 | } | 2719 | 2508 | 1920 | 1433 | 920 | 1022 | 94 | 9 | | MAX | 11090 | 6522 | 5357 | 6472 | 8880 |) | 8505 | 9484 | 10310 | 7112 | 3368 | 7190 | 692 | 4 | | (WY) | 1943 | 1986 | 1949 | 1996 | 1998 | } | 1993 | 1983 | 1924 | 1972 | 1949 | 1955 | 199 | 6 | | MIN | 15.3 | 75.4 | 147 | 268 | 224 | | 526 | 587 | 492 | 224 | 78.6 | 21.1 | 46. | 5 | | (WY) | 1931 | 1931 | 1931 | 1966 | 1931 | = | 1931 | 1981 | 1956 | 1977 | 1930 | 1930 | 193 | 0 | | SUMMAR | Y STATIST | rics | FOR | 1997 CALE | NDAR YE | AR | F | OR 1998 W <i>P</i> | TER YEAR | | WATER YE | ARS 1907 | - 199 | 8 | | ANNUAL | TOTAL | | | 529511 | | | | 1001212 | | | | | | | | ANNUAL | MEAN | | | 1451 | | | | 2743 | | | 1697 | | | | | HIGHES | T ANNUAL | MEAN | | | | | | | | | 3072 | | 199 | 6 | | LOWEST | ANNUAL M | IEAN | | | | | | | | | 440 | | 193 | 1 | | HIGHES | T DAILY M | IEAN | | 25500 | Nov | 8 | | 39800 | Feb 5 | | 127000 | Oct | 16 194 | 2 | | LOWEST | DAILY ME | AN | | 109 | Sep | 9 | | 79 | Sep 30 | | 5.0 | a0ct | 11 193 | 0 | | ANNUAL | SEVEN-DA | MUMINIM Y | | 123 | Sep | 4 | | 90 | Sep 24 | | 8.3 | Oct | 9 193 | 0 | | INSTAN | TANEOUS P | EAK FLOW | | | | | | 43000 | Feb 5 | | 140000 | Oct | 16 194 | 2 | | INSTAN | TANEOUS P | EAK STAGE | | | | | | 13.20 | Feb 5 | | b26.90 | Oct | 16 194 | 2 | | INSTAN | TANEOUS L | OW FLOW | | | | | | 75 | Sep 30 | | 5.0 | Oct | 11 193 | 0 | | ANNUAL | RUNOFF (| CFSM) | | .9 | 1 | | | 1.72 | 2 | | 1.06 | | | | | ANNUAL | RUNOFF (| INCHES) | | 12.3 | 4 | | | 23.34 | ŀ | | 14.45 | | | | | 10 PER | CENT EXCE | EDS | | 2920 | | | | 5840 | | | 3340 | | | | | 50 PER | CENT EXCE | EDS | | 910 | | | | 1170 | | | 1000 | | | | | 90 PER | CENT EXCE | EDS | | 208 | | | | 158 | | | 237 | | | | a Also Oct. 12, 1930. b From floodmarks. ### 01668000 RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1929-30, 1956, 1967-74, 1978 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: October 1955 to September 1956, April 1968 to August 1974. October 1991 to September 1993. WATER TEMPERATURE: October 1955 to September 1956, April 1968 to August 1974. COOPERATION.--Chemical data as
noted were provided by the Virginia Division of Consolidated Laboratory Services (VDCLS) and reviewed by the U.S. Geological Survey. WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |----------------|--------------|---|--|--|---|---|---|---|---|--| | OCT 1997
08 | 0900 | 243 | 77 | 6.8 | 16.0 | 22.0 | 776 | VDCLS | 2.9 | 7.5 | | 20 | 1030 | 437 | 82 | 6.6 | 10.0 | 13.0 | 766 | VDCLS | 4.9 | 9.4 | | NOV
05 | 0900 | 953 | 87 | 7.0 | 8.0 | 9.0 | 780 | VDCLS | 11 | 10.6 | | 09 | 1200 | 8130 | 68 | 6.4 | 13.0 | 10.0 | 757 | VDCLS | 74 | 10.4 | | 21 | 0930 | 934 | 84 | 6.8 | 8.0 | 5.0 | 769 | VDCLS | 5.7 | 12.8 | | DEC
03 | 1300 | 710 | 85 | 6.8 | 9.0 | 5.5 | 769 | VDCLS | 4.1 | 11.6 | | *03 | 1315 | 710 | 85 | 6.8 | 9.0 | 5.5 | 769 | VDCLS | 3.3 | 11.6 | | 17
JAN 1998 | 1100 | 573 | 86 | 6.9 | 5.5 | 4.0 | 758 | VDCLS | 5.3 | 13.0 | | 05 | 0915 | 1150 | 69 | 7.2 | 6.5 | 3.5 | 751 | VDCLS | 5.9 | 14.1 | | 08 | 1000 | 2340 | 82 | 6.8 | 21.0 | 11.0 | 757 | VDCLS | 8.5 | 10.6 | | 09
*09 | 1000
1015 | 19600
19700 | 48
48 | 6.7
6.7 | 17.0
17.0 | 13.0
13.0 | 758
758 | VDCLS
VDCLS | 790
790 | 9.0
9.0 | | 10 | 1145 | 6470 | 61 | 7.0 | 9.5 | 11.0 | 771 | VDCLS | 170 | 10.8 | | 22 | 1130 | 1750 | 79 | 7.0 | 5.0 | 4.0 | 776 | VDCLS | 13 | 13.2 | | 24
28 | 1000
1000 | 16300
15200 | 66
65 | 5.7
7.4 | 5.5
4.0 | 4.0
5.0 | 762
759 | VDCLS
VDCLS | 180
57 | 12.4
12.5 | | *28 | 1015 | 15600 | 65 | 7.4 | 4.0 | 5.0 | 759 | USGS | | 12.5 | | 31 | 1000 | 5760 | 62 | 6.5 | 4.0 | 6.0 | 768 | VDCLS | 65 | 12.0 | | FEB
03 | 1030 | 2940 | 68 | 6.2 | 6.0 | 5.0 | 772 | VDCLS | 28 | 12.5 | | 06 | 1100 | 21700 | 59 | | 5.0 | 5.0
5.0 | 764 | VDCLS | 56 | 12.0 | | 08
19 | 1000
1100 | 7960
14300 | 63
54 | 6.8
5.7 | 6.5
13.0 | 5.0
9.0 | 765
761 | VDCLS
VDCLS | 62
91 | 12.9
11.0 | | 27 | 1030 | 3860 | 54
65 | 6.6 | 10.0 | 7.0 | 761 | VDCLS | 19 | 12.0 | | MAR | | | | | | | | | | | | 04
10 | 0930
0915 | 3250
11000 | 71
58 | 6.4
6.7 | 6.0
8.5 | 7.0
10.0 | 764
733 | VDCLS
VDCLS | 28
110 | 11.6
10.7 | | 19 | 1000 | 11500 | 68 | 7.2 | 10.0 | 7.0 | 764 | VDCLS | 35 | 12.0 | | 26 | 1000 | 3870 | 62 | 6.8 | 17.0 | 8.0 | 779 | VDCLS | 24 | 11.9 | | APR
02 | 0930 | 2330 | 67 | 6.6 | 20.5 | 18.0 | 763 | VDCLS | 9.6 | 8.9 | | *02 | 0945 | 2340 | 67 | 6.6 | 20.5 | 18.0 | 763 | USGS | | 8.9 | | 10 | 1030 | 11600 | 62 | 6.8 | 8.0 | 14.0 | 759 | VDCLS | 150 | 9.6 | | *10
14 | 1045
1000 | 11600
2650 | 62
62 | 6.8
6.5 | 8.0
18.0 | 14.0
13.5 | 759
762 | VDCLS
VDCLS | 190
7.2 | 9.6
10.2 | | 20 | 1030 | 5870 | 66 | 6.9 | 17.5 | 14.3 | 760 | VDCLS | 20 | 10.1 | | MAY | 1045 | 2000 | 0.5 | | 10.0 | 1.7.1 | 7.57 | TIDGI G | 60 | 0 0 | | 04
06 | 1045
0930 | 3980
5140 | 85
61 | 7.0
6.4 | 18.0
16.0 | 17.1
15.0 | 757
771 | VDCLS
VDCLS | 68
230 | 8.2
8.8 | | 08 | 0915 | 8200 | 58 | 6.7 | 20.0 | 16.7 | 752 | VDCLS | 56 | 8.9 | | *09 | 1020 | 29200 | 52 | 6.6 | 19.0 | 16.0 | 758 | USGS | | 8.6 | | 09
20 | 1035
0930 | 29200
1980 | 52
69 | 6.6
6.6 | 19.0
22.0 | 16.0
22.0 | 758
764 | VDCLS
VDCLS | 130
8.7 | 8.6
8.2 | | JUN | 0,50 | 1700 | 0,5 | 0.0 | 22.0 | 22.0 | 701 | VDCID | 0.7 | 0.2 | | 10 | 0930 | 861 | 76 | 6.6 | 16.0 | 19.0 | 774 | VDCLS | 2.0 | 8.9 | | 11
16 | 1330
1000 | 1320
1800 | 76
74 | 6.6
7.2 | 20.0
25.0 | 19.0
22.5 | 770
760 | VDCLS
VDCLS | 24 | 9.1
7.4 | | 24 | 1415 | 4390 | 81 | 6.1 | 30.0 | 26.0 | 769 | VDCLS | 110 | 7.3 | | JUL | 1000 | 450 | 5 0 | | 05.0 | 06.0 | 7.64 | | 0 0 | 0 1 | | 08
23 | 1200
0930 | 478
340 | 78
92 | 7.1
7.6 | 25.0
27.5 | 26.0
29.5 | 764
752 | VDCLS
VDCLS | 2.3
1.5 | 8.1
5.8 | | AUG | | | | | | | | | | | | 05 | 1030 | 182 | 87 | 7.9 | 24.0 | 26.0 | 760 | VDCLS | 1.3 | 7.1 | | 21
SEP | 1000 | 299 | 87 | 6.5 | 24.5 | 23.5 | 760 | VDCLS | 1.7 | 7.8 | | 02 | 0945 | 113 | 84 | 7.7 | 23.0 | 26.0 | 748 | VDCLS | 1.6 | 5.8 | | 16 | 1030 | 91 | 91 | 6.8 | 28.5 | 26.0 | 775 | VDCLS | 1.6 | 7.6 | ^{*} Replicate sample. ### 01668000 RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR- | SILICA,
DIS-
SOLVED
(MG/L
AS | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED | RESIDUE
FIXED
NON
FILTER-
ABLE | RESIDUE
VOLA-
TILE,
SUS-
PENDED | NITRO-
GEN
DIS-
SOLVED
(MG/L | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L | |-----------------|--|--|---|--|---|--|--|--|--|--| | DATE | ATION)
(00301) | SIO2)
(00955) | (MG/L)
(00530) | (MG/L)
(00540) | (MG/L)
(00535) | AS N)
(00602) | AS N)
(00618) | AS N)
(00613) | AS N)
(00631) | AS N)
(00608) | | OCT 1997 | | | | | | | | | | | | 08
20
NOV | 84
89 | 6.3
6.4 | <3
<3 | <3
<3 | <3
<3 | .209
.246 | .013
.047 | .002 | .013
.047 | .010 | | 05 | 90 | 12 | 5 | 3 | <3 | .704 | .385 | .002 | .387 | .017 | | 09 | 93 | 8.9 | 127 | 111 | 16 | 1.00 | .675 | .002 | .677 | .010 | | 21
DEC | 99 | 13 | 3 | 3 | 3 | .879 | .730 | .002 | .730 | .008 | | 03
*03 | 91
91 | 13
13 | <3
<3 | <3
<3 | <3
<3 | .784
.730 | .624
.630 | <.002
<.002 | .624
.630 | <.004
<.004 | | 17 | 100 | 10 | 3 | 3 | <3 | .586 | .498 | <.002 | .498 | .004 | | JAN 1998 | | | - | - | | | | | | | | 05 | 108 | 11 | 3 | <3 | <3 | .788 | .659 | <.002 | .659 | <.004 | | 08
09 | 97
86 | 10
7.1 | 19
664 | 15
568 | 4
96 | .703
.800 | .552
.385 | .002 | .554
.389 | <.004
.029 | | *09 | 86 | 7.1 | 725 | 620 | 105 | .697 | .380 | .004 | .384 | .029 | | 10 | 97 | 11 | 182 | 160 | 22 | .740 | .554 | .002 | .556 | .011 | | 22 | 99 | 13 | 8 | 6 | <3 | .865 | .752 | .002 | .754 | .008 | | 24
28 | 95
98 | 7.8
9.5 | 219
68 | 189
60 | 30
8 | 1.01
.927 | .480
.516 | .003 | .483
.518 | .050
.035 | | *28 | 98 | 8.7 | 124 | 114 | 10 | .94 | | | .52 | .050 | | 31 | 96 | 11 | 59 | 52 | 7 | .411 | .609 | <.002 | .609 | .012 | | FEB | 0.7 | 1.0 | 1.0 | 1.0 | 2 | 000 | 515 | 000 | 515 | 010 | | 03
06 | 97
94 | 13
7.4 | 16
99 | 13
86 | 3
13 | .830
.720 | .715
.423 | <.002 | .715
.425 | .010 | | 08 | 101 | 10 | 53 | 45 | 8 | .805 | .568 | <.002 | .568 | .020 | | 19 | 95 | 8.8 | 135 | 120 | 15 | .652 | .437 | .003 | .440 | <.004 | | 27
MAR | 99 | 12 | 16 | 13 | 3 | .719 | .561 | <.002 | .561 | .006 | | 04
10 | 95
99 | 12
9.0 | 23
106 | 19
91 | 4
15 | .773
.764 | .548
.396 | .003 | .551
.399 | <.004
.017 | | 19 | 99 | 10 | 103 | 90 | 13 | .658 | .464 | .003 | .467 | .017 | | 26 | 98 | 12 | 21 | 18 | <3 | .662 | .550 | <.002 | .550 | .005 | | APR 02 | 94 | 11 | 9 | 7 | <3 | .552 | .428 | <.002 | .428 | .004 | | *02 | 94 | 11 | <1 | | 4 | .58 | | | .43 | <.002 | | 10 | 93 | 8.0 | 286 | | | .742 | .336 | .005 | .341 | .050 | | *10
14 | 93
98 | 8.1
12 | 308 | | | .724 | .338 | .005 | .343 | .053 | | 20 | 98 | 2.2 | | | | .445
.527 | .046
.325 | .002
<.002 | .048 | .014 | | MAY | | | | | | | | | | | | 04 | 86 | 11 | 64 | 53 | 11 | .829 | .418 | .005 | .423 | .043 | | 06
08 | 86
93 | 8.9
12 | 224 | 192 | 32 | .906
.616 | .464
.409 | .007 | .471
.411 | .067
.020 | | *09 | 93
88 | 7.1 | 182 | 150 | 32 | .45 | .409 | .002 | .048 | .020 | | 09 | 88 | 7.6 | 210 | 168 | 42 | .856 | .362 | .005 | .367 | .047 | | 20 | 94 | 13 | 8 | 6 | <3 | .658 | .452 | <.002 | .452 | .004 | | JUN
10 | 94 | 2.2 | <3 | <3 | <3 | .534 | .372 | .002 | .374 | .016 | | 11 | 97 | 12 | <3 | <3 | <3 | .575 | .421 | .002 | .423 | .022 | | 16 | 86 | | 21 | 16 | 5 | .811 | | | | | | 24
JUL | 89 | 12 | 208 | 177 | 31 | .789 | .565 | .005 | .570 | .020 | | 08 | 100 | 9.0 | <3 | <3 | <3 | .341 | .150 | <.002 | .150 | .013 | | 23
AUG | 77 | 7.5 | <3 | <3 | <3 | .324 | .109 | .002 | .111 | .016 | | 05 | 88 | 5.0 | <3 | <3 | <3 | .172 | .007 | <.002 | .007 | .007 | | 21
SEP | 92 | 5.4 | <3 | <3 | <3 | .238 | .043 | <.002 | .043 | <.004 | | 02 | 73 | 4.3 | <3 | <3 | <3 | .266 | .005 | <.002 | .005 | .008 | | 16
 92 | 4.1 | <3 | <3 | <3 | .171 | .005 | <.002 | .005 | | ^{*} Replicate sample. * For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies. < Actual value is known to be less than the value shown. ### 01668000 RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITROGN
TOTAL
SEDIMNT
SUSP
TOTAL
AS N
(MG/L)
(00601) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS
TOTAL
SEDIMNT
SUSP
TOTAL
AS P
(MG/L)
(00667) | CARBON,
INORG +
ORGANIC
SUSP.
TOTAL
(MG/L
AS C)
(00694) | |----------------|---|--|---|---|--|--|--|--| | OCT 1997 | | | | | | | | | | 08 | | | .015 | | .011 | .005 | .002 | .21 | | 20 | | | .028 | | .013 | .010 | .003 | .24 | | NOV | | | .346 | | 0.07 | 010 | 0.07 | 4 06 | | 05
09 | | | .346 | | .027 | .018
.025 | .007
.080 | 4.26
3.77 | | 21 | | | .022 | | .018 | .011 | .009 | .21 | | DEC | | | | | | | | | | 03 | | | .026 | | .010 | .010 | .006 | .25 | | *03 | | | .020 | | .010 | .010 | .010 | .22 | | 17 | | | .020 | | .007 | .008 | .008 | .28 | | JAN 1998
05 | | | .032 | | .010 | .006 | .010 | .31 | | 08 | | | .137 | | .020 | .004 | .035 | .96 | | 09 | | | 1.920 | | .030 | .016 | .771 | 19.66 | | *09 | | | 1.499 | | .038 | .020 | .663 | 14.53 | | 10 | | | .424 | | .020 | .016 | .199 | 4.40 | | 22 | | | .026
.700 | | .019
.047 | .013 | .013 | . 29 | | 24
28 | | | .362 | | .030 | .038 | .240
.131 | 6.56
3.53 | | *28 | .5 | . 4 | .502 | .09 | <.01 | .023 | | | | 31 | | | .139 | | .020 | .016 | .074 | 1.23 | | FEB | | | | | | | | | | 03 | | | .065 | | .010 | .010 | .027 | .64 | | 06 | | | .246
.160 | | .030
.031 | .031 | .114 | 2.15 | | 08
19 | | | .295 | | .003 | .023
.016 | .066
.146 | 1.45
2.85 | | 27 | | | .070 | | .019 | .012 | .027 | .68 | | MAR | | | | | | | | | | 04 | | | .097 | | .028 | .009 | .041 | .83 | | 10 | | | .310 | | .041 | .017 | .138 | 3.08 | | 19
26 | | | .223
.061 | | .022
.019 | .019
.013 | .076
.028 | 2.08
.57 | | APR | | | .001 | | .015 | .013 | .020 | . 5 / | | 02 | | | .043 | | .014 | .011 | .015 | .38 | | *02 | .1 | . 2 | | .03 | .015 | .008 | | | | 10 | | | .991 | | .044 | .031 | .321 | 9.17 | | *10
14 | | | .891
.052 | | .040
.016 | .025 | .262
.020 | 8.47
.49 | | 20 | | | .137 | | .016 | .008 | .043 | 1.25 | | MAY | | | | | | | | | | 04 | | | .292 | | .033 | .015 | .093 | 2.37 | | 06 | | | .907 | | .191 | .020 | .349 | 8.43 | | 08
*09 |
.6 | .4 | .294 | .11 | .020 | .017
.009 | .098 | 2.91 | | 09 | . 0 | | .600 | | .066 | .028 | .258 | 5.37 | | 20 | | | .042 | | .019 | .008 | .015 | .34 | | JUN | | | | | | | | | | 10 | | | .021 | | .009 | .004 | .007 | .13 | | 11 | | | .032 | | .008 | .002 | .008 | .47 | | 16
24 | | | .096
.821 | | .025
.031 | .020 | .031
.208 | .78
7.82 | | JUL | | | .021 | | .031 | .020 | . 200 | 1.02 | | 08 | | | .022 | | .019 | .009 | .006 | .14 | | 23 | | | .021 | | .011 | .008 | .006 | .15 | | AUG | | | | | | | | | | 05 | | | .009 | | .014 | .005 | .004 | .07 | | 21
SEP | | | .013 | | .009 | .002 | .004 | .12 | | 02 | | | .021 | | .012 | .002 | .007 | .23 | | 16 | | | .028 | | .011 | .002 | .006 | .19 | | | | | | | | | | | ^{*} Replicate sample. * For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies. < Actual value is known to be less than the value shown. THIS IS A BLANK PAGE ### 01673000 PAMUNKEY RIVER NEAR HANOVER, VA LOCATION.--Lat 37°46'03", long 77°19'57", Hanover County, Hydrologic Unit 02080106, on right bank 100 ft downstream from bridge on State Highway 614, 0.3 mi upstream from Mechumps Creek, 2.0 mi east of Hanover, and 7.0 mi upstream from Millpond Creek. DRAINAGE AREA. -- 1,081 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1941 to current year. Monthly discharge only for some periods, published in WSP 1302. REVISED RECORDS.--WSP 1302: 1944(M). WSP 1382: 1949. WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 14.72 ft above sea level. Prior to Oct. 15, 1976, nonrecording gage at same site and datum. REMARKS.--Records fair. Some regulation since January 1972 by Lake Anna, capacity, 373,000 acre-ft, and occasional diurnal fluctuation at low flow caused by mill upstream from station. Unknown amount of diversion for irrigation upstream from gage. Maximum discharge, 40,300 ft³/s, from rating curve extended above 22,000 ft³/s. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1928 reached a stage of 32.6 ft, from information by local residents. EXTREMES FOR CURRENT YEAR.--Maximum discharge, $16,800~{\rm ft}^3/{\rm s}$, Feb. 7, gage height, 23.70 ft; minimum, 49 ft $^3/{\rm s}$, Sept. 7, 29, 30; minimum gage height, 2.42 ft, Oct. 10, 12-15. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | | DISCHA | MGE, IN | CODIC FEE. | | ILY MEAN | | ODER 1997 | TO DEFIE | MDER 1990 | | | |-------|------|--------|---------|------------|--------|----------|-------|-----------|----------|-----------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 120 | 284 | 563 | 1040 | 10200 | 1710 | 1300 | 861 | 573 | 445 | 110 | 64 | | 2 | 136 | 267 | 569 | 855 | 7860 | 2250 | 1620 | 1150 | 519 | 424 | 102 | 61 | | 3 | 135 | 276 | 559 | 711 | 4940 | 2570 | 2310 | 1750 | 496 | 384 | 100 | 62 | | 4 | 124 | 278 | 559 | 660 | 3810 | 2770 | 1680 | 1580 | 511 | 260 | 107 | 62 | | 5 | 112 | 276 | 608 | 646 | 8060 | 1850 | 3710 | 1530 | 493 | 239 | 100 | 59 | | 6 | 107 | 272 | 636 | 636 | 14600 | 1450 | 4890 | 1500 | 486 | 233 | 97 | 57 | | 7 | 99 | 380 | 646 | 621 | 16400 | 1340 | 3310 | 1320 | 394 | 204 | 88 | 54 | | 8 | 94 | 2970 | 578 | 673 | 14000 | 1520 | 1810 | 1260 | 324 | 193 | 91 | 66 | | 9 | 93 | 5320 | 535 | 1310 | 11100 | 4460 | 1590 | 4440 | 309 | 203 | 77 | 69 | | 10 | 88 | 6540 | 519 | 1630 | 8610 | 8280 | 2530 | 6510 | 354 | 372 | 96 | 73 | | 11 | 89 | 6740 | 571 | 1300 | 5660 | 9200 | 2610 | 6750 | 421 | 377 | 128 | 63 | | 12 | 86 | 3890 | 617 | 1040 | 3790 | 7370 | 1780 | 5010 | 429 | 251 | 124 | 61 | | 13 | 86 | 1520 | 655 | 836 | 3500 | 3870 | 1470 | 2630 | 496 | 223 | 132 | 62 | | 14 | 86 | 1310 | 618 | 990 | 3130 | 1900 | 1350 | 2760 | 624 | 204 | 155 | 61 | | 15 | 92 | 1390 | 574 | 772 | 1910 | 1550 | 1320 | 1790 | 696 | 177 | 141 | 55 | | 16 | 100 | 1430 | 543 | 1510 | 1650 | 1420 | 1120 | 1410 | 1070 | 167 | 107 | 55 | | 17 | 113 | 1300 | 513 | 2900 | 2080 | 1350 | 1460 | 1140 | 1030 | 152 | 104 | 55 | | 18 | 132 | 941 | 494 | 3000 | 5160 | 1560 | 4250 | 956 | 1080 | 147 | 103 | 56 | | 19 | 230 | 695 | 481 | 1960 | e9430 | 3760 | 6030 | 867 | 1050 | 142 | 127 | 55 | | 20 | 599 | 572 | 474 | 1620 | e11400 | 8870 | 6160 | 806 | 914 | 144 | 127 | 57 | | 21 | 478 | 540 | 466 | 1290 | 10000 | e11300 | 4700 | 769 | 911 | 136 | 95 | 58 | | 22 | 347 | 736 | 468 | 1030 | 7780 | e14300 | 2780 | 737 | 706 | 129 | 82 | 62 | | 23 | 262 | 1230 | 484 | 1730 | 5190 | e15500 | 1780 | 651 | 751 | 124 | 86 | 67 | | 24 | 213 | 1390 | 399 | 5610 | 5240 | e12700 | 1500 | 625 | 757 | 121 | 90 | 61 | | 25 | 192 | 1050 | 671 | 8910 | 7120 | e9900 | 1370 | 623 | 787 | 119 | 90 | 59 | | 26 | 196 | 830 | 1160 | 9250 | 7750 | 6650 | 1280 | 639 | 787 | 121 | 86 | 60 | | 27 | 269 | 655 | 1370 | 7770 | 5820 | 3540 | 1190 | 666 | 640 | 127 | 89 | 61 | | 28 | 403 | 595 | 1300 | 6530 | 3110 | 1780 | 971 | 793 | 511 | 135 | 89 | 59 | | 29 | 566 | 559 | 1220 | 10500 | | 1510 | 905 | 711 | 490 | 127 | 72 | 54 | | 30 | 447 | 536 | 1230 | 13900 | | 1420 | 873 | 680 | 470 | 126 | 69 | 57 | | 31 | 330 | | 1390 | 12700 | | 1340 | | 629 | | 114 | 69 | | | TOTAL | 6424 | 44772 | 21470 | 103930 | 199300 | 148990 | 69649 | 53543 | 19079 | 6320 | 3133 | 1805 | | MEAN | 207 | 1492 | 693 | 3353 | 7118 | 4806 | 2322 | 1727 | 636 | 204 | 101 | 60.2 | | MAX | 599 | 6740 | 1390 | 13900 | 16400 | 15500 | 6160 | 6750 | 1080 | 445 | 155 | 73 | | MIN | 86 | 267 | 399 | 621 | 1650 | 1340 | 873 | 623 | 309 | 114 | 69 | 54 | | CFSM | .19 | 1.38 | .64 | 3.10 | 6.58 | 4.45 | 2.15 | 1.60 | .59 | .19 | .09 | .06 | | IN. | .22 | 1.54 | .74 | 3.58 | 6.86 | 5.13 | 2.40 | 1.84 | .66 | .22 | .11 | .06 | e Estimated. ### 01673000 PAMUNKEY RIVER NEAR HANOVER, VA--Continued | STATIST | ICS OF MC | NTHLY MEAN | DATA F | OR WATER | YEARS 1942 | - 1971, | BY WATER | YEAR (WY) | [UNREG | GULATED] | | | |--|--|---|---|---|--|--|--|--|---|--
--|--| | MEAN
MAX
(WY)
MIN
(WY) | 1943 | NOV
633
1910
1953
112
1942 | DEC
996
3782
1949
166
1966 | JAN
1242
3051
1949
207
1966 | FEB
1450
3288
1961
552
1968 | MAR
1712
3585
1962
816
1959 | APR
1327
2743
1948
523
1968 | MAY
925
2570
1946
321
1969 | JUN
578
2493
1971
223
1970 | JUL
490
2697
1945
91.9
1957 | AUG
818
6381
1969
63.1
1966 | SEP
355
1123
1944
30.3
1954 | | SUMMARY | STATISTI | CS | V | ATER YEAR | S 1942 - 19 | 971 | | | | | | | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL 10 PERC 50 PERC | ' ANNUAL M | CAN | | 915
1606
434
39300
13
15
40300
a31.12
12
.85
11.50
1960
511 | 1 | L966
L966
L969
L969 | | | | | | | | STATIST | CICS OF MC | NTHLY MEAN | DATA F | OR WATER | YEARS 1972 | - 1998, | BY WATER | YEAR (WY) | [REGUI | LATED, UNADJ | USTED] | | | | 86.2 | 1986 | 216 | 197 | | 5430
1994
248 | 1797
5009
1984
434 | MAY
1204
2821
1978
265
1991 | 140 | JUL
549
2747
1975
128
1977 | AUG
451
2025
1985
92.8
1983 | SEP
509
2939
1975
60.2
1998 | | | | | | 1997 CALE | NDAR YEAR | F | | ATER YEAR | | | ARS 1972 - | - 1998 | | LOWEST | | AN | | 350640
961
6740 | Nov 11 | | 678415
1859 | Feb 7 | | 1168
1859
265
25000 | Jun 23 | 1998
1981
3 1972 | | LOWEST
ANNUAL
INSTANT
INSTANT | DAILY MEA
SEVEN-DAY
ANEOUS PE
ANEOUS PE | N
MINIMUM
CAK FLOW
CAK STAGE | | 74
78 | | | 54
56
16800
23.7 | cSep 7
Sep 15
Feb 7 | | 47
52
29900
29.22 | Sep 18
Sep 12
Jun 23
Jun 23 | 3 1991
2 1991
3 1972
3 1972 | | ANNUAL | ANEOUS LC | PSM) | | .8 | | | 49
1.7 | | | 47
1.08 | Sep 18 | 3 1991 | | 10 PERC | RUNOFF (I | DS | | 12.0
1950 | | | 23.3
6080 | 5 | | 14.68
2730 | | | | | ENT EXCEE | | | 599
113 | | | 646
86 | | | 630
124 | | | a From floodmarks. b Also Sept. 7, 1997. c Also Sept. 29, 1998. d Also Sept. 29, 30, 1998. ### 01673000 PAMUNKEY RIVER NEAR HANOVER, VA--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1946, 1952, 1968 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1968 to January 1976, October 1991 to September 1994. WATER TEMPERATURE: October 1945 to September 1946, April 1968 to January 1976. COOPERATION.--Chemical data as noted were provided by the Virginia Division of Consolidated Laboratory Services (VDCLS) and reviewed by the U.S. Geological Survey. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |----------------|------|---|---|---|---|---|---|---|---|--|---|---| | OCT 1997 | | | | | | | | | | | | | | 15
NOV | 1300 | 93 | 243 | 7.0 | 14.0 | 17.5 | 773 | VDCLS | 4.3 | 7.8 | 80 | | | 08 | 1430 | 3600 | 70 | 7.0 | 11.0 | 10.0 | 757 | VDCLS | 110 | 10.0 | 89 | | | 10 | 1125 | 6550 | 60 | 6.3 | 13.5 | 11.0 | 764 | VDCLS | 49 | 9.6 | 87 | | | *10 | 1135 | 6550 | 60 | 6.3 | 13.5 | 11.0 | 764 | VDCLS | 37 | 9.6 | 87 | | | 13 | 0900 | 1540 | 78 | 6.8 | 6.0 | 1.0 | 770 | VDCLS | 13 | 10.8 | 75 | | | 20
DEC | 0915 | 575 | 98 | 6.9 | 11.5 | 5.5 | 771 | VDCLS | 7.4 | 11.4 | 89 | | | 22
JAN 1998 | 1030 | 461 | 104 | 6.8 | 4.0 | 5.5 | 776 | VDCLS | 6.4 | 12.4 | 97 | | | 10 | 1030 | 1660 | 81 | 6.6 | 9.0 | 11.0 | 770 | VDCLS | 19 | 10.4 | 93 | | | 14 | 1245 | 1010 | 86 | 6.5 | 3.0 | 8.0 | 778 | VDCLS | 9.8 | 11.2 | 93 | | | 17 | 1000 | 2650 | 73 | 6.5 | 6.0 | 6.5 | 766 | VDCLS | 29 | 12.0 | 97 | | | 25 | 1030 | 8900 | 51 | 6.7 | 6.0 | 6.6 | 737 | VDCLS | 41 | 11.3 | 95 | | | 28 | 1230 | 6310 | 61 | 7.0 | 4.0 | 5.0 | 752 | VDCLS | 87 | 11.4 | 90 | | | *28 | 1245 | 6310 | 61 | 7.0 | 4.0 | 5.0 | 752 | USGS | | 11.4 | 90 | | | 30 | 1220 | 14100 | 44 | 6.7 | 12.4 | 7.0 | 772 | VDCLS | 41 | 13.4 | 109 | | | FEB | | | | | | | | | | | | | | 02 | 1415 | 7670 | 54 | | 11.0 | 6.0 | 773 | VDCLS | 32 | 11.5 | 91 | | | 06 | 1330 | 14900 | 43 | | 4.0 | 6.0 | 765 | VDCLS | 100 | 11.4 | 91 | | | 07 | 1100 | 16700 | 46 | 6.3 | 7.0 | 6.5 | 766 | VDCLS | 38 | 11.4 | 92 | | | 18 | 0930 | 4940 | 85 | 6.4 | 5.0 | 9.0 | 757 | VDCLS | 83 | 11.6 | 101 | | | *18 | 0945 | 4950 | 85 | 6.4 | 5.0 | 9.0 | 757 | VDCLS | 88 | 11.6 | 101 | | | MAR | | | | | | | | | | | | | | 18 | 1315 | 1580 | 69 | 6.8 | 10.5 | 8.0 | 773 | VDCLS | 10 | 11.4 | 95 | | | 22 | 0830 | 13600 | 41 | 6.7 | 4.0 | 8.5 | 729 | VDCLS | 56 | 10.7 | 96 | | | APR | | | | | | | | | | | | | | 17 | 0930 | 1180 | 68 | 6.8 | 20.0 | 17.8 | 733 | USGS | 13 | 8.5 | 93 | 7.0 | | 18 | 1630 | 4720 | 52 | 6.7 | 20.5 | 16.5 | 750 | VDCLS | 25 | 8.6 | 89 | | | 20 | 1315 | 6200 | 53 | 6.6 | 18.5 | 15.3 | 760 | VDCLS | 25 | 8.6 | 86 | | | *20
MAY | 1330 | 6170 | 53 | 6.6 | 18.5 | 15.3 | 760 | USGS | | 8.6 | 86 | | | 04 | 1300 | 1530 | 64 | 7.1 | 20.5 | 18.2 | 757 | VDCLS | 13 | 8.3 | 89 | | | 05 | 1245 | 1540 | 67 | 6.8 | 20.0 | 18.0 | 763 | VDCLS | 10 | 8.3 | 88 | | | 19 | 0830 | 870 | 74 | 6.6 | 23.0 | 21.0 | 769 | VDCLS | | 7.7 | 86 | | | *19
JUN | 0845 | 870 | 74 | 6.6 | 23.0 | 21.0 | 769 | VDCLS | | 7.7 | 86 | | | 22 | 1030 | 701 | 83 | 6.9 | 29.0 | 25.0 | 770 | VDCLS | 6.0 | 6.8 | 82 | | | *22 | 1045 | 699 | 83 | 6.9 | 29.0 | 25.0 | 770 | USGS | | 6.8 | 82 | | | JUL | | | | | | | | | | | | | | 15
AUG | 0755 | 187 | 150 | 7.1 | 25.0 | 24.5 | 755 | VDCLS | 5.4 | 5.8 | 71 | | | 18
SEP | 1100 | 107 | 232 | 6.7 | 30.0 | 26.0 | 760 | VDCLS | 2.0 | 5.9 | 73 | | | 21 | 1330 | 59 | 297 | 7.1 | 31.5 | 25.0 | 760 | VDCLS | 1.0 | 5.5 | 67 | | ^{*} Replicate sample. ### 01673000 PAMUNKEY RIVER NEAR HANOVER, VA--Continued | | | | | | | | | RESIDUE | | | | NITRO- | |----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------------|---------|---------| | | MAGNE- | | POTAS- | | CHLO- | FLUO- | SILICA, | TOTAL | RESIDUE | RESIDUE | NITRO- | GEN, | | | SIUM, | SODIUM, | SIUM, | SULFATE | RIDE, | RIDE, | DIS- | AT 105 | FIXED | VOLA- | GEN | NITRATE | | | DIS- | DIS- | DIS- | DIS- | DIS- | DIS- | SOLVED | DEG. C, | NON | TILE, | DIS- | DIS- | | | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | (MG/L | SUS- | FILTER- | SUS- | SOLVED | SOLVED | | DATE | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | AS | PENDED | ABLE | PENDED | (MG/L | (MG/L | | | AS MG) | AS NA) | AS K) | AS SO4) | AS CL) | AS F) | SIO2) | (MG/L) | (MG/L) | (MG/L) | AS N) | AS N) | | | (00925) | (00930) | (00935) | (00945) | (00940) | (00950) | (00955) | (00530) | (00540) | (00535) | (00602) | (00618) | | | | | | | | | | ** | * * | ** | ** | | | OCT 1997 | | | | | | | | | | | | | | 15 | | | | | | | 7.6 | <3 | <3 | <3 | 1.01 | .573 | | NOV | | | | | | | | | | | | | | 08 | | | | | | | 12 | 202 | 166 | 36 | .659 | .198 | | 10 | | | | | | | 9.8 | 98 | 84 | 14 | .434 | .086 | | *10 | | | | | | | 9.7 | 95 | 81 | 14 | .444 | .086 | | 13 | | | | | | | 12 | 22 | 18 | 4 | .491 | .198 | | 20 | | | | | | | 13 | 4 | 4 | 3 | .536 | .233 | | DEC | | | | | | | | | | | | | | 22 | | | | | | | 14 | <3 | <3 | <3 | .508 | .259 | | JAN 1998 | | | | | | | | | | | | | | 10 | | | | | | | 14 | 24 | 21 | 3 | .370 | .192 | | 14 | | | | | | | 13 | 6 | 4 | <3 | .452 | .227 | | 17 | | | | | | | 14 | 66 | 56 | 10 | .477 | .194 | | 25 | | | | | | | 9.5 | 27 | 21 | 6 | .536 | .183 | | 28 | | | | | | | 9.4 | 140 | 122 | 18 | .602 | .297 | | *28 | | | | | | | 8.5 | 92 | 74 | 18 | .58 | | | 30 | | | | | | | 7.9 | 24 | 19 | 5 | .326 | .132 | | FEB | | | | | | | | | | | | | | 02 | | | | | | | 9.6 | 9 | 7 | <3 | .723 | .190 | | 06 | | | | | | | 7.0 | 23 | 18 | 5 | .442 | .143 | | 07 | | | | | | | 7.6 | 15 | 11 | 4 | .432 | .144 | | 18 | | | | | | | 9.5 | 92 | 78 | 14 | .477 | .220 | | *18 | | | | | | | 9.6 | 93 | 78 | 15 | .490 | .222 | | MAR | | | | | | | | | . • | | | | | 18 | | | | | | | 11 | 14 | 12 | <3 | .645 | .325 | | 22 | | | | | | | 7.2 | 23 | 19 | 4 | .446 | .168 | | APR | | | | | | | | | | - | | | | 17 | .77 | 2.4 | . 9 | 4.5 | 3.9 | <.1 | 11 | | | | .444 | .191 | | 18 | | | | | | | 1.9 | 63 | 51 | 12 | .461 | .158 | | 20 | | | | | | | 1.9 | | | | .560 | .139 | | *20 | | | | | | | 9.2 | 13 | 8 | 5 | .44 | | | MAY | | | | | | | | | | | | | | 04 | | | | | | | 12 | 19 | 16 | <3 | .416 | .161 | | 05 | | | | | | | 12 | 22 | 18 | 4 | .446 | .172 | | 19 | | | | | | | 14 | 8 | 6 | <3 | .460 | .252 | | *19 | | | | | | | 13 | 9 | 7 | <3 | .483 | .248 | | JUN | | | | | | | - | - | | - | | | | 22 | | | | | | | 12 | 8 | 6 | <3 | .548 | .320 | | *22 | | | | | | | 11 | 4 | | 8 | .56 | | | JUL | | | | | | | | = | | - | | | | 15 | | | | | | | 13 | 4 | 3 | <3 | .755 | .450 | | AUG | | | | | | | | = | - | | |
5 | | 18 | | | | | | | 10 | 3 | <3 | <3 | 1.20 | .856 | | SEP | | | | | | | | 5 | | - 3 | | | | 21 | | | | | | | 19 | | | | .903 | .485 | | | | | | | | | | | | | | . 103 | ^{*} Replicate sample. ** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies. < Actual value is known to be less than the value shown. ### 01673000 PAMUNKEY RIVER NEAR HANOVER, VA--Continued | | NITRO-
GEN,
NITRITE | NITRO-
GEN,
NO2+NO3 | NITRO-
GEN,
AMMONIA | NITRO-
GEN,AM-
MONIA + | NITRO-
GEN,AM-
MONIA + | NITROGN
TOTAL
SEDIMNT | PHOS- | PHOS-
PHORUS | PHOS-
PHORUS
ORTHO, | PHOS
TOTAL
SEDIMNT | CARBON,
INORG +
ORGANIC | |------------|---------------------------|---------------------------|---------------------------|------------------------------|------------------------------|-----------------------------|------------------|------------------|---------------------------|--------------------------|-------------------------------| | | DIS- | DIS- | DIS- | ORGANIC | ORGANIC | SUSP | PHORUS | DIS- | DIS- | SUSP | SUSP. | | D.3.000 | SOLVED | SOLVED | SOLVED | TOTAL | DIS. | TOTAL | TOTAL | SOLVED | SOLVED | TOTAL | TOTAL | | DATE | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | AS N | (MG/L | (MG/L | (MG/L | AS P | (MG/L | | | AS N)
(00613) | AS N)
(00631) | AS N)
(00608) | AS N)
(00625) | AS N)
(00623) | (MG/L)
(00601) | AS P)
(00665) | AS P)
(00666) | AS P)
(00671) | (MG/L)
(00667) | AS C)
(00694) | | | ** | ** | ** | (00023) | (00023) | (00001) | (00003) | ** | (00071) | (00007) | (00094) | | OCT 1997 | , | | | | | | | | | | | | 15 | .003 | .576 | .007 | | | .001 | | .111 | .103 | .005 | .08 | | NOV | | | | | | | | | | | | | 08 | .004 | .202 | .004 | | | .820 | | .022 | .015 | .109 | 8.21 | | 10 | .002 | .088 | .004 | | | .185 | | .029 | .014 | .049 | 1.79 | | *10 | .002 | .088 | .004 | | | .368 | | .026 | .012 | .054 | 3.40 | | 13 | .002 | .200 | .014 | | | .076 | | .024 | .013 | .015 | .83 | | 20 | .002 | .233 | .012 | | | .038 | | .026 | .016 | .012 | .32 | | DEC | | | | | | | | | | | | | 22 | .018 | .277 | .013 | | | .022 | | .033 | .028 | .010 | .24 | | JAN 1998 | | 104 | 010 | | | 000 | | 000 | 010 | 005 | 0.1 | | 10 | .002 | .194 | .012 | | | .080 | | .020 | .018 | .025 | .81 | | 14
17 | .003 | .230
.196 | .010
.019 | | | .033
.207 | | .020
.021 | .018
.016 | .011
.056 | .36
1.99 | | 25 | .002 | .185 | .019 | | | .134 | | .021 | .016 | .030 | 1.12 | | 28 | .002 | .299 | .015 | | | .377 | | .030 | .013 | .113 | 3.81 | | *28 | | . 29 | .026 | .7 | .3 | | .09 | .01 | .018 | | | | 30 | .002 | .134 | .008 | | | .122 | | .016 | .010 | .042 | 1.11 | | FEB | .002 | .131 | .000 | | | .122 | | .010 | .010 | .012 | 1.11 | | 02 | .002 | .192 | .012 | | | .080 | | .010 | .009 | .022 | .66 | | 06 | .002 | .145 | .015 | | | .119 | | <.010 | .013 | .040 | 1.04 | | 07 | .002 | .146 | .012 | | | .090 | | .018 | .011 | .030 | .82 | | 18 | .002 | .222 | .034 | | | .338 | | .040 | .024 | .094 | 3.24 | | *18 | .002 | .224 | .033 | | | .299 | | .026 | .025 | .090 | 2.93 | | MAR | | | | | | | | | | | | | 18 | <.002 | .325 | .032 | | | .057 | | .026 | .012 | .021 | .61 | | 22 | .002 | .170 | .033 | | | .143 | | .022 | .016 | .045 | 1.15 | | APR | | | | | | | | | | | | | 17 | .003 | .194 | .020 | | | .058 | | .028 | .014 | .021 | .55 | | 18 | .003 | .161 | .016 | | | .171 | | .027 | .012 | .049 | 1.6 | | 20 | .002 | .141 | .024 | | | .097 | | .038 | .012 | .033 | .85 | | *20
MAY | | .12 | .017 | . 4 | .3 | | .06 | .03 | .011 | | | | 04 | .002 | .163 | .014 | | | .066 | | .026 | .015 | .021 | .67 | | 05 | <.002 | .172 | .014 | | | .068 | | .020 | .013 | .021 | .81 | | 19 | <.002 | .252 | .027 | | | .034 | | .027 | .025 | .015 | .32 | | *19 | <.002 | .248 | .033 | | | .035 | | .027 | .022 | .015 | .34 | | JUN | | | | | | | | | | | | | 22 | .004 | .324 | .016 | | | .035 | | .034 | .024 | .011 | . 43 | | *22 | | .31 | .008 | . 4 | . 2 | | .03 | .03 | .021 | | | | JUL | | | | | | | | | | | | | 15 | | .450 | .020 | | | .036 | | .053 | .050 | .012 | .27 | | AUG | | | | | | | | | | | | | 18 | .006 | .862 | .016 | | | .124 | | .135 | .120 | .010 | .21 | | SEP | | | | | | | | | | | | | 21 | .006 | .491 | | | | .022 | | .173 | .143 | .011 | .16 | ^{*} Replicate sample. ** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies. < Actual value is known to be less than the value shown. THIS IS A BLANK PAGE ### 01674500 MATTAPONI RIVER NEAR BEULAHVILLE, VA LOCATION.--Lat 37°53'02", long 77°09'55", King William County, Hydrologic Unit 02080105, on right bank, 10 ft upstream from bridge on State Highway 628, 2.4 mi north of Beulahville, and 3.3 mi downstream from Maracossic Creek DRAINAGE AREA. -- 601 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- September 1941 to September 1987, October 1989 to current year. REVISED RECORDS. -- WSP 2103: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 12.43 ft above sea level (levels by Virginia Department of Transportation). Prior to Oct. 14, 1942, nonrecording gage. Oct. 14, 1942, to Aug. 8, 1974, water-stage recorder on right bank at site 0.6 mi upstream at same datum. Aug. 8, 1974, water-stage recorder on left bank 80 ft downstream from previous site, at same datum. Sept. 8, 1987, to Aug. 31, 1989, nonrecording gage on downstream side of bridge at same datum. Sept. 1, 1989, to Mar. 31, 1994, water-stage recorder on upstream side of bridge at same datum. Apr. 1, 1994, to Sept. 28, 1995, nonrecording gage on downstream side of bridge at same datum. Sept. 29, 1995, water-stage recorder at present site and datum. REMARKS.--Records fair. Diurnal fluctuation at times during low flow caused by gristmill on Po River. Maximum discharge, 16,900 ft³/s, from rating curve extended above 11,760 ft³/s. Minimum gage height, 0.94 ft, Sept. 14, 1966. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,560 ft³/s, Feb. 9, gage height, 18.42 ft; minimum 11 ft³/s, Sept. 16-17, gage height, 1.52 ft. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | | | | | DA: | ILY MEAN V | VALUES | | | | | | |-------|------|-------|-------|-------|-------|------------|--------|-------|-------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 58 | 175 | 355 | e560 | 4570 | 2530 | 1280 | 694 | 397 | 297 | 59 | 30 | | 2 | 54 | 181 | 352 | 506 | 4540 | 2050 | 1200 | 757 | 360 | 272 | 54 | 29 | | 3 | 49 | 190 | 364 | 451 | 3620 | 1740 | 1250 | 905 | 332 | 237 | 50 | e26 | | 4 | 46 | 192 | 353 | 408 | 2780 | 1630 | 1360 | 1050 | 299 | 202 | 47 | 23 | | 5 | 40 | 191 | 363 | 377 | 2820 | 1580 | 1540 | 1170 | 281 | 178 | 48 | 23 | | 6 | 37 | 186 | 381 | 358 | 3530 | 1570 | 1690 | 1260 | 267 | 165 | 49 | 21 | | 7 | 39 | 235 | 385 | 344 | 4330 | 1570 | 1790 | 1400 | e250 | 151 | 42 | 18 | | 8 | 38 | 510 | 359 | 378 | 6000 | 1510 | 1860 | 1370 | e240 | 143 | 38 | 18 | | 9 | 37 | 895 | 324 | 498 | 6360 | 1590 | 1920 | 1320 | e230 | 146 | 37 | 21 | | 10 | 34 | 1190 | 305 | 559 | 5340 | 2130 | 1850 | 1530 | 286 | 175 | 58 | 18 | | 11 | 33 | 1350 | 323 | 549 | 4110 | 2570 | 1680 | 1840 | 385 | 215 | 187 | 16 | | 12 | 33 | 1440 | 348 | 495 | 3080 | e2850 | 1610 | 2120 | 453 | 190 | 121 | 16 | | 13 | 32 | 1580 | 368 | 452 | 2420 | e3130 | 1630 | 2240 | 437 | 159 | 82 | 14 | | 14 | 29 | 1540 | 352 | 443 | 1960 | 2800 | 1670 | 2100 | 435 | 137 | 68 | 13 | | 15 | 32 | 880 | 325 | 441 | 1710 | 2260 | 1580 | 1800 | 502 | 119 | 59 | 12 | | 16 | 44 | 679 | 301 | 526 | 1600 | 1780 | 1300 | 1560 | 626 | 107 | 52 | 12 | | 17 | 49 | 606 | 292 | 656 | 1540 | 1470 | 1180 | 1410 | 675 | 101 | 49 | 11 | | 18 | 75 | 528 | 276 | 800 | 1610 | 1310 | 1380 | 1130 | 588 | 104 | 47 | 14 | | 19 | 112 | 452 | 263 | 857 | 1690 | 1490 | 1580 | 769 | 584 | 93 | 45 | 21 | | 20 | 157 | 398 | 255 | 870 | 1770 | 2020 | 1830 | 605 | 542 | e95 | 40 | 22 | | 21 | 213 | 357 | 248 | 753 | 2380 | 2640 | 2200 | 528 | 445 | e90 | 38 | 19 | | 22 | 206 | 457 | 245 | 622 | 3520 | 3430 | 2470 | 480 | 373 | e82 | 36 | 18 | | 23 | 166 | 561 | 284 | 714 | 3290 | 4480 | 2320 | 445 | 334 | 83 | 34 | 29 | | 24 | 136 | 611 | 318 | 1320 | 2700 | 5160 | 2050 | 425 | 447 | 80 | 31 | 30 | | 25 | 116 | e600 | 387 | 1760 | 2310 | 5180 | 1800 | 420 | 612 | 76 | 29 | 24 | | 26 | 116 | 565 | 455 | 1960 | 2150 | 4290 | 1440 | 419 | 644 | 78 | 28 | 21 | | 27 | 158 | 498 | 542 | 2270 | 2370 | 3220 | 1070 | 432 | 713 | 72 | 29 | 19 | | 28 | 198 | 432 | 625 | 2900 | 2690 | 2490 | 878 | 474 | 611 | 68 | 37 | 18 | | 29 | 237 | 382 | 649 | 3320 | | 2010 | 795 | 503 | 388 | 66 | 44 | 16 | | 30 | 225 | 355 | 648 | 3250 | | 1710 | 731 | 493 | 316 | 63 | 38 | 16 | | 31 | 197 | | 613 | 3630 | | 1460 | | 449 | | 59 | 33 | | | TOTAL | 2996 | 18216 | 11658 | 33027 | 86790 | 75650 | 46934 | 32098 | 13052 | 4103 | 1609 | 588 | | MEAN | 96.6 | 607 | 376 | 1065 | 3100 | 2440 | 1564 | 1035 | 435 | 132 | 51.9 | 19.6 | | MAX | 237 | 1580 | 649 | 3630 | 6360 | 5180 | 2470 | 2240 | 713 | 297 | 187 | 30 | | MIN | 29 | 175 | 245 | 344 | 1540 | 1310 | 731 | 419 | 230 | 59 | 28 | 11 | | CFSM | .16 | 1.01 | .63 | 1.77 | 5.16 | 4.06 | 2.60 | 1.72 | .72 | . 22 | .09 | .03 | | IN. | .19 | 1.13 | .72 | 2.04 | 5.37 | 4.68 | 2.91 | 1.99 | .81 | .25 | .10 | .04 | e Estimated. YORK RIVER BASIN ### 01674500 MATTAPONI RIVER NEAR BEULAHVILLE, VA--Continued | STATIST | TICS OF M | ONTHLY MEA | N DATA I | FOR WATER | YEARS 1942 | - 1987, | 1989 - | 1998, BY W | ATER YEAR | R (WY) | | | |--------------|------------------------|------------|----------|------------|-----------------|---------|------------|-----------------|-----------|--------------|-----------|--------------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | | | | | | | | | | | | | MEAN | 321 | 433 | 635 | 818 | 945 | 1096 | 971 | 659 | 411 |
293 | 331 | 231 | | MAX | 1801 | 1461 | 2115 | 2418 | 3100 | 2483 | 3291 | 1912 | 3217 | 2119 | 2409 | 1287 | | (WY) | 1980 | 1973 | 1949 | 1978 | 1998 | 1979 | 1984 | 1978 | 1972 | 1945 | 1969 | 1975 | | MIN | 26.1 | 49.9 | 96.8 | 131 | 286 | 229 | 288 | 130 | 46.3 | 43.5 | 20.3 | 17.4 | | (WY) | 1942 | 1992 | 1966 | 1981 | 1992 | 1981 | 1995 | 1942 | 1991 | 1966 | 1977 | 1980 | | | | | | | | | | | | | | | | SUMMARY | Y STATIST | ICS | FOR | 1997 CALE | ENDAR YEAR | F | OR 1998 | WATER YEAR | | WATER YE | EARS 1942 | - 1987 | | | | | | | | | | | | | 1989 | - 1998 | | 7 NTNTTT 7 T | шошат. | | | 104400 | | | 206701 | | | | | | | ANNUAL | | | | 194488 | | | 326721 | | | 502 | | | | ANNUAL | | | | 533 | | | 895 | | | 593 | | 1070 | | | T ANNUAL I
ANNUAL M | | | | | | | | | 1210
185 | | 1972
1981 | | | | | | 1070 | | | 6260 | T - 1- 0 | | | T | | | | DAILY ME | | | 1970
29 | Mar 9
Oct 14 | | 6360 | Feb 9 | | 16200 | | 25 1972 | | | | | | 33 | | | 11 | Sep 17 | | 6.3 | _ | 13 1966 | | | | Y MINIMUM | | 33 | Oct 9 | | 13
6560 | Sep 12
Feb 9 | | 7.8
16900 | - | 7 1966 | | | TANEOUS PI | | | | | | 18. | | | 24.09 | | 25 1972 | | | | | | | | | | | | | | 23 1969 | | | TANEOUS LO | | | | 20 | | 11 | aSep 16 | | 5.9 | | 14 1966 | | | RUNOFF (| | | .8
12.0 | | | 1.
20. | | | .99
13.41 | | | | | | | | | 14 | | | . 22 | | | - | | | | CENT EXCE | | | 1150 | | | 2370 | | | 1340 | | | | | CENT EXCE | | | 387 | | | 432 | | | 378 | | | | 90 PER | CENT EXCE | FDS | | 51 | | | 32 | | | 65 | | | a Also Sept. 17, 1998. ### 01674500 MATTAPONI RIVER NEAR BEULAHVILLE, VA--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1968, 1969, 1979 to current year. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1991 to September 1994. WATER TEMPERATURE: October 1991 to September 1994. COOPERATION.--Chemical data as noted were provided by the Virginia Division of Consolidated Laboratory Services (VDCLS) and reviewed by the U.S. Geological Survey. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |----------|------|---|---|---|---|---|---|---|---|--| | OCT 1997 | | | | | | | | | | | | 15 | 1130 | 28 | 58 | 6.8 | 14.0 | 17.0 | 776 | VDCLS | 4.2 | 7.6 | | NOV | 1100 | 20 | 30 | 0.0 | 11.0 | 17.0 | ,,, | 12025 | | | | 08 | 1145 | 473 | 56 | 6.1 | 10.0 | 10.4 | 747 | VDCLS | 11 | 9.2 | | 10 | 0900 | 1140 | 56 | 5.9 | 8.0 | 11.0 | 764 | VDCLS | 16 | 9.5 | | *10 | 0910 | 1150 | 56 | 5.9 | 8.0 | 11.0 | 764 | VDCLS | 21 | 9.5 | | 15 | 0900 | 897 | 61 | 5.5 | 6.0 | 7.5 | 766 | VDCLS | 8.3 | 9.4 | | 20 | 1145 | 394 | 59 | 6.8 | 13.5 | 4.0 | 771 | VDCLS | 8.0 | 12.2 | | DEC | 1143 | 394 | 39 | 0.0 | 13.3 | 4.0 | //1 | VDCLIS | 0.0 | 12.2 | | 22 | 0900 | 247 | 60 | 7.0 | 2.0 | 4.0 | 777 | TIDOT O | 5.6 | 13.4 | | | 0900 | 247 | 60 | 7.0 | 2.0 | 4.0 | /// | VDCLS | 5.6 | 13.4 | | JAN 1998 | | | | | | | | | | | | 10 | 0830 | 555 | 59 | 7.2 | 4.0 | 11.0 | 772 | VDCLS | 12 | 9.8 | | 14 | 1130 | 442 | 59 | 6.5 | 3.0 | 6.5 | 780 | VDCLS | 9.0 | 11.6 | | 17 | 0845 | 631 | 56 | 6.8 | 5.0 | 5.0 | 766 | VDCLS | 8.1 | 12.0 | | 25 | 0900 | 1740 | 43 | 6.1 | 5.0 | 5.4 | 737 | VDCLS | 14 | 11.8 | | 28 | 1015 | 2810 | 41 | 6.6 | 3.5 | 4.0 | 758 | VDCLS | 26 | 11.4 | | *28 | 1030 | 2810 | 41 | 6.6 | 3.5 | 4.0 | 758 | USGS | | 11.4 | | 30 | 0955 | 3240 | 40 | 6.3 | 6.9 | 2.8 | 772 | VDCLS | 15 | | | FEB | | | | | | | | | | | | 02 | 1130 | 4620 | 36 | 7.4 | 8.0 | 5.0 | 775 | VDCLS | 27 | 11.8 | | 07 | 0930 | 4070 | 36 | 6.9 | 5.0 | 5.0 | 766 | VDCLS | 19 | 11.2 | | 08 | 0930 | 5860 | 35 | 5.7 | 4.0 | 5.0 | 766 | VDCLS | 26 | 11.3 | | 19 | 1445 | 1690 | 43 | | 18.0 | 10.0 | 762 | VDCLS | 8.4 | 10.2 | | MAR | | | | | | | | | | | | 18 | 1100 | 1300 | 43 | 7.4 | 6.0 | 7.0 | 773 | VDCLS | 6.8 | 11.4 | | 23 | 0830 | 4340 | 33 | 6.3 | 4.5 | 6.3 | 740 | VDCLS | 15 | 10.3 | | 26 | 1230 | 4270 | 33 | 5.6 | 22.0 | 9.0 | 778 | VDCLS | 18 | 10.4 | | *26 | 1245 | 4270 | 33 | 5.6 | 22.0 | 9.0 | 778 | VDCLS | 18 | 10.4 | | APR | 1243 | 4270 | 33 | 5.0 | 22.0 | 9.0 | 776 | VDCLIS | 10 | 10.4 | | 17 | 0755 | 1140 | 41 | 6.3 | 17.8 | 10.0 | 733 | TIDOT O | 6.2 | 9.2 | | | | 1140 | | | | 18.0 | | VDCLS | | | | 17 | 0800 | 1140 | 41 | 6.3 | 17.8 | 18.0 | 733 | USGS | 6.2 | 9.2 | | 19 | 1245 | 1560 | 38 | 6.5 | 16.5 | 17.0 | 758 | VDCLS | 7.2 | 7.8 | | 22 | 0930 | 2470 | 38 | 6.7 | 15.5 | 14.0 | 770 | VDCLS | 9.0 | 7.9 | | *22 | 0945 | 2470 | 38 | 6.7 | 15.5 | 14.0 | 770 | USGS | | 7.9 | | MAY | | | | | | | | | | | | 05 | 0945 | 1150 | 43 | 5.9 | 18.0 | 18.0 | 763 | VDCLS | 8.0 | 7.8 | | *05 | 1000 | 1150 | 43 | 5.9 | 18.0 | 18.0 | 763 | USGS | | 7.8 | | 07 | 0945 | 1390 | 42 | 6.1 | 20.5 | 18.0 | 766 | VDCLS | 15 | 7.4 | | 19 | 1000 | 771 | 48 | 6.9 | 26.0 | 21.0 | 769 | VDCLS | | 7.3 | | *19 | 1015 | 771 | 48 | 6.9 | 26.0 | 21.0 | 769 | VDCLS | | 7.3 | | JUN | | | | | | | | | | | | 22 | 0900 | 364 | 50 | 6.4 | 27.0 | 24.0 | 770 | VDCLS | 7.0 | 7.1 | | *22 | 0915 | 364 | 50 | 6.4 | 27.0 | 24.0 | 770 | USGS | | 7.1 | | JUL | | | | | | | | | | | | 15 | 0950 | 120 | 52 | 6.6 | 26.5 | 23.7 | 755 | VDCLS | 4.6 | 6.5 | | AUG | | 120 | 22 | | | | | 525 | | 5 | | 18 | 0915 | 46 | 56 | 6.2 | 14.5 | 24.0 | 760 | VDCLS | 3.4 | 6.3 | | SEP | 0,10 | 40 | 50 | 0.2 | 11.5 | 21.0 | , 50 | ADCHO | 5.4 | 0.5 | | 21 | 1030 | 29 | 58 | 7.2 | 27.0 | 23.0 | 760 | VDCLS | 1.9 | 5.8 | | 41 | 1030 | رے | 50 | / . 4 | 27.0 | 23.0 | , 00 | ADCTO | 1.9 | 5.0 | ^{*} Replicate sample. YORK RIVER BASIN ### 01674500 MATTAPONI RIVER NEAR BEULAHVILLE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | NOT 1997 15 77 5.4 15 77 5.4 15 78 5.4 15 78 5.4 15 78 8.2 10 86 8.2 15 78 8.2 15 78 8.2 15 78 8.2 15 78 8.2 15 78 6.2 15 78 6.2 15 78 6.2 15 78 6.2 15 78 6.2 15 78 6.2 15 78 6.2 15 78 | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | BROMIDE
DIS-
SOLVED
(MG/L
AS BR)
(71870) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | |--|----------|---|---|---|---|--|--|---|---|---|--| | NOV 08 84 | OCT 1997 | | | | | | | | | | | | 88. 84 | | 77 | | | | | | | | | 5.4 | | 10 866 8.2 *10 86 8.2 15 78 8.2 20 92 6.2 DEC 22 100 6.2 JAN 1998 10 88 9.1 14 92 9.5 17 93 8.9 25 97 | | 0.4 | | | | | | | | | 0.0 | | *10 86 | | | | | | | | | | | | | 15 78 | | | | | | | | | | | | | DEC 22 100 6.2 DEC 22 100 11 JAN 1998 10 88 9.5 14 92 9.5 17 93 | | | | | | | | | | | | | 22 100 11 JAN 1998 10 88 9.1 14 92 9.5 17 93 8.9 25 97 7.1 28 87 7.1 30 7.1 30 91 7.1 30 91 7.1 30 91 | | | | | | | | | | | | | JAN 1998 10 88 9.5 17 93 9.5 25 97 7.1 28 87 7.9 *28 87 7.0 *28 87 7.0 *EB 02 91 6.6 07 87 5.5 08 88 5.5 08 88 5.5 18 93 5.6 23 86 5.5 *26 88 | DEC | | | | | | | | | | | | 10 88 | | 100 | | | | | | | | | 11 | | 14 92 9.5 17 93 8.9 25 97 7.1 28 87 7.1 30 7.1 30 7.1 30 97 7.0 FEB 02 91 7.0 6.6 07 87 6.6 07 88 5.5 18 93 6.6 23 86 5.5 26 88 5.5 26 88 5.5 26 88 5.5 26 88 5.5 22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 5.3 *22 76 | | | | | | | | | | | | | 17 93 8.9 25 97 7.1 28 87 7.9 *28 87 7.9 *28 87 7.9 *28 87 7.0 FEB 02 91 5.5 08 88 5.5 19 90 5.5 19 90 5.5 26 88 5.5 26 88 5.5 26 88 5.5 26 88 5.5 26 88 5.5 26 88 5.5 26 88 5.5 26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88
5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *27 76 | | | | | | | | | | | | | 25 97 7.1 28 87 7.9 *28 87 7.9 *28 87 7.1 30 | | | | | | | | | | | | | 28 87 7.9 *28 87 7.1 30 7.0 FEB 02 91 6.6 07 87 5.5 08 88 6.4 MAR 18 93 5.5 26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *27 88 5.5 *28 88 5.5 *29 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 88 5.5 *20 81 | | | | | | | | | | | | | *28 87 | | | | | | | | | | | | | 30 | | | | | | | | | | | | | 02 91 | 30 | | | | | | | | | | 7.0 | | 07 87 | FEB | | | | | | | | | | | | 08 88 | 02 | 91 | | | | | | | | | 6.6 | | MAR 18 93 5.6 23 86 5.5 26 88 5.5 *26 88 5.5 *26 88 5.5 *27 88 5.5 *28 88 5.5 *29 88 5.5 *29 88 | | | | | | | | | | | | | MAR 18 93 5.6 23 86 5.5 26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.4 APR 17 101 2.4 1.4 2.6 1.1 4.2 3.5 <.1 <.01 19 81 5.3 *22 76 5.3 *22 76 6.1 MAY 05 82 6.1 *05 82 6.5 07 78 6.5 07 78 8.2 *19 81 8.4 JUN 22 83 8.4 JUN 22 83 8.0 JUN 22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEP | | | | | | | | | | | | | 18 93 5.6 23 86 5.5 26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 88 5.5 *26 89 5.5 *26 89 | | 90 | | | | | | | | | 6.4 | | 23 86 | | 0.2 | | | | | | | | | E 6 | | 26 88 5.5 *26 88 5.4 APR 17 4.7 17 101 2.4 1.4 2.6 1.1 4.2 3.5 <.1 <.01 19 81 90 22 76 5.3 *22 76 5.3 *22 76 6.1 MAY 05 82 6.1 *05 82 6.5 07 78 8.2 *19 81 8.4 JUN 22 83 8.4 JUN 22 83 8.0 JUL 15 78 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEP | | | | | | | | | | | | | *26 88 | | | | | | | | | | | | | 17 | | | | | | | | | | | | | 17 101 2.4 1.4 2.6 1.1 4.2 3.5 <.1 <.01 19 8190 22 76 5.3 *22 76 6.1 MAY 05 82 7.1 *05 82 6.5 07 78 6.1 19 81 8.2 *19 81 8.2 *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP | APR | | | | | | | | | | | | 19 8190 22 76 5.3 *22 76 5.3 *22 76 6.1 MAY 05 82 7.1 *05 82 6.5 07 78 6.1 19 81 8.2 *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP | | | | | | | | | | | 4.7 | | 22 76 5.3 *22 76 6.1 MAY 05 82 7.1 *05 82 6.5 07 78 6.1 19 81 8.2 *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP | | | | | | | | | | | | | *22 76 6.1 MAY 05 82 7.1 *05 82 6.5 07 78 6.1 19 81 8.2 *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP | | | | | | | | | | | | | MAY 05 82 7.1 *05 82 6.5 07 78 6.1 19 81 8.2 *19 81 8.4 JUN 22 83 8.4 JUN 22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEP | | | | | | | | | | | | | 05 82 7.1 *05 82 6.5 07 78 6.1 19 81 8.2 *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP | | 76 | | | | | | | | | 0.1 | | *05 82 6.5 07 78 6.1 19 81 8.2 *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP | | 82 | | | | | | | | | 7 1 | | 19 81 8.2 *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP | | | | | | | | | | | | | *19 81 8.4 JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEP | 07 | 78 | | | | | | | | | 6.1 | | JUN 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEP | 19 | 81 | | | | | | | | | 8.2 | | 22 83 9.7 *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEEP | | 81 | | | | | | | | | 8.4 | | *22 83 8.0 JUL 15 78 7.7 AUG 18 75 7.2 SEP | | | | | | | | | | | | | JUL 15 78 7.7 AUG 18 75 7.2 SEP | | | | | | | | | | | | | 15 78 7.7 AUG 18 75 7.2 SEP | | 83 | | | | | | | | | 8.0 | | AUG
18 75 7.2
SEP | | 70 | | | | | | | | | 7 7 | | 18 75 7.2
SEP | | 70 | | | | | | | | | 1.1 | | SEP | | 75 | | | | | | | | | 7.2 | | 21 68 6.5 | | | | | | | | | | | | | | 21 | 68 | | | | | | | | | 6.5 | ^{*} Replicate sample. < Actual value is known to be less than the value shown. ## 01674500 MATTAPONI RIVER NEAR BEULAHVILLE, VA--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 YORK RIVER BASIN | | 201 102 | DEGIDIN | | | | NT TO O | NT FFD O | NT TO O | NT TO O | NT TO O | |----------|---------|---------|------------|---------|---------|---------|----------|---------|---------|---------| | | SOLIDS, | RESIDUE | | | | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | | | RESIDUE | TOTAL | RESIDUE | RESIDUE | NITRO- | GEN, | GEN, | GEN, | GEN, | GEN,AM- | | | AT 180 | AT 105 | FIXED | VOLA- | GEN | NITRATE | NITRITE | NO2+NO3 | AMMONIA | MONIA + | | | DEG. C | DEG. C, | NON | TILE, | DIS- | DIS- | DIS- | DIS- | DIS- | ORGANIC | | | DIS- | SUS- | FILTER- | SUS- | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | TOTAL | | DATE | SOLVED | PENDED | ABLE | PENDED | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | | | (MG/L) | (MG/L) | (MG/L) | (MG/L) | AS N) | | | (70300) | (00530) | (00540) | (00535) | (00602) | (00618) | (00613) | (00631) | (00608) | (00625) | | | | ** | ** | ** | ** | | ** | ** | * * | | | OCT 1997 | | | _ | | | | | | | | | 15 | | <3 | <3 | <3 | .289 | .038 | .002 | .038 | .004 | | | NOV | | | | | | | | | | | | 08 | | 25 | 19 | 6 | .310 | .065 | .002 | .065 | .010 | | | 10 | | 26 | 19 | 7 | .274 | .021 | <.002 | .021 | < .004 | | | *10 | | 24 | 19 | 5 | .390 | .021 | <.002 | .021 | .004 | | | 15 | | 8 | 6 | 3 | .406 | .023 | .002 | .025 | .004 | | | 20 | | 4 | <3 | <3 | .371 | .075 | .002 | .075 | .011 | | | DEC | | | | | | | | | | | | 22 | | 3 | <3 | <3 | .410 | .181 | <.002 | .181 | .020 | | | JAN 1998 | | | | | | | | | | | | 10 | | 7 | 6 | <3 | .387 | .134 | .002 | .136 | .027 | | | 14 | | 4 | <3 | <3 | .364 | .141 | .002 | .143 | .010 | | | 17 | | 12 | 8 | <3 | .429 | .162 | .002 | .164 | .023 | | | 25 | | 13 | 10 | 3 | .453 | .173 | < .002 | .173 | .015 | | | 28 | | 7 | 4 | 3 | .394 | .091 | < .002 | .091 | .007 | | | *28 | | 1 | | 7 | .42 | | | .078 | < .002 | . 4 | | 30 | | 7 | 4 | 3 | .340 | .117 | < .002 | .117 | < .004 | | | FEB | | | | | | | | | | | | 02 | | 8 | 6 | <3 | .285 | .064 | < .002 | .064 | .004 | | | 07 | | 7 | 5 | <3 | .479 | .140 | < .002 | .140 | .008 | | | 08 | | 8 | 5 | 3 | .420 | .114 | < .002 | .114 | .006 | | | 19 | | 6 | 4 | <3 | .453 | .174 | .002 | .176 | < .004 | | | MAR | | | | | | | | | | | | 18 | | 6 | 5 | <3 | .628 | .206 | < .002 | .206 | .014 | | | 23 | | 5 | 3 | <3 | .329 | .101 | < .002 | .101 | .007 | | | 26 | | 5 | 4 | <3 | .300 | .076 | <.002 | .076 | .004 | | | *26 | | 6 | 4 | <3 | .341 | .076 | .002 | .076 | .005 | | | APR | | | | | | | | | | | | 17 | | | | | .44 | .117 | <.002 | .117 | .021 | | | 17 | 38 | | | | | | | | | | | 19 | | | | | .508 | .096 | .002 | .098 | .035 | | | 22 | | 5 | 3 | <3 | .422 | .049 | <.002 | .049 | .017 | | | 22 | | 2 | | 4 | .47 | | | .038 | .017 | . 6 | | MAY | | - | | - | • • • | | | .050 | .01, | | | 05 | | 13 | 10 | <3 | .448 | .134 | <.002 | .134 | .044 | | | *05 | | 4 | | 8 | .45 | | | .11 | .037 | . 5 | | 07 | | 12 | 10 | <3 | .499 | .143 | .003 | .146 | .060 | | | 19 | | <3 | <3 | <3 | .455 | .166 | .003 | .169 | .054 | | | *19 | | 8 | 6 | <3 | .527 | .169 | .003 | .172 | .057 | | | JUN | | O | 0 | ~ 5 | . 527 | .105 | .005 | .1/2 | .037 | | | 22 | | 4 | 3 | <3 | .484 | .190 | <.002 | .190 | .027 | | | *22 | | <1 | | 9 | .53 | | | .18 | .014 | . 4 | | JUL | | ~ ± | | , | | | | . 10 | .014 | , 1 | | 15 | | <3 | <3 | <3 | .402 | .160 | | .160 | .020 | | | AUG | | ~ 3 | ~ 3 | ~ 3 | .402 | .100 | | .100 | .020 | | | 18 | | <3 | <3 | <3 | .404 | .095 | <.002 | .095 | .022 | | | SEP | | \3 | \ 3 | \ 3 | . 404 | .093 | <.UUZ | .093 | .022 | | | 21 | | <3 | <3 | <3 | .379 | .057 | <.002 | .057 | | | | ∠⊥ | | < 3 | < 3 | < 3 | .3/9 | .05/ | <.00∠ | .05/ | | | ^{*} Replicate sample. ** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies. < Actual value is known to be less than the value shown. YORK RIVER BASIN # 01674500 MATTAPONI RIVER NEAR BEULAHVILLE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITROGN
TOTAL
SEDIMNT
SUSP
TOTAL
AS N
(MG/L)
(00601) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS
TOTAL
SEDIMNT
SUSP
TOTAL
AS P
(MG/L)
(00667) | CARBON,
INORG +
ORGANIC
SUSP.
TOTAL
(MG/L
AS C)
(00694) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | |----------|--|---|---|--|--|--|--|---|---| | OCT 1997 | | | | | | | | | | | 15 | | .020 | | .026 | .016 | .004 | . 24 | | | | NOV | | .020 | | .020 | .010 | .001 | | | | | 08 | | .140 | | .019 | .012 | .022 | 1.57 | | | | 10 | | .122 | | .016 | .014 | .027 | 1.21 | | | | *10 | | .163 | | .032 | .013 | .027 | 1.51 | | | | 15 | | .048 | | .023 | .012 | .012 | .56 | | | | 20 | | .043 | | .018 | .009 | .017 | .36 | | | | DEC | | .015 | | .010 | .005 | .017 | .50 | | | | 22 | | .022 | | .027 | .020 | .013 | .31 | | | | JAN 1998 | | .022 | | .027 | .020 | .013 | . 51 | | | | 10 | | .048 | | .020 | .016 | .022 | .58 | | | | 14 | | .033 | | .030 | .024 | .015 | .40 | | | | 17 | | .062 | | .018 | .018 | .021 | .75 | | | | 25 | | .094 | | .020 | .016 | .021 | .89 | | | | 28 | | .086 | | .030 | .014 | .029 | .77 | | | | *28 | .3 | .080 | .03 | <.01 | .011 | .020 | | | | | 30 | | .068 | | .020 | .008 | .022 | 1.14 | | | | FEB | | .000 | | .020 | .006 | .022 | 1.14 | | | | 02 | | .073 | | .010 | .008
 .024 | .67 | | | | 07 | | .068 | | .010 | .010 | .024 | .59 | | | | | | | | | | | | | | | 08 | | .077 | | .013 | .009 | .026 | .67 | | | | 19 | | .055 | | .020 | .006 | .016 | .50 | | | | MAR | | 0.00 | | 010 | 0.00 | 0.7.4 | 4.0 | | | | 18 | | .038 | | .018 | .007 | .014 | .42 | | | | 23 | | .055 | | .016 | .008 | .020 | .47 | | | | 26 | | .060 | | .015 | .007 | .016 | .46 | | | | *26 | | .052 | | .017 | .007 | .017 | .42 | | | | APR | | | | | | | | | | | 17 | | .05 | | .023 | .012 | .020 | .53 | | | | 17 | | | | | | | | 540 | 94 | | 19 | | .070 | | .024 | .014 | .027 | .76 | | | | 22 | | .057 | | .032 | .013 | .022 | .54 | | | | *22 | . 4 | | .06 | .03 | .012 | | | | | | MAY | | | | | | | | | | | 05 | | .065 | | .018 | .017 | .025 | .80 | | | | *05 | . 3 | | .03 | <.01 | .010 | | | | | | 07 | | .073 | | .021 | .022 | .037 | .79 | | | | 19 | | .053 | | .023 | .026 | .024 | .59 | | | | *19 | | .047 | | .035 | .025 | .024 | .55 | | | | JUN | | | | | | | | | | | 22 | | .034 | | .039 | .024 | .014 | .39 | | | | *22 | . 3 | | .04 | .03 | .021 | | | | | | JUL | | | | | | | | | | | 15 | | .022 | | .016 | .020 | .009 | .22 | | | | AUG | | | | | | | | | | | 18 | | .124 | | .033 | .015 | .015 | .21 | | | | SEP | | | | | | | | | | | 21 | | .018 | | .034 | .016 | .006 | .13 | | | | | | | | | | | | | | ^{*} Replicate sample. ** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies. < Actual value is known to be less than the value shown. #### SOUTH ATLANTIC SLOPE BASINS #### JAMES RIVER BASIN ### 02011400 JACKSON RIVER NEAR BACOVA, VA LOCATION.--Lat 38°02'32", long 79°52'54", Bath County, Hydrologic Unit 02080201, on left bank 0.1 mi downstream from ford, 1.8 mi upstream from Back Creek, and 2.2 mi southwest of Bacova. DRAINAGE AREA. -- 158 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1974 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,639.20 ft above sea level. REMARKS.--Records good except for period with ice effect, Jan. 2, which is fair. U.S. Army Corps of Engineers satellite water temperature, precipitation and gage-height telemeter at station. Maximum discharge, $30,000 \, \mathrm{ft}^3/\mathrm{s}$, from rating curve extended above 1,300 ft $^3/\mathrm{s}$ on basis of slope-area measurements at gage heights 8.88 ft, 11.40 ft, 13.88 ft, and 22.25 ft. Minimum gage height, 2.42 ft, Aug. 18, 19, 1988. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 21, 1972, reached a stage of 11.40 ft, discharge, 4,800 ft³/s, and flood of Dec. 26, 1973, reached a stage of 13.88 ft, discharge, 7,560 ft³/s, from rating curve extended as explained above. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,500 ft³/s and maximum (*): | Date | Time | Discharge (ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|--------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1330 | *4,180 | *10.87 | Mar. 19 | 0530 | 1,520 | 7.42 | | Feb. 17 | 2230 | 2,830 | 9.34 | Mar. 21 | 1030 | 3,600 | 10.25 | | Mar. 9 | 1830 | 1,560 | 7.49 | Apr. 19 | 2300 | 2,250 | 8.56 | $\mbox{Minimum discharge, 18 ft}^3/\mbox{s, Sept. 15-17, 18-19, 24-25, 27-28, 29, 30, gage height, 2.78 ft. } \\$ | | | DISCH | ARGE, IN | CUBIC FEE | | OND, WATE | | TOBER 1997 | 7 TO SEPT | EMBER 1998 | 8 | | |-------|------|-------|----------|-----------|-------|-----------|-------|------------|-----------|------------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 32 | 74 | 52 | 57 | 327 | 443 | 223 | 191 | 73 | 104 | 31 | 21 | | 2 | 29 | 162 | 47 | e55 | 295 | 399 | 224 | 235 | 66 | 83 | 30 | 21 | | 3 | 28 | 122 | 44 | 64 | 301 | 343 | 191 | 233 | 62 | 71 | 29 | 21 | | 4 | 27 | 94 | 48 | 72 | 485 | 292 | 365 | 314 | 58 | 66 | 28 | 20 | | 5 | 26 | 77 | 50 | 120 | 495 | 257 | 427 | 353 | 58 | 71 | 31 | 20 | | 6 | 26 | 61 | 46 | 233 | 502 | 224 | 347 | 338 | 59 | 61 | 28 | 20 | | 7 | 26 | 119 | 43 | 296 | 436 | 201 | 298 | 300 | 55 | 56 | 27 | 20 | | 8 | 25 | 246 | 40 | 2710 | 383 | 274 | 269 | 398 | 52 | 68 | 30 | 25 | | 9 | 25 | 220 | 40 | 1410 | 373 | 1010 | 611 | 372 | 51 | 69 | 31 | 26 | | 10 | 25 | 147 | 50 | 733 | 356 | 1000 | 747 | 310 | 57 | 57 | 34 | 22 | | 11 | 25 | 111 | 86 | 484 | 393 | 629 | 537 | 276 | 56 | 51 | 48 | 20 | | 12 | 24 | 86 | 78 | 362 | 653 | 471 | 413 | 244 | 55 | 48 | 36 | 21 | | 13 | 24 | 73 | 70 | 309 | 754 | 375 | 338 | 215 | 58 | 46 | 31 | 20 | | 14 | 24 | 78 | 65 | 250 | 620 | 328 | 298 | 187 | 61 | 45 | 30 | 19 | | 15 | 25 | 105 | 59 | 246 | 484 | 280 | 267 | 167 | 227 | 45 | 49 | 19 | | 16 | 24 | 91 | 54 | 398 | 407 | 239 | 236 | 153 | 148 | 43 | 53 | 19 | | 17 | 24 | 79 | 51 | 348 | 1450 | 212 | 264 | 143 | 125 | 44 | 54 | 19 | | 18 | 24 | 70 | 49 | 293 | 1940 | 295 | 225 | 128 | 97 | 42 | 65 | 19 | | 19 | 24 | 64 | 46 | 247 | 1200 | 1160 | 924 | 117 | 132 | 41 | 39 | 19 | | 20 | 24 | 58 | 44 | 215 | 908 | 1190 | 1480 | 110 | 169 | 40 | 32 | 19 | | 21 | 23 | 57 | 43 | 181 | 761 | 2930 | 806 | 105 | 120 | 38 | 29 | 21 | | 22 | 23 | 73 | 45 | 164 | 589 | 1520 | 582 | 98 | 97 | 37 | 27 | 20 | | 23 | 23 | 78 | 47 | 412 | 566 | 921 | 472 | 98 | 83 | 39 | 26 | 20 | | 24 | 25 | 68 | 48 | 544 | 546 | 659 | 396 | 108 | 74 | 39 | 25 | 19 | | 25 | 41 | 63 | 69 | 453 | 471 | 501 | 315 | 102 | 65 | 35 | 24 | 18 | | 26 | 41 | 59 | 75 | 350 | 427 | 401 | 271 | 88 | 59 | 34 | 24 | 19 | | 27 | 47 | 57 | 74 | 301 | 396 | 337 | 251 | 114 | 62 | 34 | 23 | 19 | | 28 | 41 | 54 | 71 | 369 | 402 | 292 | 217 | 113 | 86 | 35 | 23 | 18 | | 29 | 32 | 50 | 67 | 401 | | 259 | 191 | 90 | 135 | 33 | 22 | 19 | | 30 | 29 | 49 | 70 | 428 | | 232 | 178 | 79 | 124 | 32 | 22 | 19 | | 31 | 27 | | 65 | 380 | | 210 | | 73 | | 32 | 22 | | | TOTAL | 863 | 2745 | 1736 | 12885 | 16920 | 17884 | 12363 | 5852 | 2624 | 1539 | 1003 | 602 | | MEAN | 27.8 | 91.5 | 56.0 | 416 | 604 | 577 | 412 | 189 | 87.5 | 49.6 | 32.4 | 20.1 | | MAX | 47 | 246 | 86 | 2710 | 1940 | 2930 | 1480 | 398 | 227 | 104 | 65 | 26 | | MIN | 23 | 49 | 40 | 55 | 295 | 201 | 178 | 73 | 51 | 32 | 22 | 18 | | CFSM | .18 | .58 | .35 | 2.63 | 3.82 | 3.65 | 2.61 | 1.19 | .55 | .31 | .20 | .13 | | IN. | .20 | .65 | .41 | 3.03 | 3.98 | 4.21 | 2.91 | 1.38 | .62 | .36 | .24 | .14 | e Estimated. # 02011400 JACKSON RIVER NEAR BACOVA, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1975 - | 1998. | BY | WATER | YEAR | (WY) |) | |------------|----|---------|------|------|-----|-------|-------|--------|-------|----|-------|------|------|---| | | | | | | | | | | | | | | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------------------------------------|--|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|--| | MEAN
MAX
(WY)
MIN
(WY) | 87.1
367
1980
19.7
1989 | 130
762
1986
27.5
1995 | 168
419
1997
36.1
1995 | 252
703
1996
31.6
1981 | 264
604
1998
101
1978 | 377
767
1993
68.0
1981 | 284
814
1987
81.1
1988 | 232
508
1989
61.1
1977 | 137
388
1982
37.1
1977 | 61.8
130
1989
29.7
1988 | 58.4
282
1984
20.6
1988 | 65.5
342
1979
20.1
1998 | | SUMMARY | STATIST | | | 1997 CALE | NDAR YEAR | | DR 1998 | WATER YEAR | 2377 | | ARS 1975 | | | | MEAN
ANNUAL I | | | 48801
134 | | | 77016
211 | | | 176
244 | | 1996 | | HIGHEST
LOWEST | ANNUAL MI
DAILY ME | EAN
AN | | 1620
23 | Mar 4 | | 2930 | Mar 21
bSep 25 | | 86.9
8820
16 | Aug 1 | 1981
.9 1996
.8 1988 | | INSTANT | SEVEN-DA
CANEOUS PI
CANEOUS PI | EAK STAGE | | 24 | Oct 17 | | 19
4180
10.
18 | | | 17
30000
c22.25
15 | Nov
Nov | .3 1988
4 1985
4 1985
.7 1988 | | ANNUAL
ANNUAL
10 PERC | RUNOFF (C
RUNOFF (C
ENT EXCE
ENT EXCE | CFSM)
INCHES)
EDS | | .8
11.4
271
84 | | | 1.
18.
484
73 | 34 | | 1.11
15.14
374
91 | | .7 1900 | | | CENT EXCE | | | 28 | | | 24 | | | 29 | | | a Also Oct. 22, 23, 1997. b Also Sept. 28, 1998. c From floodmark. d Also Sept. 16-19, 24, 25, 27-30, 1998. f Also Aug. 18, 19, and Sept. 16, 17, 23, 1988. ### 02011400 JACKSON RIVER NEAR BACOVA, VA--Continued ### WATER-QUALITY RECORDS PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: March 1978 to September 1981, October 1982 to current year. INSTRUMENTATION.--Water-temperature recorder March 1978 to September 1981, and since October 1982. REMARKS.--Interruption in record due to instrument malfunction. Some record in prior years fragmentary due to instrument malfunction. Records represent water temperature at sensor within 0.5°C. Temperature at the sensor was compared with the average for the river by temperature cross section on June 28, 1995. No variation of temperature was found within the cross section. EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum recorded, 31.0°C, July 16, 1988; minimum recorded, 0.0°C on many days during winter periods. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum recorded, 27.8°C, Aug. 26; minimum, 0.0°C on several days during winter period. TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | MEAN | |-------|------|---------|------|------|---------|------|-----|---------|------|-----|---------|------| | | | OCTOBER | 2 | N | OVEMBER | | Di | ECEMBER | | | JANUARY | 7 | | 1 | 16.5 | 14.3
| 15.5 | 11.3 | 9.2 | 10.1 | 8.5 | 6.0 | 7.8 | .0 | .0 | .0 | | 2 | 15.8 | 12.1 | 13.8 | 11.7 | 9.9 | 10.6 | 6.0 | 4.2 | 5.2 | .0 | . 0 | .0 | | 3 | 15.8 | 11.7 | 13.6 | 9.9 | 8.5 | 9.0 | 4.9 | 3.5 | 4.2 | .7 | .0 | .1 | | 4 | 16.9 | 12.4 | 14.8 | 8.5 | 6.4 | 7.6 | 6.4 | 4.9 | 5.7 | 2.5 | .0 | 1.1 | | 5 | 18.9 | 15.0 | 16.7 | 7.4 | 4.9 | 6.1 | 5.7 | 3.2 | 4.7 | 4.2 | 1.8 | 2.9 | | 6 | | | | 6.7 | 4.2 | 5.8 | 3.2 | 1.1 | 2.3 | 6.0 | 4.2 | 5.0 | | 7 | | | | 7.4 | 6.4 | 7.0 | 1.1 | . 4 | . 9 | 8.5 | 6.0 | 7.1 | | 8 | 19.7 | 15.8 | 17.6 | 7.4 | 6.7 | 7.0 | 2.5 | . 7 | 1.7 | 9.9 | 8.5 | 9.5 | | 9 | 19.7 | 16.5 | 17.9 | 8.1 | 7.1 | 7.6 | 2.8 | 1.8 | 2.3 | 9.5 | 7.4 | 8.6 | | 10 | 19.7 | 16.9 | 18.1 | 8.5 | 6.7 | 7.7 | 3.5 | 2.8 | 3.1 | 7.4 | 5.7 | 6.2 | | 11 | 18.9 | 15.4 | 16.9 | 7.4 | 6.7 | 7.2 | 4.6 | 3.5 | 4.0 | 6.4 | 4.9 | 5.6 | | 12 | 18.5 | 14.6 | 16.6 | 7.1 | 6.4 | 6.7 | 4.2 | 3.5 | 4.0 | 5.7 | 5.3 | 5.6 | | 13 | 19.3 | 15.8 | 17.2 | 6.4 | 4.9 | 5.5 | 3.5 | 2.1 | 2.8 | 6.7 | 5.3 | 5.8 | | 14 | 17.3 | 15.4 | 16.4 | 6.4 | 4.9 | 5.7 | 2.5 | 1.1 | 1.9 | 5.3 | 3.9 | 4.7 | | 15 | 16.5 | 13.9 | 15.0 | 6.0 | 4.9 | 5.5 | 1.8 | .0 | .8 | 4.2 | 3.9 | 4.1 | | 16 | 14.3 | 11.3 | 13.0 | 4.9 | 3.5 | 4.0 | 2.1 | .0 | .9 | 6.4 | 4.2 | 5.4 | | 17 | 12.8 | 11.0 | 12.0 | 4.6 | 2.1 | 3.3 | 2.1 | .0 | 1.0 | 6.0 | 5.3 | 5.9 | | 18 | 12.8 | 11.0 | 12.0 | 3.5 | 1.1 | 2.4 | 2.1 | .0 | 1.2 | 5.3 | 3.9 | 4.7 | | 19 | 13.9 | 12.1 | 12.7 | 3.5 | .7 | 2.3 | 2.8 | . 4 | 1.7 | 4.9 | 3.9 | 4.3 | | 20 | 12.8 | 10.2 | 11.7 | 4.2 | 1.4 | 2.9 | 2.8 | .7 | 1.8 | 4.9 | 3.2 | 4.1 | | 21 | 11.3 | 9.2 | 9.9 | 3.9 | 3.2 | 3.5 | 3.5 | 1.8 | 2.7 | 3.5 | 1.8 | 2.9 | | 22 | 10.2 | 7.8 | 9.0 | 6.7 | 3.9 | 5.6 | 3.2 | 2.8 | 3.1 | 4.2 | 2.8 | 3.5 | | 23 | 9.2 | 5.3 | 7.4 | 7.4 | 6.0 | 6.6 | 4.6 | 3.2 | 3.8 | 4.9 | 3.5 | 4.4 | | 24 | 8.1 | 6.4 | 7.1 | 6.4 | 3.5 | 4.8 | 4.6 | 3.9 | 4.2 | 5.7 | 4.6 | 5.2 | | 25 | 9.5 | 7.4 | 8.6 | 3.9 | 1.4 | 2.8 | 5.3 | 4.2 | 4.8 | 4.9 | 3.9 | 4.3 | | 26 | 9.5 | 9.2 | 9.4 | 3.2 | 1.8 | 2.4 | 6.4 | 4.9 | 5.4 | 4.6 | 3.2 | 3.8 | | 27 | 9.9 | 8.5 | 9.4 | 5.3 | 2.5 | 3.8 | 4.9 | 2.5 | 3.2 | 3.9 | 1.8 | 3.4 | | 28 | 8.8 | 6.4 | 7.7 | 5.3 | 2.8 | 4.2 | 3.5 | 1.8 | 2.6 | 2.5 | . 7 | 1.6 | | 29 | 9.2 | 6.0 | 7.5 | 7.1 | 4.9 | 6.2 | 1.8 | . 0 | . 5 | 5.3 | 2.5 | 3.7 | | 30 | 9.2 | 5.7 | 7.7 | 8.5 | 7.1 | 7.9 | . 4 | . 0 | .1 | 5.3 | 4.2 | 4.6 | | 31 | 9.5 | 6.0 | 8.1 | | | | . 4 | .0 | .0 | 5.3 | 3.5 | 4.2 | | MONTH | | | | 11.7 | .7 | 5.7 | 8.5 | .0 | 2.9 | 9.9 | .0 | 4.3 | # 02011400 JACKSON RIVER NEAR BACOVA, VA--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|---|--|--|--|--|--|--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 4.6
4.2
4.6
4.2
4.2 | 2.1
2.1
3.5
1.8
2.8 | 3.3
3.1
4.1
2.8
3.5 | 8.5
7.8
6.4
6.0
7.4 | 7.4
6.4
4.9
4.6
4.2 | 7.9
7.3
5.7
5.1
5.6 | 16.5
15.4
12.8
11.3
11.0 | 11.3
10.2 | 14.7
13.2
11.6
10.1
9.1 | 14.3
13.9
15.0
15.4
15.0 | 12.8
12.4
12.1
12.4
12.4 | 13.5
13.1
13.6
13.7
13.5 | | 6
7
8
9
10 | 3.9
5.7
6.7
6.0
6.4 | 2.8
3.5
4.2
3.5
3.5 | 3.4
4.3
5.2
4.6
4.7 | 8.1
8.5
8.5
9.5
8.5 | 4.2
6.4
8.1
8.5
4.6 | 6.1
7.5
8.3
9.0
6.0 | 11.7
11.3
13.5
13.5 | 7.8
8.5
9.2
11.7
9.9 | 9.7
9.9
11.1
12.3
10.4 | 15.0
13.5
14.3
15.0
16.1 | 12.4
12.8
12.4
13.1
12.8 | 13.2 | | 11
12
13
14
15 | 4.9
5.7
6.4
6.0
5.7 | 3.9
4.9
4.9
4.6
3.5 | | | | 3.4
2.9
3.2
5.0 | 11.3
12.1
13.1
12.8
15.0 | 8.1
8.8
11.0
10.6 | 9.6
10.0
10.8
11.8
12.7 | 15.0
14.3
17.3
20.5
21.7 | 13.1
12.4
14.3 | 14.2
13.6
14.7
17.1
18.5 | | 16
17
18
19
20 | 6.0
6.4 | 4.2
4.6
4.9
6.0
6.4 | 4.5
5.4
5.7
6.3
6.7 | 5.7
7.1
9.2
8.8 | 4.2
4.9
6.4
7.4 | 5.0
5.8
7.6
7.9 | 14.6
16.9
13.9
11.3
12.1 | 12.4
12.4
11.3
9.9
8.8 | 13.4
14.1
12.5
10.3
10.4 | 21.7
22.9
22.5
22.1
22.9 | 17.7 | 19.1
20.2
19.6
19.4
19.0 | | 21
22
23
24
25 | 6.7

7.4
6.0
7.8 | 6.0

4.6
4.2
4.9 | 6.2

6.2
5.1
6.3 | 7.4
6.7
6.4
6.7
7.1 | 6.4
5.3
4.6
4.6
4.9 | 7.0
5.9
5.5
5.7
6.1 | 13.5
13.9 | | 11.0
10.7
9.9
11.2
12.6 | 22.5
21.7
20.1
19.7
22.1 | 13.7
16.9
16.9
16.5
17.3 | 20.4
19.4
18.4
18.1
19.7 | | 26
27
28
29
30
31 | 8.1
7.8
8.8
 | 5.3
6.7
6.7
 | 6.6
7.2
7.7
 | 13.5
15.4 | 8.8
11.3
11.7
11.3 | 8.2
10.9
13.1
13.4
13.6
14.6 | 15.0
15.0
15.8
15.0
15.0 | 11.7
12.4
10.2
11.0
12.4 | 13.3
13.4
12.9
13.1
13.7 | 21.7
20.5
21.7
23.3
24.6
25.1 | 18.9
17.7
16.9
18.1
19.7
20.5 | 20.3
18.4
18.9
20.7
21.9
22.8 | | MONTH | | | | | | | 16.9 | 7.4 | 11.6 | | 12.1 | 17.1 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | | | MIN
JULY | | | MIN
AUGUST | | | SEPTEMBE | | | 1
2 | MAX 25.1 22.9 24.2 22.1 20.1 | | | | | | | AUGUST
21.3
19.7 | | | SEPTEMBE | | | 1
2
3
4
5 | 25.1
22.9
24.2
22.1 | JUNE 21.3 19.3 19.3 19.3 17.7 16.5 15.0 13.5 15.4 | 23.0
21.3
21.6
20.7
18.6 | | JULY 19.3 19.7 19.7 20.5 20.1 | 21.5
21.3
22.0
21.5
22.3 | | 21.3
19.7
19.3
19.3
20.1 | 23.2
22.3
22.1
22.4
23.1 | | 20.5
20.5
19.7
19.3
20.1 | 22.6
22.5
21.2
21.6
22.0
21.6
22.1
20.8 | | 1
2
3
4
5
6
7
8 | 25.1
22.9
24.2
22.1
20.1
18.5
16.9
18.1
16.9 | JUNE 21.3 19.3 19.3 19.3 17.7 16.5 15.0 13.5 15.4 | 23.0
21.3
21.6
20.7
18.6 | 23.8
22.9
24.2
22.5
25.1 | JULY 19.3 19.7 19.7 20.5 20.1 | 21.5
21.3
22.0
21.5
22.3
22.9
23.8
24.3
24.2
24.6 | 25.5
25.1
25.1
25.5
26.0 | 21.3
19.7
19.3
19.3
20.1 | 23.2
22.3
22.1
22.4
23.1
23.5
23.5
22.6
23.7
23.7 | 25.1
24.6
22.5
23.8
24.6 | 20.5
20.5
19.7
19.3
20.1 | 22.6
22.5
21.2
21.6
22.0
21.6
22.1
20.8
17.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 25.1
22.9
24.2
22.1
20.1
18.5
16.9
20.9
20.1
22.5
22.5
20.9 | JUNE 21.3 19.3 19.3 17.7 16.5 15.0 13.5 15.4 15.0 18.5 18.9 19.7 19.3 | 23.0
21.3
21.6
20.7
18.6
17.5
15.8
15.7
16.1
17.7 | 23.8
22.9
24.2
22.5
25.1
25.1
26.0
26.0
26.9
26.0
25.5
25.5 | JULY 19.3 19.7 19.7 20.5 20.1 21.3 21.7 22.9 22.5 22.5 21.7 20.5 21.7 22.5 | 21.5
21.3
22.0
21.5
22.3
22.9
23.8
24.2
24.6
24.0
23.0
23.8
24.1 | 25.5
25.1
25.5
26.0
26.4
26.4
25.1
25.1
26.0
23.8 | 21.3
19.7
19.3
19.3
20.1
20.9
20.9
22.1
21.7
22.5
21.7
22.1
21.7 | 23.2
22.3
22.1
22.4
23.1
23.5
23.5
22.6
23.7
23.7
23.8
23.8
23.3
22.7 | 25.1
24.6
22.5
23.8
24.6
24.2
24.2
22.1
18.9
20.1
20.9
22.1
22.5
23.3 | 20.5
20.5
19.7
19.3
20.1
19.3
20.5
18.9
16.9
15.4
17.3
16.9
18.1 | 22.6
22.5
21.2
21.6
22.0
21.6
22.1
20.8
17.6
17.4
18.0
19.4
19.7
20.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 25.1
22.9
24.2
22.1
20.1
18.5
16.9
20.9
20.1
22.5
22.5
20.9
21.3
23.3
21.7
22.5
21.3 | JUNE 21.3 19.3 19.3 19.3 17.7 16.5 15.0 13.5 15.4 15.0 18.5 18.9 19.7 19.3 16.9 18.9 18.9 18.9 18.9 18.9 | 23.0
21.3
21.6
20.7
18.6
17.5
15.8
15.7
16.1
17.7
19.4
20.3
21.0
20.2
19.6 |
23.8
22.9
24.2
22.5
25.1
25.1
26.0
26.0
26.9
26.0
25.5
25.1
25.5
25.1
26.0
26.0
26.0 | JULY 19.3 19.7 19.7 20.5 20.1 21.3 21.7 22.9 22.5 21.7 20.5 21.7 22.5 22.5 | 21.5
21.3
22.0
21.5
22.3
22.9
23.8
24.2
24.6
24.0
23.0
23.8
24.1
24.1 | 25.5
25.1
25.1
25.5
26.0
26.4
26.4
25.1
25.1
25.1
23.8
22.9
22.1
23.3
23.8 | AUGUST 21.3 19.7 19.3 20.1 20.9 20.9 22.1 21.7 22.5 21.7 22.1 21.7 21.3 20.9 20.5 21.3 21.3 | 23.2
22.3
22.1
22.4
23.1
23.5
23.5
22.6
23.7
23.7
23.3
23.8
23.3
22.7
22.1
21.5
21.8
22.5
23.0 | 25.1
24.6
22.5
23.8
24.6
24.2
24.2
22.1
18.9
20.1
20.9
22.5
23.3
24.2
23.8 | SEPTEMBE 20.5 20.5 19.7 19.3 20.1 19.3 20.5 18.9 16.9 15.4 17.3 16.9 18.1 18.9 20.1 20.5 20.5 20.5 | 22.6
22.5
21.2
21.6
22.0
21.6
22.1
20.8
17.6
17.4
18.0
19.4
19.7
20.5
21.4
22.0
22.1
22.1
22.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 25.1
22.9
24.2
22.1
20.1
18.5
16.9
20.9
20.1
22.5
22.5
20.9
21.3
23.3
21.7
22.5
21.3
22.9 | JUNE 21.3 19.3 19.3 19.3 17.7 16.5 15.0 13.5 15.4 15.0 18.5 18.9 19.7 19.3 16.9 18.9 18.9 18.9 18.9 18.5 19.3 18.1 | 23.0
21.3
21.6
20.7
18.6
17.5
15.8
15.7
16.1
17.7
19.4
20.3
21.0
20.2
19.6
20.4
20.5
20.4
20.5
20.4
20.5 | 23.8
22.9
24.2
22.5
25.1
25.1
26.0
26.0
26.9
26.0
25.5
25.1
25.5
26.0
24.6
27.3
26.0 | JULY 19.3 19.7 19.7 20.5 20.1 21.3 21.7 22.5 22.5 21.7 20.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 | 21.5
21.3
22.0
21.5
22.3
22.9
23.8
24.2
24.6
24.0
23.0
23.8
24.1
24.1
24.1
24.3
24.4
23.3
24.4
23.3
24.4
23.3
24.4
23.3 | 25.5
25.1
25.1
25.5
26.0
26.4
26.4
25.1
25.1
25.1
23.8
22.9
22.1
23.8
22.9
22.1
23.8
22.9 | AUGUST 21.3 19.7 19.3 20.1 20.9 20.9 22.1 21.7 22.5 21.7 22.1 21.7 21.3 20.9 20.5 21.3 21.9 20.5 21.3 21.9 20.5 21.3 21.7 | 23.2
22.3
22.1
22.4
23.1
23.5
23.5
23.7
23.7
23.3
23.8
23.3
22.7
22.1
21.5
21.8
22.5
22.0
22.0 | 25.1
24.6
22.5
23.8
24.6
24.2
24.2
22.1
18.9
20.1
20.9
22.5
23.3
24.2
23.8
24.2
23.8 | SEPTEMBE 20.5 20.5 19.7 19.3 20.1 19.3 20.5 18.9 16.9 15.4 15.4 17.3 16.9 18.1 18.9 20.1 20.5 20.5 21.3 20.5 | 22.6
22.5
21.2
21.6
22.0
21.6
22.1
20.8
17.6
17.4
18.0
19.4
19.7
20.5
21.4
22.0
22.1
22.1
22.3
22.3 | ### 02011460 BACK CREEK NEAR SUNRISE, VA DRAINAGE AREA.--60.1 mi². PERIOD OF RECORD. -- June 1974 to current year. REVISED RECORDS.--WDR VA-85-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 2,200.02 ft above sea level (levels by Virginia Department of Transportation). July 2 to Sept. 6, 1990, nonrecording gage at present site and datum. REMARKS.--No estimated daily discharges. Records good. Virginia Power gage-height transmitter at station, receiver at Back Creek Dam. Maximum discharge, 17,500 ft³/s, from rating curve extended above 3,800 ft³/s. Minimum gage height, 0.07 ft, July 21, 1977. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.—Peak discharges equal to or greater than base discharge of 850 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|----------------------------------|---------------------| | Jan. 8 | 0730 | *5,360 | *6.55 | Mar. 19 | 0345 | 906 | 3.48 | | Feb. 17 | 1930 | 2,160 | 4.74 | Mar. 21 | 0615 | 2,070 | 4.67 | | Mar. 9 | 1415 | 1,340 | 4.00 | Apr. 19 | 2345 | 1,190 | 3.83 | Minimum discharge, 2.0 ${\rm ft}^3/{\rm s},$ Sept. 6-7, gage height, 0.47 ft. | | | DISCHAF | RGE, IN CU | JBIC FEET | PER SECON | ND, WATER
LY MEAN V | | OBER 1997 | TO SEPTE | MBER 1998 | | | |-------|-------|---------|------------|-----------|-----------|------------------------|------|-----------|----------|-----------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 9.3 | 52 | 31 | 36 | 94 | 266 | 82 | 61 | 18 | 60 | 4.7 | 3.0 | | 2 | 7.9 | 105 | 27 | 38 | 87 | 189 | 78 | 75 | 16 | 41 | 4.3 | 2.8 | | 3 | 6.8 | 77 | 24 | 47 | 83 | 143 | 76 | 123 | 15 | 31 | 4.0 | 2.6 | | 4 | 6.0 | 68 | 26 | 91 | 98 | 109 | 145 | 176 | 14 | 26 | 3.7 | 2.6 | | 5 | 5.3 | 48 | 25 | 193 | 100 | 88 | 195 | 193 | 14 | 23 | 3.5 | 2.4 | | 6 | 5.1 | 35 | 23 | 275 | 99 | 71 | 164 | 177 | 15 | 19 | 3.3 | 2.2 | | 7 | 4.8 | 130 | 22 | 347 | 92 | 62 | 131 | 156 | 13 | 17 | 3.1 | 2.2 | | 8 | 4.6 | 235 | 21 | 2590 | 87 | 250 | 114 | 152 | 12 | 28 | 3.3 | 8.5 | | 9 | 4.3 | 208 | 20 | 777 | 99 | 931 | 195 | 137 | 12 | 24 | 3.9 | 7.9 | | 10 | 4.2 | 130 | 29 | 328 | 127 | 604 | 303 | 125 | 15 | 18 | 6.3 | 5.3 | | 11 | 4.0 | 87 | 83 | 200 | 166 | 296 | 220 | 111 | 15 | 15 | 19 | 4.3 | | 12 | 4.0 | 62 | 89 | 141 | 317 | 191 | 167 | 96 | 16 | 13 | 9.3 | 3.7 | | 13 | 4.0 | 47 | 73 | 112 | 320 | 141 | 133 | 79 | 21 | 12 | 6.8 | 3.4 | | 14 | 3.9 | 72 | 61 | 92 | 225 | 116 | 113 | 67 | 23 | 13 | 6.2 | 3.0 | | 15 | 4.3 | 111 | 49 | 96 | 154 | 93 | 95 | 58 | 71 | 13 | 11 | 2.8 | | 16 | 4.2 | 90 | 43 | 178 | 119 | 77 | 82 | 52 | 83 | 11 | 11 | 2.5 | | 17 | 4.2 | 67 | 38 | 185 | 942 | 67 | 94 | 48 | 64 | 11 | 19 | 2.4 | | 18 | 4.4 | 52 | 34 | 140 | 1130 | 143 | 92 | 41 | 45 | 10 | 21 | 2.3 | | 19 | 4.4 | 45 | 30 | 107 | 529 | 706 | 337 | 37 | 124 | 9.2 | 14 | 2.3 | | 20 | 4.2 | 40 | 28 | 83 | 351 | 600 | 762 | 34 | 167 | 8.6 | 10 | 4.4 | | 21 | 4.2 | 37 | 26 | 65 | 290 | 1500 | 341 | 32 | 91 | 7.9 | 8.1 | 4.4 | | 22 | 4.3 | 64 | 26 | 57 | 212 | 635 | 219 | 29 | 58 | 7.3 | 6.7 | 3.8 | | 23 | 4.2 | 90 | 26 | 192 | 184 | 343 | 165 | 31 | 42 | 6.9 | 5.8 | 3.2 | | 24 | 5.0 | 77 | 27 | 347 | 154 | 231 | 130 | 32 | 32 | 6.9 | 5.1 | 2.8 | | 25 | 14 | 60 | 42 | 222 | 134 | 172 | 103 | 29 | 26 | 6.3 | 4.8 | 2.6 | | 26 | 16 | 52 | 59 | 150 | 160 | 141 | 85 | 24 | 21 | 5.9 | 4.4 | 2.5 | | 27 | 25 | 46 | 64 | 119 | 175 | 121 | 79 | 28 | 28 | 5.7 | 4.3 | 2.4 | | 28 | 18 | 38 | 57 | 111 | 225 | 106 | 65 | 26 | 42 | 5.8 | 3.9 | 2.5 | | 29 | 14 | 34 | 51 | 99 | | 93 | 56 | 21 | 117 | 5.4 | 3.6 | 2.6 | | 30 | 11 | 32 | 52 | 124 | | 81 | 53 | 19 | 88 | 5.0 | 3.4 | 2.6 | | 31 | 9.4 | | 43 | 109 | | 73 | | 18 | | 4.8 | 3.1 | | | TOTAL | 225.0 | 2291 | 1249 | 7651 | 6753 | 8639 | 4874 | 2287 | 1318 | 470.7 | 220.6 | 100.0 | | MEAN | 7.26 | 76.4 | 40.3 | 247 | 241 | 279 | 162 | 73.8 | 43.9 | 15.2 | 7.12 | 3.33 | | MAX | 25 | 235 | 89 | 2590 | 1130 | 1500 | 762 | 193 | 167 | 60 | 21 | 8.5 | | MIN | 3.9 | 32 | 20 | 36 | 83 | 62 | 53 | 18 | 12 | 4.8 | 3.1 | 2.2 | | CFSM | .12 | 1.27 | .67 | 4.11 | 4.01 | 4.64 | 2.70 | 1.23 | .73 | . 25 | .12 | .06 | | IN. | .14 | 1.42 | .77 | 4.74 | 4.18 | 5.35 | 3.02 | 1.42 | .82 | . 29 | .14 | .06 | # 02011460 BACK CREEK NEAR SUNRISE, VA--Continued | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|------|------|------|------|------|------|------|------|------|------|------|------| | MEAN | 44.3 | 84.7 | 110 | 149 | 150 | 207 | 138 | 129 | 63.1 | 27.1 | 25.4 | 25.5 | | MAX | 256 | 512 | 249 | 426 | 326 | 394 | 330 | 391 | 174 | 69.5 | 88.9 | 180 | | (WY) | 1977 | 1986 | 1997 | 1996 | 1994 | 1993 | 1987 | 1996 | 1995 | 1994 | 1996 | 1996 | | MIN | 4.08 | 9.58 | 20.1 | 8.49 | 45.4 | 54.5 | 45.9 | 31.8 | 13.2 | 6.81 | 4.41 | 2.48 | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1974 - 1998, BY WATER YEAR (WY) | (W ± / | 1711 | 1000 | 1001 | 1000 | エンフェ | 1000 | 1007 | 1000 | 1000 | 1004 | 1000 | 1000 | |------------|------------|-----------|-------|-------------|----------|------|------------|----------|------|-----------|---------|---------| | MIN | 4.08 | 9.58 | 20.1 | 8.49 | 45.4 | 54.5 | 45.9 | 31.8 | 13.2 | 6.81 | 4.41 | 2.48 | | (WY) | 1992 | 1995 | 1981 | 1981 | 1978 | 1988 | 1986 | 1991 | 1994 | 1988 | 1987 | 1983 | | | | | | | | | | | | | | | | CITALIA DI | OM3 MT OM3 | - 00 | FOR 1 | 005 637 537 | | T/ | D 1000 113 | | | | DG 1074 | 1000 | | SUMMARY | STATIST | ICS | FOR 1 | .997 CALEN | DAR YEAR | F.C | OR 1998 WA | TER YEAR | ₹ | WATER YEA | RS 1974 | - 1998 | | ANNUAL ' | TOTAL | | | 27301.0 | | | 36078.3 | | | | | | | ANNUAL I | MEAN | | | 74.8 | | | 98.8 | | | 96.1 | | | | | ANNUAL N | MEAN | | | | | | | | 155 | | 1996 | | LOWEST | ANNUAL ME | EAN | | | | | | | | 51.6 | | 1988 | | HIGHEST | DAILY ME | EAN | | 1070 | Mar 3 | | 2590 | Jan 8 | 3 | 6280 | Nov | 4 1985 | | LOWEST 1 | DAILY MEA | AN | | 3.1 | Sep 27 | | 2.2 | aSep (| 5 | 1.7 | Sep 1 | L4 1980 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 3.5 | Sep 21 | | 2.5 | Sep : | L | 2.1 | Sep | 6 1983 | | INSTANT | ANEOUS PE | EAK FLOW | | | | | 5360 | Jan 8 | 3 | 17500 | Nov | 4 1985 | | INSTANT | ANEOUS PE | EAK STAGE | | | | | 6.55 | Jan 8 | 3 | 10.01 | Nov | 4 1985 | | INSTANT | ANEOUS LO | OW FLOW | | | | | 2.0 | aSep 6 | 5 | 1.5 | bSep 1 | L3 1980 | | ANNUAL | RUNOFF (C | CFSM) | | 1.24 | | | 1.64 | | | 1.60 | | | | ANNUAL 1 | RUNOFF () | INCHES) | | 16.90 | | | 22.33 | | | 21.72 | | | | 10 PERC | ENT EXCER | EDS | | 168 | | | 203 | | | 213 | | | | 50 PERC | ENT EXCE | EDS | | 49 | | | 42 | | | 45 | | | | 90 PERC | ENT EXCE | EDS | | 4.5 | | | 4.0 | | | 6.3 | | | | | | | | | | | | | | | | | a Also Sept. 7, 1998. b Also Sept. 14, 1980. ### 02011470 BACK CREEK AT SUNRISE, VA LOCATION.--Lat 38°11'25", long 79°48'43", Bath County, Hydrologic Unit
02080201, on left bank 75 ft upstream from bridge on State Highway 600 at Sunrise, 180 ft upstream from Beaver Run, 0.5 mi downstream from Back Creek Dam, and 7.6 mi northeast of Mountain Grove. DRAINAGE AREA. -- 76.1 mi². PERIOD OF RECORD. -- October 1984 to current year. GAGE.--Water-stage recorder. Concrete control since Oct. 24, 1984. Datum of gage is 1,968.52 ft above sea level (Virginia Power bench mark). Nov. 5, 1992, to Jan. 5, 1993, nonrecording gage at present site and datum. REMARKS.--No estimated daily discharges. Records good. Flow regulated since October 1984 by Back Creek Lake 0.5 mi upstream, amount unknown. Virginia Power gage-height transmitter at station, receiver at Back Creek Dam. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. Maximum discharge, 5,690 ft³/s, from rating curve extended above 960 ft³/s on basis of release from Back Creek Lake at peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,990 ${\rm ft}^3/{\rm s}$, Jan. 8, gage height, 9.96 ft, from rating curve extended as explained above; minimum, 13 ${\rm ft}^3/{\rm s}$, Sept. 26, gage height, 3.95 ft. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|------|------|------|-------|------|-------|------|------|------|------|------|------| | | | | | | | | | | | | | | | 1 | 14 | 20 | 34 | 52 | 93 | 420 | 77 | 22 | 26 | 122 | 15 | 15 | | 2 | 14 | 20 | 36 | 54 | 92 | 266 | 103 | 21 | 25 | 102 | 15 | 15 | | 3 | 14 | 18 | 25 | 57 | 147 | 275 | 155 | 117 | 25 | 45 | 15 | 15 | | 4 | 14 | 18 | 22 | 109 | 214 | 199 | 239 | 263 | 19 | 45 | 15 | 15 | | 5 | 14 | 17 | 23 | 248 | 223 | 131 | 267 | 281 | 15 | 30 | 15 | 15 | | 6 | 14 | 16 | 25 | 279 | 211 | 122 | 259 | 265 | 15 | 22 | 15 | 15 | | 7 | 14 | 18 | 24 | 416 | 167 | 111 | 170 | 278 | 15 | 16 | 15 | 15 | | 8 | 14 | 75 | 23 | 3010 | 130 | 237 | 133 | 191 | 14 | 17 | 15 | 15 | | 9 | 14 | 192 | 24 | 1090 | 129 | 1080 | 270 | 175 | 15 | 16 | 15 | 15 | | 10 | 14 | 179 | 26 | 463 | 155 | 811 | 460 | 125 | 15 | 15 | 16 | 15 | | 11 | 14 | 117 | 93 | 256 | 285 | 517 | 356 | 124 | 15 | 15 | 15 | 15 | | 12 | 14 | 83 | 133 | 220 | 383 | 298 | 166 | 83 | 15 | 15 | 15 | 15 | | 13 | 14 | 68 | 121 | 176 | 462 | 274 | 145 | 74 | 15 | 15 | 15 | 14 | | 14 | 14 | 67 | 90 | 158 | 417 | 230 | 155 | 72 | 15 | 15 | 15 | 15 | | 15 | 14 | 65 | 47 | 162 | 285 | 185 | 138 | 70 | 129 | 15 | 16 | 15 | | | | | | | | | | | | | | | | 16 | 16 | 60 | 26 | 167 | 183 | 142 | 122 | 53 | 138 | 15 | 16 | 15 | | 17 | 17 | 61 | 24 | 220 | 1020 | 85 | 123 | 51 | 132 | 15 | 17 | 15 | | 18 | 15 | 61 | 24 | 262 | 1630 | 80 | 116 | 48 | 94 | 15 | 16 | 15 | | 19 | 15 | 61 | 24 | 275 | 744 | 1010 | 343 | 48 | 116 | 15 | 15 | 15 | | 20 | 15 | 61 | 23 | 155 | 455 | 623 | 844 | 49 | 207 | 15 | 15 | 15 | | 21 | 15 | 62 | 21 | 120 | 432 | 1950 | 648 | 50 | 170 | 15 | 15 | 15 | | 22 | 15 | 63 | 23 | 102 | 319 | 892 | 249 | 52 | 83 | 15 | 15 | 15 | | 23 | 15 | 58 | 24 | 214 | 273 | 412 | 291 | 52 | 45 | 15 | 15 | 15 | | 24 | 16 | 61 | 24 | 372 | 215 | 366 | 282 | 49 | 18 | 15 | 15 | 15 | | 25 | 17 | 66 | 71 | 417 | 210 | 173 | 136 | 47 | 18 | 15 | 15 | 15 | | 26 | 16 | 66 | 98 | 259 | 173 | 157 | 113 | 34 | 19 | 15 | 15 | 15 | | 27 | 16 | 64 | 97 | 239 | 170 | 157 | 72 | 34 | 19 | 15 | 15 | 15 | | 28 | 16 | 52 | 65 | 248 | 268 | 147 | 21 | 34 | 20 | 15 | 15 | 15 | | 29 | 16 | 38 | 64 | 211 | | 87 | 21 | 24 | 116 | 15 | 15 | 15 | | 30 | 16 | 35 | 64 | 189 | | 71 | 21 | 26 | 170 | 14 | 15 | 15 | | 31 | 16 | | 55 | 195 | | 73 | | 26 | | 15 | 15 | | | 31 | 10 | | 33 | 100 | | 73 | | 20 | | 13 | 13 | | | TOTAL | 462 | 1842 | 1473 | 10395 | 9485 | 11581 | 6495 | 2838 | 1738 | 744 | 471 | 449 | | MEAN | 14.9 | 61.4 | 47.5 | 335 | 339 | 374 | 217 | 91.5 | 57.9 | 24.0 | 15.2 | 15.0 | | MAX | 17 | 192 | 133 | 3010 | 1630 | 1950 | 844 | 281 | 207 | 122 | 17 | 15 | | MIN | 14 | 16 | 21 | 52 | 92 | 71 | 21 | 21 | 14 | 14 | 15 | 14 | # 02011470 BACK CREEK AT SUNRISE, VA--Continued | STATIS | TICS OF | MONTHLY MEAN | DATA F | FOR WATER | YEARS 1985 | - 1998, | BY WATER | YEAR (WY) | [REGUL | ATED, UNAD | JUSTED] | | |--------|----------|--------------|--------|-----------|------------|---------|-----------|-----------|--------|------------|----------|--------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 35.8 | 85.6 | 128 | 203 | 177 | 267 | 175 | 180 | 83.3 | 33.9 | 32.8 | 35.9 | | MAX | 150 | 371 | 285 | 504 | 416 | 616 | 496 | 399 | 259 | 83.0 | 96.1 | 230 | | (WY) | 1990 | 1986 | 1997 | 1996 | 1994 | 1993 | 1987 | 1989 | 1995 | 1994 | 1996 | 1996 | | MIN | 9.31 | 12.0 | 14.5 | 14.8 | 58.2 | 61.4 | 51.1 | 37.5 | 14.6 | 12.7 | 13.4 | 11.5 | | (WY) | 1985 | 1985 | 1995 | 1985 | 1993 | 1988 | 1986 | 1991 | 1994 | 1985 | 1997 | 1985 | | SUMMAR | Y STATIS | TICS | FOR | 1997 CALI | ENDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER YE | ARS 1985 | - 1998 | | ANNUAL | TOTAL | | | 33653 | | | 47973 | | | | | | | ANNUAL | MEAN | | | 92.2 | 2 | | 131 | | | 120 | | | | HIGHES | T ANNUAL | MEAN | | | | | | | | 175 | | 1996 | | LOWEST | ANNUAL | MEAN | | | | | | | | 55.8 | | 1985 | | HIGHES | T DAILY | MEAN | | 1280 | Mar 4 | | 3010 | Jan 8 | | 4890 | Jan 1 | 9 1996 | | LOWEST | DAILY M | EAN | | 13 | aJul 30 | | 14 | bOct 1 | | 5.2 | Nov | 3 1984 | | ANNUAL | SEVEN-D | AY MINIMUM | | 13 | Aug 6 | | 14 | Oct 1 | | 5.6 | Oct 2 | 9 1984 | | | | PEAK FLOW | | | | | 3990 | Jan 8 | | 5690 | Jan 1 | 9 1996 | | INSTAN | TANEOUS | PEAK STAGE | | | | | 9.9 | 6 Jan 8 | | 11.99 | Jan 1 | 9 1996 | | INSTAN | TANEOUS | LOW FLOW | | | | | 13 | Sep 26 | | (c) | | | | ANNUAL | RUNOFF | (CFSM) | | 1.3 | 21 | | 1.7 | - | | 1.57 | | | | | | (INCHES) | | 16.4 | | | 23.4 | | | 21.35 | | | | | CENT EXC | | | 205 | - | | 280 | | | 260 | | | | | CENT EXC | | | 54 | | | 48 | | | 45 | | | | 90 PER | CENT EXC | EEDS | | 13 | | | 15 | | | 14 | | | a Also July 31, and most of August and September 1997. b Also Oct. 2-15, 1997, and June 8, July 30, Sept. 13, 1998. c Not determined. #### 02011490 LITTLE BACK CREEK NEAR SUNRISE, VA LOCATION.--Lat 38°12'52", long 79°50'16", Bath County, Hydrologic Unit 02080201, in George Washington National Forest, on right bank 600 ft downstream from Long Spring Run, 1.2 mi downstream from Little Back Creek Dam, and 8.5 mi northeast of Mountain Grove. DRAINAGE AREA. -- 4.91 mi². PERIOD OF RECORD. -- October 1984 to current year. GAGE.--Water-stage recorder. Concrete control with rectangular weir plate. Datum of gage is 2,638.48 ft above sea level (Virginia Power bench mark). Nov. 5, 1992, to Jan. 5, 1993, nonrecording gage at present site and datum. REMARKS.--No estimated daily discharges. Records good. Flow regulated since January 1985 by Little Back Creek Lake 1.2 mi upstream, amount unknown. Maximum discharge, 580 ft³/s, from rating curve extended above 30 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 0.63 ft, Nov. 16, 1994. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 137 ${\rm ft}^3/{\rm s}$, Jan. 8, gage height, 3.14 ft, from rating curve extended as explained above; minimum, 0.92 ${\rm ft}^3/{\rm s}$, June 4, gage height, 0.72 ft. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DEC DAY OCT NOV JAN MAR APR MAY JUN JUL SEP 1 3.4 5.1 4.1 3.8 6.8 16 5.7 4.9 2.9 6.7 3.1 3.1 3.4 6.0 4.0 3.7 6.7 12 6.0 5.1 2.8 6.6 3.1 3.6 3.4 5.3 4.0 4.2 6.7 9.7 6.0 5.4 4.7 4.8 3.1 3.1 4 3.4 5.0 4.0 6.7 8.1 7.9 7.6 7.8 1.7 5.0 3.1 3.0 5 3.5 4.3 4.1 13 7.7 6.9 9.2 13 2.7 5.0 3.1 2.8 6 7.6 3.5 3.9 4.0 15 6.1 8.6 11 2.3 4.8 3.0 2.8 4.8 7.1 7.2 8.3 2.2 3.5 3.9 16 5.3 4.9 3.0 3.1 8 11 6.3 3.4 6.5 3.9 77 6.8 7.8 2.3 6.0 3.1 3.5 2.7 9 3.3 6.5 4.0 25 7.5 34 9.1 8.4 6.1 3.1 3.3 10 3.3 5.7 4.9 14 8.8 25 14 8.2 2.9 5.4 4.5 2.9 11 3 2 5 1 8 3 1.0 10 14 10 7 4 3 1 4 9 3 9 2 9 7.9 12 3.2 4.7 7.4 8.8 14 10 6.6 2.6 4.5 3.2 3.0 8 2 13 3 4 4 4 6 1 7 8 14 6 8 5 9 2 8 4 3 4 3 2 9 7 7 14 3.5 5 0 5 2 11 6 9 6 0 5.3 2.9 4 1 2 6 2 9 15 3.3 5.9 4.8 7.9 9.0 6.1 5.4 5.1 13 5.6 3.5 2.9 16 3.3 5.7 4.4 11 8 2 5.7 5 0 4 7 11 3 2 4 9 3.8 17 3.3 5.2 4.1 11 40 5.3 5.4 4.3 6.2 3.4 6.7 2.4 18 3.2 4.6 4.3 9 3 44 7.7 5.3 4 1 5.6 3 4 6.3 2.5 19 3.2 4.4 3.1 8.1 20 29 14 4.5 6.4 3.4 5.3 2 7 20 3.3 4.2 7.3 21 30 3.8 7.7 3.9 2.8 3.1 14 3.6 21 3.4 4.2 3.3 6.1 13 46 14 3.7 7.1 3.5 3.4 3.0 5.0 5.6 22 9.6 3.5 22 3.5 3.5 11 5.8 3.5 3.0 2.7 23 3.5 5.6 3.3 9.6 10 13 7.5 3.4 5.1 3.4 3.0 2.7 24 3.6 5.5 3.3 15 8.9 9.7 6.4 3.2 4.6 3.4 3.1 2.7 4.0 5.0 4.4 12 8.1 7.8 5.6 3.1 4.5 3.2 3.2 3.8 3.7 4.6 9.8 9.3 6.9 3.0 4.2 3.1 4.0 4.3 5.5 8.7 10 6.2 5.3 3.3 4.3 3.1 3.1 2.5 3.7 4.1 5.0 8.3 14 5.7 4.8 3.1 5.9 4.8 3.1 2.7 29 3.5 4.1 4.9 7.3 5.4 4.6 3.0 11 2.6 3.1 2.8 30 3.5 4.0 4.6 7.7 5.5 3.1 8.2 2.6 3.1 4.6 4.5 4.2 7.2 3.2 31 3.4 5.3 3.0 3.0 TOTAL 106.8 148.7 138.9 243.0 167.0 131.9 364.6 342.3 381.3 149.2 111.3 89.9 4.96 12.2 4.97 4.25 MEAN 3.45 4.48 12.3 8.10 5.39 3.59 3.00 11.8 8.3 77 13 6.7 MAX 4.0 6.5 44 46 30 13 6.7 4.6 5.3 MTN 3.2 3.9 3.1 3.7 6.7 4.5 3.0 1.7 2.6 2.6 2.4 # 02011490 LITTLE BACK CREEK NEAR SUNRISE, VA--Continued | STATIST | rics of M | ONTHLY MEAN | DATA | FOR WATER | YEARS 1985 | - 1998, | BY WATER | YEAR (W | Y) [REGU | LATED, UNAD | JUSTED] | | |---------|------------|-------------|------|-----------|------------|---------|------------|---------|----------|-------------|----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 3.59 | 5.25 | 6.00 | 7.76 | 7.22 | 8.74 | 6.83 | 7.15 | 4.57 | 3.48 | 3.43 | 3.42 | | MAX | 7.46 | 12.6 | 9.65 | 15.7 | 12.9 | 16.4 | 13.1 | 14.8 |
8.41 | 4.95 | 5.13 | 7.29 | | (WY) | 1990 | 1986 | 1997 | 1996 | 1994 | 1993 | 1987 | 1985 | 1995 | 1994 | 1989 | 1996 | | MIN | 2.17 | 2.72 | 3.26 | 3.56 | 3.78 | 3.91 | 3.37 | 3.37 | 2.79 | 2.46 | 2.33 | 2.28 | | (WY) | 1987 | 1992 | 1995 | 1985 | 1993 | 1985 | 1986 | 1991 | 1991 | 1987 | 1986 | 1985 | | SUMMARY | Y STATIST | ICS | FOR | 1997 CALI | ENDAR YEAR | F | OR 1998 WA | TER YEA | R | WATER YE | ARS 1985 | - 1998 | | ANNUAL | TOTAL | | | 1985.2 | 2 | | 2374.9 | | | | | | | ANNUAL | MEAN | | | 5.4 | 44 | | 6.51 | | | 5.61 | | | | HIGHEST | r annual i | MEAN | | | | | | | | 7.00 | | 1996 | | LOWEST | ANNUAL M | EAN | | | | | | | | 4.37 | | 1988 | | HIGHEST | r DAILY M | EAN | | 38 | Mar 3 | | 77 | Jan | 8 | 158 | Nov | 4 1985 | | LOWEST | DAILY ME | AN | | 3.3 | l aSep 6 | | b1.7 | Jun | 4 | .90 | Oct 1 | L3 1984 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 3.3 | 3 Oct 15 | | 2.4 | Jun | 4 | 1.2 | Jan 2 | 24 1985 | | INSTANT | TANEOUS P | EAK FLOW | | | | | 137 | Jan | 8 | 580 | Nov | 4 1985 | | INSTANT | TANEOUS P | EAK STAGE | | | | | 3.14 | Jan | 8 | 4.06 | Nov | 4 1985 | | INSTANT | FANEOUS L | OW FLOW | | | | | b.92 | Jun | 4 | .83 | Nov 1 | L6 1994 | | ANNUAL | RUNOFF (| CFSM) | | 1.3 | 11 | | 1.33 | | | 1.14 | | | | ANNUAL | RUNOFF (| INCHES) | | 15.0 | 04 | | 17.99 | | | 15.54 | | | | 10 PERG | CENT EXCE | EDS | | 8.3 | 3 | | 11 | | | 9.6 | | | | 50 PERG | CENT EXCE | EDS | | 4.6 | 5 | | 4.8 | | | 4.0 | | | | 90 PERG | CENT EXCE | EDS | | 3.4 | 4 | | 3.0 | | | 2.6 | | | a Also Dec. 19, 20, 1997. b Result of regulation. ### 02011500 BACK CREEK NEAR MOUNTAIN GROVE, VA DRAINAGE AREA.--134 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1951 to current year. REVISED RECORDS. -- WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,701.45 ft above sea level. REMARKS.--Records good except for period of doubtful gage-height record Mar. 30-31, which is fair. Flow regulated since October 1984 by Back Creek Lake 11.3 mi upstream, amount unknown, and since January 1985 by Little Back Creek Lake 14.4 mi upstream, amount unknown. Diversion 10.5 mi upstream from station by Virginia Power for recreation lakes, net averages 0.5 ft³/s. U.S. Army Corps of Engineers satellite water temperature and gage-height telemeter at station. Maximum discharge, 18,400 ft³/s, from rating curve extended above 14,000 ft³/s on basis of slope-area measurement of peak flow. EXTREMES FOR CURRENT YEAR.--Maximum discharge, $6,740~{\rm ft}^3/{\rm s}$, Jan. 8, gage height, 8.59 ft, minimum, 15 ft $^3/{\rm s}$, Oct. 6, 8, 13-14, gage height 2.01 ft. | | | DISCH | ARGE, CUB | IC FEET | | , WATER
LY MEAN | YEAR OCTOBE | R 1997 | TO SEPTEMBE | R 1998 | | | |-------|------|-------|-----------|---------|-------|--------------------|-------------|--------|-------------|--------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 17 | 59 | 58 | 83 | 279 | 587 | 148 | 78 | 49 | 180 | 25 | 19 | | 2 | 17 | 79 | 58 | 82 | 239 | 404 | 164 | 87 | 46 | 156 | 25 | 19 | | 3 | 17 | 64 | 53 | 94 | 269 | 388 | 220 | 145 | 45 | 78 | 24 | 19 | | 4 | 17 | 64 | 50 | 145 | 461 | 322 | 353 | 379 | 43 | 72 | 24 | 19 | | 5 | 17 | 52 | 48 | 361 | 511 | 219 | 434 | 587 | 37 | 66 | 24 | 18 | | 6 | 16 | 43 | 51 | 454 | 577 | 191 | 408 | 486 | 36 | 47 | 23 | 18 | | 7 | 16 | 51 | 51 | 533 | 502 | 187 | 314 | 441 | 34 | 42 | 23 | 18 | | 8 | 16 | 95 | 48 | 4450 | 420 | 292 | 238 | 403 | 33 | 47 | 26 | 21 | | 9 | 16 | 212 | 49 | 1530 | 419 | 1360 | 477 | 436 | 34 | 44 | 25 | 18 | | 10 | 16 | 212 | 61 | 730 | 403 | 1160 | 760 | 319 | 34 | 41 | 40 | 18 | | 11 | 16 | 154 | 131 | 454 | 544 | 736 | 588 | 265 | 33 | 38 | 49 | 18 | | 12 | 16 | 105 | 188 | 359 | 693 | 477 | 351 | 201 | 35 | 35 | 36 | 18 | | 13 | 16 | 94 | 172 | 299 | 810 | 406 | 271 | 153 | 36 | 34 | 32 | 18 | | 14 | 16 | 94 | 141 | 259 | 735 | 342 | 265 | 136 | 35 | 33 | 31 | 17 | | 15 | 17 | 100 | 93 | 279 | 489 | 282 | 240 | 125 | 348 | 32 | 35 | 17 | | 16 | 17 | 97 | 77 | 381 | 371 | 237 | 206 | 102 | 300 | 33 | 45 | 18 | | 17 | 20 | 91 | 67 | 407 | 1400 | 148 | 222 | 92 | 230 | 33 | 84 | 18 | | 18 | 20 | 88 | 64 | 413 | 2380 | 206 | 216 | 83 | 169 | 31 | 61 | 17 | | 19 | 19 | 85 | 62 | 397 | 1180 | 1410 | 628 | 78 | 140 | 30 | 42 | 18 | | 20 | 18 | 83 | 60 | 281 | 771 | 1040 | 1510 | 77 | 289 | 29 | 33 | 18 | | 21 | 19 | 84 | 58 | 210 | 676 | 2620 | 1010 | 77 | 236 | 29 | 29 | 17 | | 22 | 19 | 90 | 59 | 174 | 532 | 1440 | 481 | 76 | 140 | 28 | 26 | 18 | | 23 | 18 | 91 | 58 | 434 | 475 | 723 | 458 | 78 | 93 | 30 | 25 | 18 | | 24 | 22 | 91 | 54 | 669 | 399 | 590 | 422 | 77 | 51 | 28 | 23 | 18 | | 25 | 29 | 93 | 80 | 637 | 389 | 364 | 255 | 72 | 44 | 28 | 22 | 18 | | 26 | 26 | 91 | 127 | 458 | 351 | 294 | 192 | 68 | 41 | 27 | 21 | 18 | | 27 | 27 | 88 | 131 | 390 | 353 | 282 | 164 | 58 | 43 | 27 | 20 | 18 | | 28 | 25 | 82 | 111 | 469 | 410 | 278 | 83 | 72 | 58 | 27 | 20 | 18 | | 29 | 25 | 63 | 101 | 454 | | 196 | 74 | 52 | 134 | 26 | 20 | 18 | | 30 | 24 | 61 | 100 | 432 | | e132 | 71 | 50 | 227 | 26 | 20 | 18 | | 31 | 23 | | 91 | 398 | | e135 | | 48 | | 26 | 19 | | | TOTAL | 597 | 2756 | 2552 | 16716 | 17038 | 17448 | 11223 | 5401 | 3073 | 1403 | 952 | 543 | | MEAN | 19.3 | 91.9 | 82.3 | 539 | 609 | 563 | 374 | 174 | 102 | 45.3 | 30.7 | 18.1 | | MAX | 29 | 212 | 188 | 4450 | 2380 | 2620 | 1510 | 587 | 348 | 180 | 84 | 21 | | MIN | 16 | 43 | 48 | 82 | 239 | 132 | 71 | 48 | 33 | 26 | 19 | 17 | # 02011500 BACK CREEK NEAR MOUNTAIN GROVE, VA--Continued | STATIST | ICS OF MO | NTHLY MEAN | DATA : | FOR WATER | YEARS 1952 | - 1984, | BY WATER | YEAR (WY |) [UNREG | ULATED] | | | |--|---|---|---|--|---|---|---|---|---|--|--|--| | MEAN
MAX
(WY)
MIN
(WY) | OCT
83.1
512
1977
7.21
1954 | NOV
107
526
1973
10.4
1954 | DEC
221
694
1974
15.2
1961 | JAN
246
578
1979
14.3
1981 | FEB
320
689
1971
87.6
1978 | MAR
455
980
1963
103
1981 | APR
303
561
1980
90.9
1963 | MAY
230
449
1967
74.2
1977 | JUN
128
396
1982
13.0
1964 | JUL
56.3
369
1972
7.91
1964 | AUG
53.5
408
1969
7.18
1964 | SEP
32.4
308
1979
4.05
1968 | | SUMMARY | STATISTI | CS | | WATER Y | EARS 1952 - | 1984 | | | | | | | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL 10 PERC 50 PERC | ' ANNUAL ME
' DAILY ME
DAILY MEA
SEVEN-DAY | AN AN N MINIMUM AK FLOW AK STAGE W FLOW FSM) NCHES) DS DS | | 186
320
111
7110
1.5
2.3
12700
10.7'
1.5
1.3:
18.8:
425
79 | Aug 14
Mar 7
7 Mar 7
Aug 18 | 1967
1967
1967
1967 | | | | | | | | STATIST | ICS OF MO | NTHLY MEAN | DATA | FOR WATER | YEARS 1985 | - 1998, | BY WATER | YEAR (WY |) [REGUL | ATED, UNADJ | USTED] | | | MEAN
MAX
(WY)
MIN
(WY) | 19.3 | NOV
145
696
1986
23.2
1995 | DEC
201
392
1997
36.3
1995 | 324
818
1996
77.7 | FEB
294
609
1998
107
1993 | MAR
406
833
1993
92.8
1988 | 83.5 | MAY
263
528
1996
62.9
1991 | JUN
125
351
1995
32.7
1991 | JUL
50.7
105
1994
20.4
1993 | AUG
46.4
127
1989
17.9
1987 | SEP
51.9
300
1996
16.5
1985 | | SUMMAR | Y STATIST | ICS | FO | R 1997 CAL | ENDAR YEAR | | FOR 1998 | WATER YEA | R | WATER YE | ARS 1985 | - 1998 | | ANNUAL
HIGHES
LOWEST
HIGHES | TOTAL MEAN T ANNUAL ANNUAL M T DAILY ME | EAN
EAN | | 50868
139
2030
16 | Mar 4
aSep 19 | | 79702
218
4450
16 | Jan
b0ct | | 186
262
109
9940
14 | | 1996
1988
19 1996
11 1987 | | INSTAN
INSTAN
INSTAN | TANEOUS P
TANEOUS P
TANEOUS L | EAK STAGE
OW FLOW | | 16 | | | 15 | Oct
Jan
59 Jan
dOct | 8
8 | 15
18400
12.41
f11 | Jan
Jan
Jan | 12 1985
19 1996
19 1996
8 1986 | | ANNUAL | RUNOFF (
RUNOFF (
CENT EXCE | INCHES) | | 1.
14.
294 | 04
12 | | 1.
22.
487 | | | 1.39
18.83
425 | | | | 50 PER | CENT EXCE
CENT EXCE | EDS | | 88
18 | | | 79
18 | | | 81
20 | | | Also Sept. 20 and Oct. 6-14, 1997. also Oct. 7-14, 1997. Also Aug. 12, 13, and Sept. 3, 4, 1987. Also Oct. 8, 13, 14, 1997. Result of freezeup. a b c d f # 02011500 BACK CREEK NEAR MOUNTAIN GROVE, VA--Continued WATER-QUALITY RECORDS PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: June 1978 to current year. INSTRUMENTATION. -- Water-temperature recorder since June 1978. REMARKS.--Temperatures for Oct. 1-25 effected by lack of streamflow past probe. Some record in prior years fragmentary due to instrument malfunction. Records represent water temperature at sensor within 0.5° C. Temperature at the sensor was compared with the average for the creek by temperature cross section on June 28, 1995. No variation of temperature was found within the cross section. EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum recorded, 33.5°C, Aug. 14, 1988; minimum recorded, 0.0°C on many days during winter periods. EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum recorded, 28.2°C, July 30, Aug. 9, 26; minimum, 0.0°C, Jan. 1. WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | MEAN | |-------
------|---------|------|------|---------|------|------|---------|------|-----|---------|------| | | | OCTOBER | ! | N | OVEMBER | | DI | ECEMBER | | | JANUARY | | | 1 | 16.9 | 11.7 | 14.5 | 12.4 | 9.5 | 10.9 | 10.2 | 6.4 | 8.6 | 1.8 | .0 | .8 | | 2 | 20.1 | 9.5 | 13.0 | 12.4 | 9.9 | 11.2 | 6.4 | 4.2 | 5.4 | 4.2 | .7 | 2.3 | | 3 | 20.9 | 9.9 | 13.3 | 10.2 | 8.8 | 9.6 | 6.7 | 4.2 | 5.4 | 5.3 | 2.1 | 3.5 | | 4 | 23.3 | 10.6 | 15.2 | 9.9 | 7.1 | 8.6 | 8.1 | 6.7 | 7.5 | 6.0 | 2.8 | 4.3 | | 5 | 25.1 | 13.5 | 17.1 | 8.5 | 5.7 | 7.0 | 7.1 | 3.9 | 5.9 | 6.0 | 4.2 | 5.1 | | 6 | 25.1 | 14.3 | 17.3 | 8.1 | 5.3 | 7.0 | 3.9 | 2.1 | 3.0 | 6.7 | 5.7 | 6.1 | | 7 | 25.1 | 14.3 | 17.2 | 9.2 | 8.1 | 8.6 | 2.8 | 1.8 | 2.3 | 7.8 | 6.4 | 6.9 | | 8 | 24.2 | 13.1 | 17.0 | 9.5 | 7.8 | 8.5 | 4.2 | 2.5 | 3.4 | 8.1 | 6.4 | 7.6 | | 9 | 23.8 | 15.0 | 17.9 | 12.1 | 9.5 | 10.7 | 4.9 | 3.5 | 4.2 | 7.8 | 6.4 | 7.4 | | 10 | 22.5 | 13.1 | 17.1 | 12.1 | 10.2 | 11.0 | 5.7 | 4.6 | 5.1 | 7.8 | 5.7 | 6.5 | | 11 | 22.9 | 13.1 | 15.8 | 11.0 | 10.2 | 10.7 | 6.4 | 4.9 | 5.7 | 7.1 | 5.3 | 6.1 | | 12 | 22.1 | 12.4 | 15.6 | 10.2 | 8.8 | 9.4 | 7.1 | 6.0 | 6.5 | 6.0 | 5.7 | 5.8 | | 13 | 22.9 | 13.1 | 16.8 | 8.8 | 8.1 | 8.4 | 6.7 | 4.9 | 5.7 | 7.1 | 4.9 | 6.2 | | 14 | 16.5 | 12.4 | 14.4 | 9.9 | 8.1 | 8.9 | 6.4 | 4.6 | 5.3 | 6.0 | 3.9 | 4.9 | | 15 | 20.5 | 11.3 | 14.7 | 8.8 | 7.1 | 8.1 | 4.6 | 2.1 | 3.6 | 5.3 | 4.9 | 5.1 | | 16 | 16.5 | 9.5 | 12.5 | 7.1 | 6.0 | 6.5 | 4.9 | 2.5 | 3.6 | 7.1 | 5.3 | 5.9 | | 17 | 12.8 | 9.9 | 11.3 | 7.4 | 5.3 | 6.3 | 4.2 | 1.8 | 3.2 | 6.0 | 5.7 | 5.8 | | 18 | 13.5 | 10.6 | 12.1 | 7.1 | 4.2 | 5.8 | 4.2 | 1.8 | 3.2 | 5.7 | 4.9 | 5.3 | | 19 | 16.1 | 12.1 | 13.3 | 7.4 | 4.6 | 6.0 | 4.6 | 2.1 | 3.5 | 6.4 | 4.9 | 5.4 | | 20 | 14.3 | 9.9 | 11.8 | 8.5 | 4.9 | 6.8 | 4.6 | 2.1 | 3.5 | 5.7 | 3.9 | 4.7 | | 21 | 11.0 | 8.8 | 9.7 | 8.1 | 6.7 | 7.3 | 4.9 | 2.8 | 4.1 | 4.9 | 2.8 | 3.9 | | 22 | 13.9 | 7.1 | 9.5 | 9.9 | 8.1 | 9.0 | 4.9 | 4.2 | 4.4 | 4.9 | 4.2 | 4.5 | | 23 | 12.4 | 4.2 | 8.1 | 9.5 | 7.8 | 8.8 | 5.7 | 4.2 | 4.9 | 5.7 | 4.2 | 5.0 | | 24 | 8.5 | 5.7 | 6.8 | 7.8 | 4.9 | 6.2 | 5.7 | 4.9 | 5.1 | 5.7 | 4.9 | 5.4 | | 25 | 12.1 | 7.4 | 9.7 | 6.7 | 3.5 | 5.2 | 6.4 | 4.9 | 5.8 | 6.4 | 4.6 | 5.1 | | 26 | 10.6 | 9.9 | 10.2 | 7.4 | 4.9 | 6.1 | 7.1 | 5.3 | 6.3 | 5.7 | 3.9 | 4.7 | | 27 | 10.6 | 8.1 | 10.0 | 8.1 | 6.0 | 7.2 | 5.3 | 3.9 | 4.5 | 4.6 | 2.5 | 4.0 | | 28 | 12.1 | 6.0 | 8.1 | 8.8 | 5.7 | 7.3 | 5.3 | 3.5 | 4.4 | 4.9 | 2.5 | 3.6 | | 29 | 12.1 | 5.3 | 7.9 | 9.9 | 7.8 | 9.0 | 3.5 | .7 | 2.2 | 6.7 | 3.9 | 4.9 | | 30 | 12.8 | 5.3 | 8.3 | 10.6 | 9.5 | 10.0 | 3.9 | 1.8 | 2.9 | 5.3 | 4.2 | 4.7 | | 31 | 12.8 | 6.0 | 9.0 | | | | 2.8 | 1.1 | 2.2 | 6.4 | 3.9 | 4.6 | | MONTH | 25.1 | 4.2 | 12.7 | 12.4 | 3.5 | 8.2 | 10.2 | .7 | 4.6 | 8.1 | .0 | 5.0 | 243 WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 02011500 BACK CREEK NEAR MOUNTAIN GROVE, VA--Continued | DAY | MAX | MIN | MEAN | |---|---|---|--|--|---|--|--|--|--|--|--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 5.3
4.9
4.9
4.2
4.9 | 2.1
2.1
4.2
2.1
3.9 | 3.7
3.6
4.5
3.2
4.3 | 7.4
7.1
6.4
6.0
7.8 | 5.3
4.9
4.2
4.2
3.9 | 6.1
5.8
5.0
4.9
5.3 | 13.5
14.3
11.0
9.2
12.1 | 10.6
7.8
7.1
7.4
6.7 | 11.9
10.8
9.1
8.4
8.7 | 13.5
13.5
14.6
15.0
13.9 | 12.1
11.7
11.3
11.3 | 12.7
12.5
13.0
12.5
12.0 | | 6
7
8
9
10 | 4.6
5.7
6.7
6.4
6.4 | 3.2
3.9
4.2
2.8
3.2 | 4.0
4.7
5.1
4.4
4.6 | 7.8
7.8
7.1
7.4
6.0 | 3.2
5.3
6.4
6.0
4.2 | 5.5
6.5
6.7
6.7
5.4 | 12.4
11.7
13.9
12.8
9.9 | 6.4
6.7
7.4
8.8
8.5 | 8.7
8.8
10.1
10.4
9.0 | 14.6
12.4
13.9
13.9 | 11.0
11.3
11.7
11.3
11.3 | 12.4
11.9
12.4
12.5
12.9 | | 11
12
13
14
15 | 5.3
5.7
6.7
6.4
6.7 | 3.9
4.6
4.2
4.2
3.2 | 4.5
5.0
5.2
4.8
4.5 | 4.9
6.4
6.7
7.4
7.8 | 3.5
2.5
2.1
3.5
2.8 | 4.2
4.0
4.1
5.0
5.0 | 12.4
13.5
13.5
12.4
14.6 | 7.4
6.7
6.7
8.8
8.5 | 9.2
9.4
9.9
10.4
11.2 | 13.9
13.1
18.1
20.5
20.9 | 11.7
12.1
11.7
12.8
13.1 | 12.8
12.6
14.5
16.2
17.0 | | 16
17
18
19
20 | 4.6
5.7
5.7
5.7
6.7 | 3.5
4.6
5.3
5.3 | 4.2
5.2
5.4
5.4
5.7 | 4.9
5.3
6.7
7.8
6.7 | 3.9
3.5
4.2
5.7
5.7 | 4.3
4.4
5.4
6.3
6.2 | 13.5
15.8
12.1
9.9
12.1 | 9.5
10.2
9.2
9.2
8.8 | 11.4
12.4
10.1
9.6
10.1 | 20.1
22.5
21.7
22.1
22.9 | 14.3
15.8
14.3
14.3
16.1 | 17.3
18.7
17.9
18.2
19.2 | | 21
22
23
24
25 | 5.7
7.8
5.7
6.0
8.1 | 4.9
4.9
4.6
4.6
4.2 | 5.3
5.9
5.0
5.1
5.7 | 6.4
6.0
7.1
7.4
7.8 | 5.7
4.9
4.2
4.2
3.9 | 6.1
5.6
5.3
5.4
5.6 | 12.4
11.0
11.7
14.3
13.9 | 8.8
9.2
8.5
9.2
9.2 | 10.3
10.0
9.9
11.0
11.4 | 22.1
20.9
18.9
19.7
22.5 | 16.9
14.3
15.8
15.4
16.9 | 19.0
17.7
17.2
17.4
19.4 | | 26
27
28
29
30
31 | 8.5
7.1
8.1
 | 3.9
4.9
5.3
 | 5.7
5.8
6.3
 | 11.3
12.8
13.5
13.1
15.0
15.0 | 4.2
5.7
7.1
7.1
8.1
8.8 | 7.4
8.9
9.9
10.0
11.4
12.1 | 15.0
15.0
16.5
15.0
15.0 | 9.5
10.2
8.1
9.9
12.1 | 12.1
12.4
12.2
12.7
13.4 | 21.3
19.3
22.9
24.2
25.5
25.5 | 17.3
16.5
15.8
16.5
18.1
18.9 | 19.3
17.3
18.7
20.1
21.3
22.0 | | MONTH | 8.5 | 2.1 | 4.9 | 15.0 | 2.1 | 6.3 | 16.5 | 6.4 | 10.5 | 25.5 | 11.0 | 16.1 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX
25.5
22.5
25.1
21.7
18.9 | | MEAN 22.1 20.1 20.9 19.7 17.5 | MAX
23.8
23.3
24.2
21.3
25.1 | | MEAN 20.4 20.4 20.7 20.0 21.7 | | | MEAN 22.6 21.7 21.5 21.7 22.5 | | | | | 1
2
3
4 | 25.5
22.5
25.1
21.7 | JUNE
19.7
16.9
17.7
18.1 | 22.1
20.1
20.9
19.7 | 23.8
23.3
24.2
21.3 | JULY 18.1 18.1 17.7 18.5 | 20.4
20.4
20.7
20.0 | 27.3
26.9
26.9
27.3 | 19.7
17.7
17.3
17.7 | 22.6
21.7
21.5
21.7 | 25.1
26.0
22.9
25.1 | 18.9
18.9
18.1
18.1 | 21.7
21.7
20.4
21.3 | | 1
2
3
4
5
6
7
8
9 | 25.5
22.5
25.1
21.7
18.9
18.5
16.9
20.1
16.9
22.5 | JUNE 19.7 16.9 17.7 18.1 16.9 15.8 13.1 11.7 15.0 | 22.1
20.1
20.9
19.7
17.5
16.8
15.0
15.3
15.8 | 23.8
23.3
24.2
21.3
25.1
25.5
26.0
27.3
26.0
27.3 | JULY 18.1 17.7 18.5 19.3 19.7 20.5 21.7 20.9 21.3 | 20.4
20.4
20.7
20.0
21.7
22.2
22.9
23.8
23.2 | 27.3
26.9
26.9
27.3
27.8
27.8
27.8
23.3
28.2
24.6 | 19.7
17.7
17.3
17.7
18.5
19.3
20.9
20.9 | 22.6
21.7
21.5
21.7
22.5
23.0
23.0
21.8
23.8
23.1 | 25.1
26.0
22.9
25.1
26.4
24.2
24.6
22.1
19.3
21.3 |
18.9
18.9
18.1
18.5
18.5
17.3
18.5 | 21.7
21.7
20.4
21.3
21.7
20.7
21.3
20.2
16.8
16.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 25.5
22.5
22.5
121.7
18.9
18.5
16.9
20.1
16.9
22.5
20.5
24.2
22.9
20.5 | JUNE 19.7 16.9 17.7 18.1 16.9 15.8 13.1 11.7 15.0 14.6 17.7 18.5 18.9 18.1 | 22.1
20.1
20.9
19.7
17.5
16.8
15.0
15.3
15.8
17.8 | 23.8
23.3
24.2
21.3
25.1
25.5
26.0
27.3
26.0
27.3
26.4
25.5
26.0
27.5 | JULY 18.1 17.7 18.5 19.3 19.7 20.5 21.7 20.9 21.3 19.7 18.5 20.1 21.3 | 20.4
20.4
20.7
20.0
21.7
22.2
22.9
23.8
23.2
23.7
22.7
21.7
22.8
23.3 | 27.3
26.9
26.9
27.3
27.8
27.8
27.8
23.3
28.2
24.6
25.1
25.5
24.6
22.9 | 19.7
17.7
17.3
17.7
18.5
19.3
19.3
20.9
21.3
20.1
20.5 | 22.6
21.7
21.5
21.7
22.5
23.0
23.0
21.8
23.8
23.1
22.1
22.7
22.2 | 25.1
26.0
22.9
25.1
26.4
24.2
24.6
22.1
19.3
21.3
22.1
23.8
23.3 | 18.9
18.1
18.5
18.5
17.3
18.5
17.7
15.4
13.9
14.3
16.1
16.1 | 21.7
21.7
20.4
21.3
21.7
20.7
21.3
20.2
16.8
16.9
17.6
19.2
19.4
20.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 25.5
22.5
22.5
21.7
18.9
18.5
16.9
20.1
16.9
22.5
20.5
24.2
22.9
20.5
19.7 | JUNE 19.7 16.9 17.7 18.1 16.9 15.8 13.1 11.7 15.0 14.6 17.7 18.5 18.9 18.1 16.1 16.5 16.5 | 22.1
20.1
20.9
19.7
17.5
16.8
15.0
15.3
15.8
17.8
19.1
20.5
20.8
19.3
18.2 | 23.8
23.3
24.2
21.3
25.1
25.5
26.0
27.3
26.0
27.3
26.4
25.5
26.0
25.5
26.0
25.5
26.0 | JULY 18.1 18.5 19.3 19.7 20.5 21.7 20.9 21.3 19.7 18.5 20.1 21.3 21.3 20.9 21.7 | 20.4
20.4
20.7
20.0
21.7
22.2
22.9
23.8
23.2
23.7
22.7
21.7
22.8
23.3
23.5
23.1
22.0
23.8 | 27.3
26.9
26.9
27.3
27.8
27.8
27.8
23.3
28.2
24.6
25.1
25.5
24.6
22.9
22.9
21.7
22.1
23.8
25.1 | 19.7
17.7
17.3
17.7
18.5
19.3
19.3
20.9
20.9
21.3
20.1
20.5
20.1
20.5
20.1
18.9
19.3
19.3 | 22.6
21.7
21.5
21.7
22.5
23.0
23.0
21.8
23.8
23.1
22.7
22.7
21.5
20.9
20.4
21.1
21.8 | 25.1
26.0
22.9
25.1
26.4
24.2
24.6
22.1
19.3
21.3
22.1
23.8
23.8
24.6
23.8
23.3
25.1
23.8 | 18.9
18.5
18.5
18.5
17.3
18.5
17.7
15.4
13.9
14.3
16.1
16.1
16.9
17.7 | 21.7
21.7
20.4
21.3
21.7
20.7
21.3
20.2
16.8
16.9
17.6
19.4
20.1
21.0
21.4
21.3
21.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 25.5
22.5
22.5
25.1
21.7
18.9
18.5
16.9
22.5
20.5
24.2
20.5
19.7
20.9
20.1
21.7
20.9
20.1
21.7
20.9
20.1
21.7
20.9
20.1
21.7 | JUNE 19.7 16.9 17.7 18.1 16.9 15.8 13.1 11.7 15.0 14.6 17.7 18.5 18.9 18.1 16.1 16.5 17.7 17.3 17.3 18.5 18.9 19.3 | 22.1
20.1
20.9
19.7
17.5
16.8
15.0
15.3
15.8
17.8
19.1
20.5
20.8
19.3
18.2
18.1
18.1
18.1
19.0
19.7 | 23.8
23.3
24.2
21.3
25.1
25.5
26.0
27.3
26.4
25.5
26.0
25.5
26.0
25.5
26.0
27.3
26.0
27.3 | JULY 18.1 18.5 19.3 19.7 20.5 21.7 20.9 21.3 19.7 18.5 20.1 21.3 21.3 20.9 21.7 20.9 21.3 | 20.4
20.4
20.7
20.0
21.7
22.2
22.9
23.8
23.2
23.7
22.7
22.8
23.3
23.5
23.5
23.1
22.0
23.8
23.6 | 27.3
26.9
26.9
27.3
27.8
27.8
27.8
23.3
28.2
24.6
25.1
25.5
24.6
22.9
22.9
21.7
22.1
23.8
25.1
24.6 | AUGUST 19.7 17.7 17.3 17.7 18.5 19.3 19.3 20.9 20.9 21.3 20.1 20.5 20.1 20.5 20.1 18.9 19.3 17.7 18.5 18.9 20.5 | 22.6
21.7
21.5
21.7
22.5
23.0
23.0
21.8
23.8
23.1
22.1
22.7
21.5
20.9
20.4
21.1
21.8
20.8
21.6
22.3
22.3 | 25.1
26.0
22.9
25.1
26.4
24.2
24.6
22.1
19.3
21.3
22.1
23.8
24.6
23.8
24.6
23.8
25.5
22.1
23.8 | SEPTEMBE 18.9 18.1 18.5 18.5 17.3 18.5 17.7 15.4 13.9 14.3 16.1 16.1 16.9 17.7 18.9 19.3 20.5 19.7 20.1 16.9 13.1 | 21.7
21.7
20.4
21.3
21.7
20.7
21.3
20.3
21.6.8
16.9
17.6
19.4
20.1
21.0
21.4
21.3
21.6
22.0
21.1
21.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
20
20
20
20
20
20
20
20
20
20
20
20 | 25.5
22.5
22.5
121.7
18.9
18.5
16.9
20.1
16.9
22.5
20.5
24.2
22.9
20.5
19.7
20.1
21.7
20.9
20.1
21.7
20.9
20.1
21.7
20.9
20.1
21.7
20.9
20.1
21.7
20.9
20.1
20.9
20.1
20.9
20.1
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9 | JUNE 19.7 16.9 17.7 18.1 16.9 15.8 13.1 11.7 15.0 14.6 17.7 18.5 18.9 18.1 16.1 16.5 17.7 17.3 17.3 17.3 18.5 18.9 19.3 20.1 | 22.1
20.1
20.9
19.7
17.5
16.8
15.0
15.8
17.8
19.1
20.5
20.8
19.3
18.2
18.1
18.1
18.9
19.7
20.6
21.4
22.3
23.1
23.1
22.2
21.4
20.5 | 23.8
23.3
24.2
21.3
25.1
25.5
26.0
27.3
26.4
25.5
26.0
25.5
26.0
25.1
24.6
27.8
26.9
27.3
27.8
26.9 | JULY 18.1 117.7 18.5 19.3 19.7 20.5 21.7 20.9 21.3 19.7 18.5 20.1 21.3 21.3 21.3 20.9 21.7 21.3 22.1 20.5 21.3 22.1 20.5 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9 | 20.4
20.4
20.7
20.0
21.7
22.2
22.9
23.8
23.2
23.7
22.7
21.7
22.8
23.3
23.5
23.1
22.0
23.8
23.6
23.6
23.7
22.0
23.8
23.6 | 27.3
26.9
27.3
27.8
27.8
27.8
27.8
23.3
28.2
24.6
25.1
25.5
24.6
22.9
22.9
21.7
22.1
23.8
25.1
24.6
25.1
25.1
24.6
25.1
23.0
27.3
26.0
27.3
26.0
27.3 | AUGUST 19.7 17.7 17.3 17.7 18.5 19.3 19.3 20.9 20.9 21.3 20.1 20.5 20.1 18.9 19.3 17.7 18.5 19.3 17.7 18.5 19.3 17.7 | 22.6
21.7
21.5
21.7
22.5
23.0
23.0
21.8
23.8
23.1
22.1
22.7
21.5
20.9
20.4
21.1
21.8
20.8
21.6
22.3
23.2
22.9
23.7
24.7
23.9
23.7
22.7
23.9 | 25.1
26.0
22.9
25.1
26.4
24.2
24.6
22.1
19.3
21.3
22.1
23.8
24.6
23.8
23.3
25.5
22.1
22.5
22.9
20.9
19.3
22.1
23.8
24.6 | SEPTEMBE 18.9 18.9 18.1 18.5 18.5 17.3 18.5 17.7 15.4 13.9 14.3 16.1 16.1 16.9 17.7 18.9 19.3 19.3 20.5 19.7 19.7 20.1 16.9 11.6 17.3 18.5 18.9 17.3 17.3 | 21.7
21.7
20.4
21.3
21.7
20.7
21.3
20.2
16.8
16.9
17.6
19.2
19.4
20.1
21.0
21.4
21.3
21.6
22.0
21.1
21.2
19.3
16.6
22.0 | #### 02011800 JACKSON RIVER BELOW GATHRIGHT DAM, NEAR HOT SPRINGS, VA--Continued LOCATION.--Lat 37°56'54", long 79°56'58", Alleghany County, Hydrologic Unit 02080201, on right bank 0.4 mi upstream from Cedar Creek, 0.5 mi downstream from Gathright Dam and Lake Moomaw, and 7.3 mi southwest of Hot Springs. DRAINAGE AREA. -- 345 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1973 to current year. REVISED RECORDS. -- WDR VA-81-1: 1980. GAGE.--Water-stage recorder. Datum of gage is 1,400.00 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to Dec. 20, 1973, nonrecording gage at same site and datum. REMARKS.--No estimated daily discharges. Records good. Flow regulated since December 1979 by Lake Moomaw (station 02011795) 0.5 mi upstream; since October 1984 by Back Creek Lake 28.5 mi upstream, amount unknown; and since January 1985 by Little Back Creek Lake 31.6 mi upstream, amount unknown. U.S. Army Corps of Engineers satellite water-quality and gage-height telemeter at station. Maximum discharge, 29,000 ft³/s, result of cofferdam failure during construction of Gathright Dam, from rating curve extended above 9,200 ft³/s on basis of slope-area measurement of peak flow. Minimum discharge, 3.0 ft³/s, July 12, 1979, result of gate closure at Gathright Dam, gage height, 7.78 ft. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 21, 1972, reached a stage of 17.20 ft, from floodmark. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,530 $\rm ft^3/s$, Mar. 23 gage height, 13.61 $\rm ft$; minimum observed, 14.2 $\rm ft^3/s$, Apr. 8; minimum daily, 156 $\rm ft^3/s$, Nov. 13 to Jan. 4, Jan. 6, 7, 10-14. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | | DI. | JCHARGE, C | ODIC FE | DI FEI | | LY MEAN V | | .IODEI | . 1557 10 | DEFIE | JER 1990 | | | | |--|---|------------------------------|---|---------------------------------------|---|---|--|---------------------------|----------------------------------|--|--|---|-----------------------|---
---| | DAY | OCT | NC | V DEC | 2 6 | JAN | FEB | MAR | А | PR | MAY | JUN | JU | L | AUG | SEP | | 1
2
3
4
5 | 211
192
192
192
192 | 16
16
16 | 14 156
2 156
0 156 | 5 :
5 : | 156
156
156
156
157 | 1070
1070
811
362
698 | 867
867
867
867
700 | 3
3
5 | 26
26
26
15
01 | 381
288
290
565
969 | 250
249
249
270
285 | 28
28
28
28
28 | 2
1
2 | 299
298
296
296
296 | 272
259
259
259
259 | | 6
7
8
9
10 | 192
192
192
192
192 | 15
15
15 | 9 156
9 156
9 156 | 5 : | 156
156
159
160
156 | 1070
1560
1870
1380
1070 | 576
576
576
793
1910 | 6 | 44
69
88 | 1060
1060
1070
1070
1070 | 253
253
250
254
257 | 28
28
28
28
28 | 4
4
4 | 298
300
300
300
301 | 258
258
258
259
263 | | 11
12
13
14
15 | 192
192
192
192
192 | 15
15
15 | 8 156
6 156
6 156 | 5 : | 156
156
156
156
157 | 1070
1070
1070
1080
1080 | 2490
1920
1060
1060
855 | 10
10
10
8
10 | 60
60
33 | 826
603
497
423
338 | 256
257
257
256
257 | 28
28
28
29
29 | 4
4
1 | 302
299
300
299
300 | 263
262
261
260
260 | | 16
17
18
19
20 | 192
192
192
192
192 | 15
15
15 | 6 156
6 156
6 156 | 5 1 | 157
466
836
924
743 | 770
165
1820
4310
4740 | 615
491
420
683
561 | 5 | 49
70
74 | 292
292
269
253
253 | 258
260
260
260
260 | 29
29
29
29
29 | 6
6
6 | 300
299
299
299
299 | 260
260
260
259
260 | | 21
22
23
24
25 | 192
192
192
192
192 | 15
15
15 | 6 156
6 156
6 156 | 5 : | 505
323
610
923
923 | 4260
2540
1070
1070
1070 | 164
2370
5050
5440
4170 | 35
20
10
10 | 20
60
60 | 253
253
253
254
254 | 260
260
260
260
260 | 29
29
30
29
30 | 7
0
9 | 299
297
296
296
296 | 260
260
259
259
259 | | 26
27
28
29
30
31 | 192
192
192
192
192
192 | 15
15
15
15 | 6 156
6 156
6 156 | 5 10
5 10
5 10 | 020
070
070
070
070
070 | 1070
960
867
 | 1940
1070
1070
1070
603
326 | 5
5
5
5 | 14
12
12
12
12 | 253
255
254
253
253
253 | 260
260
261
261
272 | 29
29
29
29
29
29 | 9
9
9
9 | 296
296
296
296
296
296 | 258
256
256
256
256 | | TOTAL
MEAN
MAX
MIN
(†)
MEAN‡
CFSM‡
IN.‡ | 5971
193
211
192
-3731
72.3
.21 | 15
17
15
+267
24 | 8 156
4 156
6 156
2 +136
7 200
2 .58 | 5 10
5 11
1 +208
0 11
3 3 | 129
488
070
156
822
160
.36 | 41043
1466
4740
165
-1160
1424
4.13
4.30 | 42027
1356
5440
164
-151
1351
3.92
4.52 | 35
3
-1 | 58
50
26
01
55
77 | 14657
473
1070
253
+504
489
1.42
1.63 | 7765
259
285
249
+101
262
.76
.85 | 902
29
30
28
-509
12
.3 | 1
0
1
2
7 | 9240
298
302
296
-6201
98.0
.28 | 7788
260
272
256
-5949
61.3
.18 | | | 1997 | | 148497
190977 | MEAN
MEAN | 407
523 | MAX
MAX | 3330
5440 | MIN
MIN | 156
156 | MEAN‡ | 354
532 | CFSM‡
CFSM‡ | 1.03 | IN.‡ | 13.93
20.94 | [†] Total change in contents, equivalent in cubic feet per second, per month, in Lake Moomaw; provided by U.S. Army Corps of Engineers. [‡] Adjusted for monthly change in contents. #### 02011800 JACKSON RIVER BELOW GATHRIGHT DAM, NEAR HOT SPRINGS, VA--Continued | 02011000 UACKSC | N KIARK DED | OW GAIII | LIGIT | DAM, IN | EAK HOI | DEIXIN | IGD, VA | COIICI | iiueu | |---|---|---|--|---|---|---|--|---|--| | STATISTICS OF MONTHLY MEAN | | | | | | - | - | | | | OCT NOV MEAN 350 255 MAX 1043 388 (WY) 1977 1978 MIN 67.6 84.3 (WY) 1979 1979 | DEC JAN
643 858
1584 1306
1974 1979
287 145
1976 1977 | FEB
605
1096
1979
241
1978 | MAR
1050
1656
1978
408
1976 | APR
561
1134
1977
313
1976 | MAY
579
925
1975
191
1977 | JUN
374
650
1974
115
1977 | JUL
153
180
1979
91.5
1977 | AUG
130
172
1978
92.5
1977 | SEP
222
754
1979
76.3
1978 | | CIIMMADA CTATICTICC | MATED VE | ADC 1074 | 1070 | | | | | | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 482
585
357
12600
63
65
a29000
a18.77
b3.0
1.40
18.97
962
245 | Apr 5
Oct 1
Oct 7
Dec 26
Dec 26
Jul 12 | 1979
1976
1977
1978
1978
1973
1973
1973 | | | | | | | | STATISTICS OF MONTHLY MEAN | DATA FOR WATER | YEARS 1980 | - 1998, | BY WATER | YEAR (WY) | [REGULA | ATED, UNADJ | USTED] | | | OCT NOV MEAN 236 308 MAX 829 1235 (WY) 1980 1986 MIN 70.8 64.1 (WY) 1981 1982 | DEC JAN
278 491
1061 1555
1997 1996
60.8 74.5
1982 1981 | FEB
675
1466
1998
114
1981 | MAR
934
1881
1993
74.4
1981 | APR
750
2052
1987
172
1981 | MAY
612
1477
1989
230
1991 | JUN
434
1017
1982
202
1980 | JUL
271
398
1995
123
1980 | AUG
277
644
1984
71.4
1981 | SEP
258
661
1996
57.5
1981 | | SUMMARY STATISTICS | FOR 1997 CALE | NDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER YEA | RS 1980 | - 1998 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | 1 | | FF20 | Mar 23
1 Mar 23
Apr 8 | | 459
592
196
8670
47
53
10400
15.29
5.2
1.33
18.08
940
266
151 | Sep
Aug 2
Nov
Nov | 1996
1981
7 1985
2 1981
9 1981
7 1985
7 1985
6 1980 | a Result of cofferdam failure during construction of Gathright Dam. b Result of gate closure at Gathright Dam. c Also Nov. 14 to Dec. 31, 1997. d Also Nov. 14, 1997 to Jan. 4, 1998, and Jan. 6, 7, 10-14, 1998. f Observed, result of regulation. # 02011800 JACKSON RIVER BELOW GATHRIGHT DAM, NEAR HOT SPRINGS, VA--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1979 to current year. PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: October 1978 to current year. pH: October 1978 to current year. WATER TEMPERATURE: October 1978 to current year. DISSOLVED OXYGEN: October 1978 to current year. INSTRUMENTATION .-- Water-quality monitor since October 1978. REMARKS.--Interruption in record due to instrument malfunction. Some record in prior years fragmentary due to instrument malfunction. The intake tower at Gathright Dam permits selective withdrawal of water from one or more reservoir depths. Records represent specific conductance within 5 microsiemens, pH within 0.5 units, water temperature within 0.5°C, and dissolved oxygen within 0.5 mg/L at the intake to the monitor. All four parameters were compared at the intake with the average for the river by a cross section on June 27, 1995. A maximum variation of 3 microsiemens was found for specific conductance, a maximum of 0.1 units for pH, a maximum variation of 0.2°C for water temperature, and 0.4 mg/L for dissolved oxygen was found within the cross section. #### EXTREMES FOR PERIOD OF RECORD. - SPECIFIC CONDUCTANCE (water years 1979, 1981-98): Maximum recorded, 249 microsiemens, Nov. 5, 1985; minimum recorded, 78 microsiemens, May 14, 1979. pH (water years 1979, 1981-98): Maximum recorded, 9.3 units, Jan. 19, 20, 1996; minimum recorded, 6.3 units, May 18, 1996. WATER TEMPERATURE (water years 1979, 1981-98): Maximum recorded, 28.0°C, Aug. 1, 2, 1979; minimum recorded, 0.0°C, Feb. 16-19, 1979. DISSOLVED OXYGEN (water years 1979, 1981, 1984-98): Maximum recorded, 19.5 mg/L, Jan. 16, 1979; minimum recorded, 5.7 mg/L, Aug. 1, 3, 1987. #### EXTREMES FOR CURRENT YEAR . -- XTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum recorded, 157 microsiemens, Nov. 6-9, 13, 14; minimum recorded, 106 microsiemens, several days in April and May. pH: Maximum recorded, 8.9 units, Dec. 5; minimum recorded, 6.9 units, Oct. 16, 18, and 19. WATER TEMPERATURE: Maximum recorded, 15.7°C, June 1; minimum recorded, 4.7°C, Feb. 7. DISSOLVED OXYGEN: Maximum recorded, 14.7 mg/L, Feb. 20, 21; minimum recorded, 7.8 mg/L, June 13, 14, 15, and 18. #### SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25
DEG.C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | MEAN | |-------|-----|---------|------|-----|---------|------|-----|---------|------|-----|---------|------| | | | OCTOBER | - | NO | OVEMBER | | DE | ECEMBER | | | JANUARY | | | 1 | 142 | 140 | 141 | 149 | 142 | 146 | 151 | 150 | 151 | 145 | 145 | 145 | | 2 | 142 | 142 | 142 | 154 | 147 | 150 | 151 | 150 | 151 | 145 | 145 | 145 | | 3 | 143 | 142 | 142 | 155 | 152 | 153 | 151 | 150 | 151 | 145 | 145 | 145 | | 4 | 142 | 141 | 142 | 155 | 154 | 154 | 151 | 150 | 150 | 145 | 145 | 145 | | 5 | 142 | 141 | 141 | 155 | 155 | 155 | 151 | 140 | 146 | | | | | 6 | 141 | 140 | 141 | 157 | 155 | 156 | 141 | 140 | 140 | | | | | 7 | 141 | 140 | 140 | 157 | 155 | 156 | 140 | 139 | 140 | | | | | 8 | 140 | 139 | 140 | 157 | 154 | 155 | 140 | 139 | 139 | | | | | 9 | 140 | 138 | 139 | 157 | 153 | 154 | 140 | 139 | 139 | 155 | 154 | 154 | | 10 | 139 | 138 | 138 | 154 | 153 | 153 | 139 | 138 | 139 | 154 | 153 | 154 | | 11 | 139 | 138 | 138 | 155 | 154 | 154 | 139 | 138 | 139 | 154 | 153 | 154 | | 12 | 139 | 137 | 138 | 156 | 154 | 155 | 138 | 138 | 138 | 154 | 152 | 153 | | 13 | 138 | 137 | 137 | 157 | 156 | 156 | 139 | 138 | 138 | 154 | 145 | 152 | | 14 | 141 | 136 | 137 | 157 | 156 | 156 | 139 | 138 | 139 | 145 | 139 | 140 | | 15 | 139 | 135 | 137 | 156 | 155 | 156 | 139 | 138 | 139 | 141 | 137 | 139 | | 16 | 136 | 135 | 135 | 156 | 154 | 155 | 139 | 138 | 139 | 143 | 137 | 141 | | 17 | 135 | 133 | 135 | 155 | 153 | 154 | 139 | 139 | 139 | 140 | 132 | 135 | | 18 | 135 | 133 | 134 | 154 | 150 | 152 | 140 | 139 | 139 | 134 | 129 | 131 | | 19 | 135 | 133 | 135 | 151 | 149 | 150 | 140 | 139 | 139 | 136 | 133 | 135 | | 20 | 135 | 134 | 135 | 150 | 148 | 149 | 139 | 139 | 139 | 133 | 129 | 130 | | 21 | 135 | 133 | 134 | 150 | 149 | 149 | 139 | 138 | 139 | 132 | 130 | 131 | | 22 | 135 | 133 | 134 | 150 | 149 | 150 | 146 | 139 | 145 | 136 | 131 | 133 | | 23 | 135 | 132 | 134 | 151 | 149 | 150 | 146 | 145 | 146 | 134 | 131 | 133 | | 24 | 135 | 133 | 134 | 151 | 150 | 150 | 146 | 145 | 145 | 133 | 131 | 132 | | 25 | 135 | 135 | 135 | 151 | 150 | 151 | 145 | 145 | 145 | 131 | 129 | 130 | | 26 | 136 | 134 | 135 | 151 | 150 | 151 | 145 | 145 | 145 | 131 | 129 | 130 | | 27 | 136 | 134 | 135 | 151 | 150 | 151 | 145 | 145 | 145 | | | | | 28 | 136 | 134 | 135 | 152 | 150 | 151 | 145 | 145 | 145 | | | | | 29 | 138 | 134 | 136 | 152 | 151 | 151 | 145 | 145 | 145 | | | | | 30 | 140 | 136 | 138 | 151 | 150 | 151 | 145 | 145 | 145 | | | | | 31 | 145 | 140 | 142 | | | | 145 | 145 | 145 | | | | | MONTH | 145 | 132 | 137 | 157 | 142 | 152 | 151 | 138 | 143 | | | | 249 SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG.C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | MEAN | |---|---|--|--|--|--|--|---|---|--|--|--|---| | | : | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | | | | 119
119
118
118 | 118
116
116
116 | 119
118
117
117 | 113
113
113
111
108 | 111
110
110
108
107 | 112
111
111
109
108 | 110
110
110
110
108 | 107
109
109
107
106 | 108
109
109
109
107 | | 6
7
8
9
10 | 134
131
129
127 | 130
129
125
125 | 131
130
127
126 | 117
118
116
117
117 | 116
116
116
114
114 | 116
117
116
115
115 | 109
145
142
110
110 | 108
109
108
108
107 | 109
114
112
109
108 | 107
108
109
109 | 106
106
107
107 | 107
107
108
108
108 | | 11
12
13
14
15 | 126
127
124
125
124 | 124
123
123
124
124 | 125
124
123
124
124 | 114
114
114
114
115 | 113
113
114
114
114 | 113
113
114
114
114 | 108
108
108
148
109 | 108
108
108
106
106 | 108
108
108
111
107 | 108
109
110
111 | 107
107
108
109 | 108
108
109
110 | | 16
17
18
19
20 | 131
134
134
126
125 | 124
128
126
124
122 | 126
131
130
125
124 | 115
116
117
117
121 | 115
115
116
114
114 | 115
116
116
116
118 | 107
109
109
109
110 | 106
107
108
108
108 | 106
108
108
109 | 112
112
113
112
113 | 111
110
110
110
111 | 111
111
112
111
112 | | 21
22
23
24
25 | 123
125
124
124 | 121
122
123
121 | 122
123
124
122 | 122
120
112
111
111 | 120
112
109
110
110 | 121
115
110
111
110 | 109

106
108
108 | 108

105
106
106 | 108

106
107
107 | 113

113
113
113 | 111

111
111
112 | 112

112
112
113 | | 26
27
28
29
30
31 | 119
119
119
 | 119
119
119
 | 119
119
119
 | 112
112
112
111
113
113 | 110
111
111
110
110 | 111
111
111
111
111
112 | 108
108
107
108
108 | 106
107
106
106
107 | 107
107
107
107
107 | 113

114
116
115
116 | 112

113
113
115
115 | 113

113
114
115
115 | | MONTH | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX
116
116
116
116
116 | | MEAN 115 116 116 115 115 | MAX
118
118
118
118
118 | | MEAN 117 117 118 118 118 | | | MEAN 117 117 117 117 117 | | | | | 1
2
3
4 | 116
116
116
116 | JUNE 115 115 115 115 | 115
116
116
115 | 118
118
118
118 | JULY 117 117 117 118 | 117
117
118
118 | 118
117
117
118 | 116
116
117
117 | 117
117
117
117 | 124
124
124
124
124 | 122
123
123
123
123 | 123
123
123
124 | | 1
2
3
4
5
6
7
8
9 | 116
116
116
116
116
116
116
118 | JUNE 115 115 115 115 115 115 115 117 | 115
116
116
115
115
116
116
116
117 | 118
118
118
118
118
118
119
119 | JULY 117 117 117 118 118 118 118 118 118 | 117
117
118
118
118
118
118
118
119 | 118
117
117
118
118
118
118
118 | AUGUST 116 117 117 117 117 117 117 118 | 117
117
117
117
117
117
117
118
118
118 | 124
124
124
124
125
125
125
125
125 | 122
123
123
123
123
123
123
124
124
124 | 123
123
123
124
124
124
124
124
124
124 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 116
116
116
116
116
116
118
117
117
117
118
118 | JUNE 115 115 115 115 115 117 117 117 117 | 115
116
116
115
115
115
116
116
117
117
117
117 | 118
118
118
118
118
119
119
119
119
119 | JULY 117 117 117 118 118 118 118 118 118 11 | 117
117
118
118
118
118
118
118
119
118
119
119 | 118
117
117
118
118
118
118
119
120 | AUGUST 116 116 117 117 117 117 117 118 118 118 120 120 120 120 | 117
117
117
117
117
117
118
118
118
119
120
120
120 | 124
124
124
125
125
125
125
125
125
125
125
125
125 | 122
123
123
123
123
123
124
124
124
124
124
124
124 | 123
123
123
124
124
124
124
124
124
124
125
125 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 116
116
116
116
116
116
118
117
117
118
118
118
120
119
119 | JUNE 115 115 115 115 115 117 117 117 117 11 | 115
116
116
115
115
115
116
116
117
117
117
117
118
118
118
118
118 | 118
118
118
118
118
119
119
119
119
119 | JULY 117 117 117 118 118 118 118 118 118 11 | 117
117
118
118
118
118
118
118
119
119
119
119 | 118
117
117
118
118
118
118
118
119
120
121
121
121
121
121
121
121
121
121 | AUGUST 116 116 117 117 117 117 117 118 118 118 120 120 120 120 120 121 121 121 | 117
117
117
117
117
117
118
118
118
119
120
120
120
120
120
121
121
121 |
124
124
124
125
125
125
125
125
125
125
125
125
126
126
126
126 | 122
123
123
123
123
123
124
124
124
124
124
125
125
125
125 | 123
123
123
124
124
124
124
124
124
125
125
125
125
125 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 116
116
116
116
116
116
118
117
117
118
118
118
120
119
119
119
119
119
119 | JUNE 115 115 115 115 115 117 117 117 117 11 | 115
116
116
115
115
115
116
116
117
117
117
117
118
118
118
118
119
119
119
119 | 118 118 118 118 118 119 119 119 119 119 | JULY 117 117 117 118 118 118 118 118 118 11 | 117
117
118
118
118
118
118
118
119
119
119
119 | 118
117
117
118
118
118
118
119
120
121
121
121
121
121
121
121
121
121 | AUGUST 116 116 117 117 117 117 117 117 118 118 118 120 120 120 120 120 121 121 121 121 121 | 117
117
117
117
117
117
118
118
118
119
120
120
120
120
121
121
121
121
121
121 | 124
124
124
125
125
125
125
125
125
125
126
126
126
126
126
127
127
127
127
128 | 122
123
123
123
123
123
124
124
124
124
125
125
125
125
125
125
125
125
125
125 | 123
123
123
124
124
124
124
124
124
125
125
125
125
125
126
126
126
127
127 | JAMES RIVER BASIN PH STANDARD UNITS, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 | DAY | MAX | MIN
OCTOBER | MEAN | MAX | MIN | MEAN | MAX | MIN
ECEMBER | MEAN | MAX | MIN
JANUARY | MEAN | |---|--|--|---|--|---|--|---|--|--|--|---|---| | 1
2
3
4
5 | 7.3
7.3
7.7
7.3
7.4 | 7.2
7.2
7.2
7.2
7.2
7.2 | 7.2
7.3
7.3
7.3
7.3 | 7.4
7.4
7.6
7.6
7.7 | 7.3
7.3
7.4
7.6
7.6 | 7.3
7.4
7.5
7.6
7.6 | 8.1
8.2
8.3
8.3
8.9 | 8.1
8.1
8.1
8.2
8.3 | 8.1
8.1
8.2
8.3
8.4 | 8.2
8.2
8.2
8.2 | 8.2
8.2
8.2
8.2 | 8.2
8.2
8.2
8.2 | | 6
7
8
9
10 | 7.4
7.4
7.4
7.5
7.5 | 7.3
7.4
7.4
7.4
7.5 | 7.4
7.4
7.4
7.5
7.5 | 7.7
7.7
7.8
7.9
7.9 | 7.6
7.7
7.7
7.7
7.9 | 7.7
7.7
7.7
7.8
7.9 | 8.3
8.3
8.3
8.3 | 8.3
8.3
8.3
8.3 | 8.3
8.3
8.3
8.3 |

7.9
7.8 |

7.8
7.8 |

7.8
7.8 | | 11
12
13
14
15 | 7.5
7.6
7.6
7.7
7.1 | 7.4
7.5
7.6
7.1
7.0 | 7.5
7.5
7.6
7.5
7.0 | 7.9
8.1
7.8
7.8
7.8 | 7.9
7.8
7.7
7.7
7.8 | 7.9
7.9
7.7
7.7
7.8 | 8.3
8.3
8.3
8.3 | 8.3
8.2
8.3
8.3 | 8.3
8.3
8.3
8.3 | 7.9
7.9
7.9
7.9
7.9 | 7.8
7.8
7.8
7.8
7.8 | 7.9
7.9
7.9
7.8
7.8 | | 16
17
18
19
20 | 7.0
7.0
7.0
7.1
7.1 | 6.9
7.0
6.9
6.9 | 7.0
7.0
7.0
7.0
7.1 | 7.8
7.8
7.8
8.0
8.0 | 7.7
7.8
7.7
7.8
7.9 | 7.8
7.8
7.8
7.9
8.0 | 8.3
8.3
8.3
8.3 | 8.3
8.3
8.3
8.3 | 8.3
8.3
8.3
8.3 | 7.9
7.8
7.8
7.8
7.8 | 7.8
7.8
7.8
7.8
7.8 | 7.8
7.8
7.8
7.8
7.8 | | 21
22
23
24
25 | 7.1
7.1
7.2
7.2
7.2 | 7.1
7.1
7.1
7.2
7.2 | 7.1
7.1
7.2
7.2
7.2 | 8.0
8.0
8.0
8.1
8.1 | 7.9
8.0
8.0
8.0 | 8.0
8.0
8.0
8.1
8.1 | 8.2
8.2
8.2
8.2
8.2 | 8.2
8.2
8.1
8.2
8.2 | 8.2
8.2
8.2
8.2
8.2 | 7.8
7.8
7.8
7.8
7.8 | 7.8
7.8
7.8
7.8
7.8 | 7.8
7.8
7.8
7.8
7.8 | | 26
27
28
29
30
31 | 7.3
7.3
7.4
7.4
7.5
7.7 | 7.2
7.3
7.3
7.3
7.4
7.4 | 7.3
7.3
7.4
7.5
7.5 | 8.1
8.2
8.2
8.2 | 8.1
8.0
8.1
8.1 | 8.1
8.1
8.2
8.1 | 8.2
8.2
8.2
8.2
8.2
8.2 | 8.2
8.2
8.2
8.2
8.2
8.2 | 8.2
8.2
8.2
8.2
8.2
8.2 | 7.8

 | 7.8

 | 7.8

 | | MONTH | 7.7 | 6.9 | 7.3 | 8.2 | 7.3 | 7.8 | 8.9 | 8.1 | 8.3 | | | | | | | | | | | | | | | | | | | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | DAY 1 2 3 4 5 | | | | 7.8
7.8
7.8
7.8 | | MEAN 7.7 7.7 7.7 7.7 | 7.8
7.8
7.8
7.7 | | MEAN 7.7 7.7 7.7 7.7 7.7 | 7.8
7.8
7.8
7.7
7.7 | | 7.6
7.7
7.6
7.6
7.6 | | 1
2
3
4 |

 | FEBRUARY

 |

 | 7.8
7.8
7.8
7.8 | MARCH
7.7
7.7
7.7
7.7 | 7.7
7.7
7.7
7.7 | 7.8
7.8
7.8
7.7 | 7.7
7.7
7.7
7.7
7.7 | 7.7
7.7
7.7
7.7 | 7.8
7.8
7.8
7.7 | MAY
7.6
7.6
7.6
7.6 | 7.6
7.7
7.6
7.6 | | 1
2
3
4
5
6
7
8 |

7.7
7.7 | FEBRUARY 7.7 7.7 7.7 |

7.7
7.7
7.7 | 7.8
7.8
7.8
7.8

7.8
7.8
7.7
7.8 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.7
7.7
7.7
7.7
7.7

7.7
7.7
7.7 | 7.8
7.8
7.8
7.7
7.8
7.8
7.8 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.6
7.6
7.6 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.8
7.8
7.8
7.7
7.7
7.6
7.7 | MAY 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 | 7.6
7.7
7.6
7.6
7.6
7.6
7.6
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 7.7
7.7
7.7
7.7 | FEBRUARY 7.7 7.7 7.7 7.7 7.7 7.7 |

7.7
7.7
7.7
7.7
7.7 | 7.8
7.8
7.8
7.8
7.8
7.8
7.7
7.8
7.8
7.8 | MARCH 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7. | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.8
7.8
7.7
7.8
7.8
7.8
7.8
7.8
7.7
7.7 | 7.7
7.7
7.7
7.7
7.7
7.7
7.6
7.6
7.7
7.7 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.8
7.8
7.7
7.7
7.7
7.6
7.7
7.6
7.7
7.7
7.8 | MAY 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7. | 7.6
7.7
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | FEBRUARY 7.7 7.7 7.7 7.7 7.7 7.7 7. |

7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8 | MARCH 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7. | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.8
7.8
7.7
7.8
7.8
7.8
7.8
7.7
7.7
7.7 | APRIL 7.7 7.7 7.7 7.7 7.7 7.6 7.6 7.6 7.7 7.7 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.8
7.8
7.7
7.7
7.7
7.6
7.7
7.6
7.7
7.8
7.7
7.8
7.8
7.8
7.8 | MAY 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7. | 7.6
7.7
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | FEBRUARY 7.7 7.7 7.7 7.7 7.7 7.7 7. |

7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.8
7.8
7.8
7.8
7.8
7.8
7.7
7.8
7.8
7.8 | MARCH 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7. | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.8
7.8
7.7
7.8
7.7
7.8
8.0
7.8
7.7
7.7
7.7
7.7
7.7
7.8
7.8
7.7
7.7 | APRIL 7.7 7.7 7.7 7.7 7.7 7.6 7.6 7.6 7.7 7.7 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.8
7.8
7.7
7.7
7.7
7.6
7.7
7.6
7.7
7.8
7.7
7.8
7.8
7.8
7.8
7.8
7.9
7.9 | MAY 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7. | 7.6
7.7
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 251 PH STANDARD UNITS, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 02011800 JACKSON RIVER BELOW GATHRIGHT DAM, NEAR HOT SPRINGS, VA--Continued | DAY | MAX | MIN | MEAN | |-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | | JUNE | | | JULY | | P | AUGUST | | S | SEPTEMBE | R | | 1 | 7.8 | 7.6 | 7.7 | 7.7 | 7.6 | 7.6 | 7.4 | 7.3 | 7.4 | 7.4 | 7.3 | 7.4 | | 2 | 7.8
7.8 | 7.6
7.6 | 7.7
7.7 | 7.7
7.7 | 7.6
7.6 | 7.6
7.6 | 7.4
7.4 | 7.3
7.4 | 7.4
7.4 | 7.4
7.4 | 7.3
7.3 | 7.4
7.4 | | 4 | 7.8 | 7.6
 7.7 | 7.7 | 7.6 | 7.6 | 7.4 | 7.4 | 7.4 | 7.4 | 7.3 | 7.4 | | 5 | 7.8 | 7.6 | 7.7 | 7.7 | 7.5 | 7.6 | 7.4 | 7.3 | 7.4 | 7.4 | 7.3 | 7.4 | | 3 | , . , | 7.0 | , , , | 7.0 | 7.5 | 7.0 | 7.4 | 7.3 | 7.4 | 7.4 | 7.5 | 7.4 | | 6 | 7.8 | 7.6 | 7.7 | 7.6 | 7.5 | 7.6 | 7.4 | 7.3 | 7.4 | 7.4 | 7.3 | 7.4 | | 7 | 7.8 | 7.6 | 7.7 | 7.6 | 7.5 | 7.6 | 7.4 | 7.3 | 7.4 | 7.4 | 7.3 | 7.4 | | 8 | 7.8 | 7.6 | 7.7 | 7.6 | 7.5 | 7.6 | 7.4 | 7.3 | 7.3 | 7.4 | 7.3 | 7.4 | | 9 | 7.8 | 7.6 | 7.7 | 7.6 | 7.5 | 7.5 | 7.4 | 7.3 | 7.3 | 7.4 | 7.3 | 7.4 | | 10 | 7.8 | 7.6 | 7.7 | 7.6 | 7.5 | 7.5 | 7.3 | 7.3 | 7.3 | 7.4 | 7.3 | 7.3 | | 11 | 7.8 | 7.6 | 7.7 | 7.6 | 7.5 | 7.5 | 7.3 | 7.3 | 7.3 | 7.4 | 7.3 | 7.3 | | 12 | 7.8 | 7.6 | 7.7 | 7.6 | 7.5 | 7.5 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | | 13 | 7.8 | 7.6 | 7.7 | 7.6 | 7.5 | 7.5 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | | 14 | 7.8 | 7.7 | 7.7 | 7.6 | 7.5 | 7.5 | 7.3 | 7.2 | 7.3 | 7.3 | 7.3 | 7.3 | | 15 | 7.8 | 7.6 | 7.7 | 7.6 | 7.4 | 7.5 | 7.3 | 7.2 | 7.3 | 7.3 | 7.3 | 7.3 | | | | | | | | | | | | | | | | 16 | 7.8 | 7.6 | 7.7 | 7.6 | 7.5 | 7.5 | 7.3 | 7.2 | 7.2 | 7.3 | 7.3 | 7.3 | | 17 | 7.8 | 7.6 | 7.7 | 7.6 | 7.4 | 7.5 | 7.3 | 7.2 | 7.3 | 7.3 | 7.3 | 7.3 | | 18 | 7.8 | 7.6 | 7.7 | 7.5 | 7.4 | 7.5 | 7.3 | 7.2 | 7.3 | 7.3 | 7.3 | 7.3 | | 19 | 7.7 | 7.6 | 7.6 | 7.5 | 7.4 | 7.5 | 7.3 | 7.2 | 7.3 | 7.3 | 7.3 | 7.3 | | 20 | 7.7 | 7.6 | 7.7 | 7.5 | 7.4 | 7.5 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | | 21 | 7.7 | 7.6 | 7.6 | 7.5 | 7.4 | 7.5 | 7.3 | 7.2 | 7.3 | 7.3 | 7.2 | 7.3 | | 22 | 7.7 | 7.6 | 7.6 | 7.5 | 7.4 | 7.5 | 7.3 | 7.2 | 7.3 | 7.3 | 7.2 | 7.3 | | 23 | 7.7 | 7.6 | 7.6 | 7.5 | 7.3 | 7.4 | 7.3 | 7.2 | 7.3 | 7.3 | 7.3 | 7.3 | | 24 | 7.7 | 7.6 | 7.7 | 7.4 | 7.3 | 7.3 | 7.3 | 7.2 | 7.3 | 7.3 | 7.3 | 7.3 | | 25 | 7.7 | 7.6 | 7.7 | 7.4 | 7.3 | 7.4 | 7.3 | 7.2 | 7.2 | 7.3 | 7.2 | 7.3 | | | | | | | | | | | | | | | | 26 | 7.7 | 7.6 | 7.6 | 7.4 | 7.3 | 7.4 | 7.3 | 7.2 | 7.2 | 7.3 | 7.2 | 7.2 | | 27 | 7.7 | 7.6 | 7.7 | 7.4 | 7.3 | 7.4 | 7.3 | 7.2 | 7.2 | 7.3 | 7.2 | 7.2 | | 28 | 7.7 | 7.6 | 7.6 | 7.4 | 7.3 | 7.4 | 7.3 | 7.2 | 7.2 | 7.3 | 7.2 | 7.2 | | 29 | 7.7 | 7.6 | 7.7 | 7.4 | 7.3 | 7.4 | 7.3 | 7.2 | 7.2 | 7.3 | 7.2 | 7.3 | | 30 | 7.7 | 7.6 | 7.6 | 7.4 | 7.3 | 7.4 | 7.3 | 7.2 | 7.2 | 7.3 | 7.2 | 7.2 | | 31 | | | | 7.4 | 7.3 | 7.4 | 7.4 | 7.2 | 7.3 | | | | | MONTH | 7.8 | 7.6 | 7.7 | 7.7 | 7.3 | 7.5 | 7.4 | 7.2 | 7.3 | 7.4 | 7.2 | 7.3 | JAMES RIVER BASIN WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 | DAY | MAX | MIN | MEAN | |--|---|--|---|---|--|--|---|---|--|--|--|--| | | | OCTOBER | | N | OVEMBER | | D | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 14.7
14.7
14.7
14.7
14.8 | 14.4
14.3
14.3
14.3
14.4 | 14.6
14.5
14.5
14.5
14.6 | 14.1
13.9
13.8
13.5
13.4 | 13.8
13.6
13.5
13.2
13.1 | 13.9
13.8
13.6
13.4
13.2 | 9.1
9.0
9.0
9.0
8.8 | 8.9
8.8
8.8
8.8 | 8.9
8.9
8.9
8.6 |

 |

 |

 | | 6
7
8
9
10 | 14.9
14.9
14.8
14.8 | 14.5
14.5
14.5
14.5
14.6 | 14.7
14.7
14.7
14.6
14.7 | 13.4
13.3
13.2
13.0
12.6 | 13.0
13.1
12.9
12.6
12.2 | 13.2
13.2
13.1
12.9
12.4 | 8.6
8.4
8.4
8.3
8.3 | 8.3
8.3
8.2
8.1
8.1 | 8.4
8.4
8.3
8.2
8.2 |

6.0
5.9 |

5.8
5.5 |

5.9
5.7 | | 11
12
13
14
15 | 14.9
14.9
14.9
15.0
14.8 | 14.6 | 14.7
14.7
14.7
14.7
14.6 | 12.2
12.0
11.7
11.6
11.4 | 12.0
11.7
11.5
11.4
11.1 | 12.1
11.8
11.6
11.5
11.3 | 8.2
8.1
7.9
7.9
7.7 | 8.0
7.9
7.7
7.6
7.5 | 8.1
8.0
7.8
7.7
7.6 | 5.7
6.0
6.1
6.3 | 5.4
5.5
5.8
6.1
6.1 | 5.5
5.7
5.9
6.1
6.2 | | 16
17
18
19
20 | 14.7
14.7
14.7
14.7 | 14.3
14.4
14.4
14.4
14.3 | 14.5
14.5
14.5
14.5
14.5 | 11.4
11.2
11.1
10.7
10.5 | 11.0
11.0
10.7
10.5
10.3 | 11.2
11.1
10.9
10.6
10.4 | 7.5
7.4
7.3
7.2
7.3 | 7.3
7.2
7.1
7.0
7.0 | 7.4
7.3
7.2
7.1
7.2 | 6.3
6.3
6.0
5.7
5.8 | 6.1
5.8
5.7
5.6
5.6 | 6.2
6.0
5.9
5.7
5.7 | | 21
22
23
24
25 | 14.6
14.4
14.3
14.3 | 14.3
14.1
14.0
14.1
14.2 | 14.4
14.3
14.2
14.2 | 10.3
10.2
10.0
9.6
9.2 | 10.1
9.9
9.6
9.2
9.1 | 10.2
10.1
9.8
9.3
9.1 | 7.1
 | 6.9 |
7.0
 | 5.7
5.9
5.9
5.6
5.5 | 5.6
5.6
5.5
5.5 | 5.7
5.7
5.7
5.5
5.4 | | 26
27
28
29
30
31 | 14.3
14.2
14.0
14.0
14.0 | 14.2
13.9
13.8
13.8
13.7
13.7 | 14.2
14.1
13.9
13.9
13.9 | 9.2
9.1
9.2
9.3
9.2 | 8.9
8.8
9.0
9.1 | 9.1
9.0
9.0
9.1
9.1 |

 |

 | | 5.4

 | 5.3

 | 5.4

 | | MONTH | 15.0 | 13.7 | 14.4 | 14.1 | 8.8 | 11.3 | | | | | | | | DAY | MAX | MIN | | | | | | | | | | | | | | MITIM | MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | | | | FEBRUARY | | MAX | MIN | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN | MEAN | | 1
2
3
4
5 | | | | 6.3
6.7
6.6
6.5 | | 5.9
6.2
6.3
6.3 | 8.9
10.0
8.6
9.6
9.9 | | 7.7
8.2
8.0
8.6
9.4 | 12.1
12.1
12.2
12.1
11.9 | | 11.7
11.8
11.7
11.8 | | 2
3
4 |

 | FEBRUARY

 |

 | 6.3
6.7
6.6
6.5 | MARCH 5.8 5.8 6.0 6.0 | 5.9
6.2
6.3
6.3 | 8.9
10.0
8.6
9.6 | APRIL
6.9
6.9
7.2
8.1 | 7.7
8.2
8.0
8.6 | 12.1
12.1
12.2
12.1 | MAY
11.2
11.6
11.3
11.3 | 11.7
11.8
11.7
11.8 | | 2
3
4
5
6
7
8
9 |

4.9
4.9
5.0 | FEBRUARY 4.7 4.8 4.8 |

4.8
4.8
4.9 | 6.3
6.7
6.6
6.5

6.5
6.2
6.2 | 5.8
5.8
6.0
6.0

6.2
6.0
6.1
6.1 | 5.9
6.2
6.3
6.3

6.3
6.1
6.1
6.1 | 8.9
10.0
8.6
9.6
9.9
9.3
11.5
11.2
10.3 | APRIL 6.9 6.9 7.2 8.1 9.1 8.4 7.9 8.2 8.1 | 7.7
8.2
8.0
8.6
9.4
8.8
8.7
9.0 | 12.1
12.1
12.2
12.1
11.9
12.1
12.5
12.5 | MAY 11.2 11.6 11.3 11.5 11.7 11.7 11.8 12.1 | 11.7
11.8
11.7
11.8
11.8
11.9
12.0
12.1
12.2 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 |

4.9
4.9
5.0
5.1 | FEBRUARY 4.7 4.8 4.8 4.9 4.9 |

4.8
4.8
4.9
5.0
5.0
5.0 | 6.3
6.7
6.6
6.5

6.5
6.2
6.2
6.8
6.8
6.8 | 5.8
5.8
6.0
6.0
6.0
6.1
6.1
5.7
5.8 | 5.9
6.2
6.3
6.3

6.3
6.1
6.4
6.3
6.9
5.9 | 8.9
10.0
8.6
9.6
9.9
9.3
11.5
11.2
10.3
9.3
9.5
9.4 | APRIL 6.9 6.9 7.2 8.1 9.1 8.4 7.9 8.2 8.1 7.9 9.0 8.9 8.8 8.8 | 7.7
8.2
8.0
8.6
9.4
8.8
8.7
9.1
8.7 | 12.1
12.2
12.1
11.9
12.1
12.5
12.5
12.5
12.5 | MAY 11.2 11.6 11.3 11.5 11.7 11.7 11.8 12.1 12.1 | 11.7
11.8
11.7
11.8
11.8
11.9
12.0
12.1
12.2
12.3 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 |

4.9
4.9
5.0
5.1
5.0
5.1
5.0
5.1
5.0 | FEBRUARY 4.7 4.8 4.8 4.9 4.9 4.9 4.9 4.9 4.9 4.9 |

4.8
4.9
5.0
5.0
5.0
5.0
5.1
5.4
5.1 | 6.3
6.7
6.6
6.5

6.5
6.2
6.8
6.8
6.1
6.0
5.9
6.0
6.1
6.1
6.1
6.1 | MARCH 5.8 5.8 6.0 6.0 6.1 6.1 5.7 5.9 5.8 5.8 5.9 6.0 5.9 | 5.9
6.2
6.3
6.3
6.1
6.1
6.4
6.3
6.0
5.9
6.0
6.0
6.0
6.1 | 8.9
10.0
8.6
9.6
9.9
9.3
11.5
11.2
10.3
9.3
9.5
9.4
11.8
10.0 | APRIL 6.9 6.9 7.2 8.1 9.1 8.4 7.9 8.2 8.1 7.9 9.0 8.9 8.8 8.4 8.9 9.1 9.1 10.1 | 7.7
8.2
8.0
8.6
9.4
8.8
8.7
9.1
8.7
9.1
9.3
9.1
9.3
9.4
9.5
10.0
10.0 | 12.1
12.2
12.1
11.9
12.1
12.5
12.5
12.5
12.5
12.5
12.5
13.1
13.1
13.1
13.5
13.5 | MAY 11.2 11.6 11.3 11.3 11.5 11.7 11.7 11.8 12.1 12.1 12.1 12.3 12.3 12.4 12.5 | 11.7
11.8
11.7
11.8
11.8
11.9
12.0
12.1
12.2
12.3

12.5
12.8
12.7
13.0
13.0
13.3
13.2
13.4 | |
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 |

4.9
4.9
5.0
5.1
5.0
5.1
5.0
5.1
5.0
5.1
5.6
5.6
5.1
5.2
5.3 | FEBRUARY 4.7 4.8 4.9 4.9 4.9 4.9 4.9 5.3 4.8 4.9 5.1 5.0 5.1 |

4.8
4.9
5.0
5.0
5.0
5.0
5.1
5.1
5.1
5.1
5.2 | 6.3
6.7
6.6
6.5

6.5
6.2
6.8
6.8
6.1
6.0
5.9
6.1
6.1
6.1
6.1
6.2
6.6 | MARCH 5.8 5.8 6.0 6.0 6.1 5.7 5.9 5.8 5.9 6.0 6.3 5.8 6.1 6.1 | 5.9
6.2
6.3
6.3
6.1
6.1
6.4
6.3
6.0
5.9
6.0
6.0
6.1
6.3
6.3
6.3
6.3
6.1
6.2
6.3 | 8.9
10.0
8.6
9.6
9.9
9.3
11.5
11.2
10.3
9.3
9.5
9.4
11.8
10.0
9.9
11.3
10.4
10.4 | APRIL 6.9 6.9 7.2 8.1 9.1 8.4 7.9 8.2 8.1 7.9 9.0 8.9 8.8 8.4 8.9 9.1 7.5 7.6 10.4 10.4 | 7.7
8.2
8.0
8.6
9.4
8.8
8.7
9.1
8.7
9.3
9.1
9.3
9.4
9.5
10.0
10.2
8.8
7.8
 | 12.1
12.2
12.1
11.9
12.1
12.5
12.5
12.5
12.5
13.1
13.1
13.1
13.5
13.5
14.1
14.7 | MAY 11.2 11.6 11.3 11.3 11.5 11.7 11.7 11.8 12.1 12.1 12.3 12.4 12.5 12.7 12.8 12.8 12.8 12.8 12.9 | 11.7
11.8
11.7
11.8
11.8
11.9
12.0
12.1
12.2
12.3

12.5
12.8
12.7
13.0
13.0
13.3
13.2
13.4
13.6 | 253 WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 | DAY | MAX | MIN | MEAN | |-------|------|------|------|------|------|------|------|--------|------|------|----------|------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1 | 15.7 | 13.5 | 14.6 | 15.2 | 14.2 | 14.7 | 15.2 | 14.7 | 14.9 | 15.5 | 14.5 | 15.0 | | 2 | 14.7 | 13.9 | 14.2 | 14.9 | 14.3 | 14.6 | 15.1 | 14.6 | 14.8 | 14.9 | 14.5 | 14.7 | | 3 | 15.4 | 13.6 | 14.5 | 15.1 | 14.3 | 14.6 | 15.2 | 14.6 | 14.9 | 14.8 | 14.5 | 14.6 | | 4 | 14.6 | 14.0 | 14.2 | 15.1 | 14.5 | 14.6 | 15.2 | 14.6 | 14.9 | 14.9 | 14.4 | 14.6 | | 5 | 14.4 | 14.0 | 14.2 | 15.1 | 14.6 | 14.8 | 15.1 | 14.3 | 14.6 | 14.9 | 14.4 | 14.6 | | 6 | 14.6 | 14.0 | 14.3 | 15.1 | 14.5 | 14.8 | 14.8 | 14.4 | 14.5 | 14.8 | 14.4 | 14.5 | | 7 | 14.4 | 13.8 | 14.1 | 15.2 | 14.5 | 14.7 | 15.0 | 14.5 | 14.6 | 14.8 | 14.4 | 14.6 | | 8 | 14.5 | 13.5 | 14.0 | 15.0 | 14.6 | 14.8 | 14.8 | 14.5 | 14.6 | 14.7 | 14.4 | 14.5 | | 9 | 14.2 | 13.6 | 13.9 | 15.2 | 14.6 | 14.8 | 15.1 | 14.6 | 14.8 | 14.5 | 14.2 | 14.3 | | 10 | 14.4 | 13.6 | 14.0 | 15.0 | 14.4 | 14.6 | 14.9 | 14.7 | 14.8 | 14.5 | 14.1 | 14.2 | | 11 | 14.3 | 13.9 | 14.1 | 14.9 | 14.3 | 14.6 | 15.1 | 14.7 | 14.9 | 14.5 | 14.1 | 14.2 | | 12 | 14.6 | 13.9 | 14.2 | 14.8 | 14.3 | 14.5 | 15.2 | 14.8 | 14.9 | 14.4 | 14.1 | 14.2 | | 13 | 15.0 | 13.9 | 14.5 | 14.9 | 14.3 | 14.5 | 15.2 | 14.9 | 15.0 | 14.5 | 14.1 | 14.2 | | 14 | 15.0 | 14.2 | 14.6 | 14.9 | 14.3 | 14.5 | 15.1 | 14.6 | 14.8 | 14.5 | 14.1 | 14.2 | | 15 | 15.0 | 14.2 | 14.5 | 14.9 | 14.5 | 14.7 | 14.8 | 14.6 | 14.7 | 14.6 | 14.2 | 14.3 | | 16 | 15.1 | 13.8 | 14.4 | 15.1 | 14.6 | 14.7 | 14.7 | 14.6 | 14.7 | 14.6 | 14.3 | 14.4 | | 17 | 15.1 | 14.1 | 14.6 | 15.0 | 14.6 | 14.7 | 14.9 | 14.6 | 14.7 | 14.6 | 14.3 | 14.4 | | 18 | 15.3 | 14.3 | 14.7 | 14.9 | 14.4 | 14.6 | 15.1 | 14.7 | 14.8 | 14.8 | 14.4 | 14.6 | | 19 | 14.7 | 13.6 | 14.2 | 15.0 | 14.5 | 14.7 | 15.2 | 14.8 | 14.9 | 14.8 | 14.5 | 14.6 | | 20 | 14.5 | 13.4 | 13.9 | 14.9 | 14.6 | 14.7 | 15.2 | 14.7 | 14.9 | 14.9 | 14.5 | 14.6 | | 21 | 14.3 | 13.6 | 13.9 | 15.2 | 14.6 | 14.8 | 15.1 | 14.6 | 14.8 | 14.9 | 14.6 | 14.7 | | 22 | 14.3 | 13.6 | 13.9 | 15.1 | 14.6 | 14.8 | 15.0 | 14.6 | 14.7 | 14.9 | 14.6 | 14.7 | | 23 | 14.6 | 13.8 | 14.1 | 14.8 | 14.4 | 14.6 | 15.1 | 14.7 | 14.9 | 14.9 | 14.5 | 14.7 | | 24 | 14.5 | 13.8 | 14.1 | 14.9 | 14.5 | 14.7 | 15.2 | 14.8 | 15.0 | 14.7 | 14.4 | 14.5 | | 25 | 14.7 | 13.8 | 14.2 | 15.0 | 14.6 | 14.7 | 15.3 | 14.7 | 14.9 | 14.8 | 14.5 | 14.6 | | 26 | 15.0 | 14.2 | 14.5 | 15.0 | 14.6 | 14.7 | 15.2 | 14.7 | 14.9 | 14.8 | 14.6 | 14.7 | | 27 | 15.1 | 14.1 | 14.6 | 14.9 | 14.5 | 14.6 | 15.2 | 14.8 | 15.0 | 15.0 | 14.6 | 14.8 | | 28 | 15.0 | 14.2 | 14.6 | 15.0 | 14.5 | 14.7 | 15.4 | 14.9 | 15.1 | 15.0 | 14.6 | 14.8 | | 29 | 15.0 | 14.3 | 14.6 | 15.0 | 14.6 | 14.8 | 15.5 | 15.0 | 15.3 | 14.9 | 14.6 | 14.8 | | 30 | 15.3 | 14.3 | 14.7 | 15.2 | 14.7 | 14.9 | 15.4 | 15.0 | 15.2 | 14.9 | 14.6 | 14.7 | | 31 | | | | 15.1 | 14.8 | 14.9 | 15.4 | 15.0 | 15.2 | | | | | MONTH | 15.7 | 13.4 | 14.3 | 15.2 | 14.2 | 14.7 | 15.5 | 14.3 | 14.9 | 15.5 | 14.1 | 14.5 | JAMES RIVER BASIN OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 | DAY | MAX | MIN
OCTOBER | MEAN | XAM | MIN
IOVEMBER | MEAN | MAX | MIN
ECEMBER | MEAN | MAX | MIN
JANUARY | MEAN | |---|--|--|--|--|---|--|--|---|--|---|---|---| | 1
2
3
4
5 | 8.6
8.8
8.9
8.8 | 8.4
8.5
8.5
8.4
8.4 | 8.5
8.6
8.7
8.6
8.5 | 9.0
8.9
9.1
9.3
9.3 | 8.9
8.8
8.9
9.1
9.1 | 9.0
8.9
9.0
9.2
9.2 | 10.2
10.4
10.4
10.2
10.6 | 9.8
10.1
10.0
9.9
10.0 | 10.0
10.2
10.2
10.0
10.2 |

 |

 | | | 6
7
8
9
10 | 8.7
8.7
8.8
8.9
8.8 | 8.4
8.4
8.5
8.5
8.6 | 8.5
8.6
8.6
8.7 | 9.3
9.3
9.1
9.2
9.5 | 9.1
9.0
8.9
8.9
9.1 | 9.2
9.1
9.0
9.1
9.3 | 10.6
10.9
10.9
10.9 | 10.3
10.4
10.6
10.6 | 10.4
10.6
10.7
10.7 |

11.5
11.5 |

11.1
11.2 |

11.2
11.3 | | 11
12
13
14
15 | 8.9
8.9
8.9
9.0
8.9 | 8.6
8.6
8.7
8.7
8.8 | 8.7
8.8
8.8
8.8 | 9.5
9.7
9.7
9.6
9.7 | 9.2
9.3
9.4
9.3
9.4 | 9.3
9.5
9.5
9.4
9.5 | 11.1
11.2
11.1
11.2
11.4 | 10.6
10.8
10.8
10.9
11.1 | 10.8
10.9
11.0
11.0 | 11.6
11.5
11.2
11.1
10.9 | 11.2
11.1
10.9
10.8
10.6 | 11.4
11.2
11.1
10.9
10.8 | | 16
17
18
19
20 | 8.9
9.0
8.9
8.8
8.8 | 8.7
8.7
8.7
8.6
8.6 | 8.8
8.8
8.7
8.7 | 9.9
9.9
9.8
9.9
10.0 | 9.5
9.6
9.6
9.6
9.7 | 9.6
9.7
9.7
9.7
9.8 | 11.5
11.5
11.6
11.8
11.8 | 11.2
11.2
11.3
11.4
11.4 | 11.3
11.3
11.4
11.6
11.5 | 10.9
11.4
11.7
11.7 | 10.6
10.6
11.3
11.5
11.4 | 10.7
11.0
11.6
11.7
11.6 | | 21
22
23
24
25 | 8.9
8.9
8.9
8.8
8.9 | 8.7
8.7
8.7
8.7
8.6 | 8.8
8.8
8.7
8.7 | 10.1
10.3
10.5
10.5 | 9.8
9.8
9.9
10.1
10.2 | 9.9
9.9
10.1
10.3
10.3 |

 |

 |

 | 11.7
11.5
11.6
11.7
11.9 | 11.4
10.8
10.7
11.5
11.6 | 11.5
11.3
11.2
11.5
11.7 | | 26
27
28
29
30
31 | 8.8
8.9
9.0
9.1 | 8.6
8.7
8.8
8.9
9.0 | 8.7
8.7
8.8
8.9
9.0 | 10.5
10.5
10.6
10.5
10.2 | 10.1
10.2
10.2
10.0
9.8 | 10.3
10.3
10.3
10.2
10.0 |

 | |

 | 12.2 | 11.6

 | 11.8 | | MONTH | 9.1 | 8.4 | 8.7 | 10.6 | 8.8 | 9.6 | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | DAY 1 2 3 4 5 | | | | MAX 12.1 11.9 12.1 11.9 | | MEAN 11.8 11.6 11.5 | MAX
11.6
11.8
11.6
11.4 | | MEAN 11.3 11.3 11.3 11.1 11.2 | MAX 10.1 10.1 9.9 10.1 10.3 | | 9.8
9.5
9.6
9.7 | | 1
2
3
4 | | FEBRUARY |

 | 12.1
11.9
12.1
11.9 | MARCH
11.5
11.1
11.1
11.3 | 11.8
11.6
11.5
11.6 | 11.6
11.8
11.6
11.4 | 11.0
10.6
11.1
10.9 | 11.3
11.3
11.3
11.1 | 10.1
10.1
9.9
10.1 | MAY
9.3
9.1
9.2
9.4 | 9.8
9.5
9.6
9.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 12.9
12.9
13.0
12.5
12.5
12.7 | FEBRUARY 12.4 12.8 12.4 |

12.7
12.9
12.6
12.5 | 12.1
11.9
12.1
11.9

11.4
11.7
11.7
12.0 | MARCH 11.5 11.1 11.3 11.1 11.0 11.0 11.0 11.1 | 11.8
11.6
11.5
11.6

11.2
11.4
11.3
11.3 | 11.6
11.8
11.6
11.4
11.4
11.7
11.9
11.7
11.2
12.1 |
APRIL 11.0 10.6 11.1 10.9 10.9 11.3 10.7 10.6 10.7 11.1 | 11.3
11.3
11.1
11.2
11.5
11.5
11.2
10.9
11.4 | 10.1
10.1
9.9
10.1
10.3
10.0
10.0 | MAY 9.3 9.1 9.2 9.4 9.8 9.9 9.6 9.5 | 9.8
9.5
9.6
9.7
10.0
10.0
9.8
9.7
9.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |

12.9
13.0
12.6
12.5
12.7 | FEBRUARY 12.4 12.8 12.4 12.2 12.4 12.5 12.6 11.5 11.4 11.5 | 12.7
12.7
12.6
12.5
12.4
12.5
12.6
12.7 | 12.1
11.9
12.1
11.9

11.4
11.7
12.0
12.8 | MARCH 11.5 11.1 11.1 11.3 11.1 11.0 11.0 11.0 11.1 12.4 11.7 11.6 11.4 11.4 11.2 11.1 | 11.8
11.6
11.5
11.6

11.2
11.4
11.3
11.3
12.1 | 11.6
11.8
11.6
11.4
11.4
11.7
11.9
11.7
11.2
12.1
11.3
11.4
11.3
11.1
11.6 | APRIL 11.0 10.6 11.1 10.9 10.7 11.3 10.7 11.1 10.8 10.9 10.1 10.7 | 11.3
11.3
11.1
11.2
11.5
11.5
11.2
10.9
11.4 | 10.1
10.1
9.9
10.1
10.3
10.0
10.5
10.1
10.0 | MAY 9.3 9.1 9.2 9.4 9.8 9.9 9.6 9.5 9.6 9.5 9.4 9.4 9.3 | 9.8
9.5
9.6
9.7
10.0
10.0
9.8
9.7
9.8
9.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 |

12.9
13.0
12.6
12.5
12.7
12.8
12.7
11.8
14.3
14.3
14.7 | FEBRUARY 12.4 12.8 12.4 12.4 12.2 12.4 12.5 12.6 11.5 14.1 14.4 13.8 12.6 12.4 | 12.7
12.7
12.6
12.5
12.4
12.5
12.6
12.7
12.6
12.7 | 12.1
11.9
12.1
11.9

11.4
11.7
12.0
12.8
13.1
13.1
12.5
12.4 | MARCH 11.5 11.1 11.1 11.3 11.1 11.0 11.0 11.0 11.1 12.4 11.7 11.7 11.6 11.4 11.4 11.2 11.1 11.0 10.4 | 11.8
11.6
11.5
11.6

11.2
11.3
11.3
12.1
12.7
12.3
11.9
11.8
11.8
11.7
11.5
11.5 | 11.6
11.8
11.6
11.4
11.7
11.9
11.7
11.2
12.1
11.3
11.4
11.3
11.1
11.6
11.0
10.8
10.6
10.3
12.9 | APRIL 11.0 10.6 11.1 10.9 10.9 11.3 10.7 10.6 10.7 11.1 10.8 10.9 10.9 10.1 10.7 10.1 10.7 10.7 9.9 10.1 10.1 10.1 | 11.3
11.3
11.1
11.2
11.5
11.5
11.5
11.2
10.9
11.4
11.1
11.0
10.8
10.9
10.8
10.5
10.4
10.2
11.4 | 10.1
10.1
9.9
10.1
10.3
10.0
10.5
10.1
10.0

9.8
9.7
10.1
9.7
9.7
9.6
10.5
10.6 | MAY 9.3 9.1 9.2 9.4 9.8 9.9 9.6 9.5 9.6 9.5 9.4 9.3 9.3 9.1 9.7 9.3 9.3 9.3 | 9.8
9.5
9.6
9.7
10.0
10.0
9.8
9.7
9.8
9.8
9.5
9.6
9.5
9.6
9.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 |

12.9
13.0
12.6
12.5
12.7
12.7
12.8
12.7
11.8
14.6
14.7 | FEBRUARY 12.4 12.8 12.4 12.4 12.2 12.4 12.5 12.6 11.5 11.4 11.5 14.1 14.4 13.8 12.6 12.4 12.3 | 12.7
12.7
12.6
12.5
12.4
12.4
12.5
12.6
12.7
12.8
14.4
14.5
14.4
14.5 | 12.1
11.9
12.1
11.9

11.4
11.7
12.0
12.8
13.1
12.5
12.4
12.4
12.5
12.1
11.9
12.1
12.1
12.1
12.1
12.1
12.1 | MARCH 11.5 11.1 11.1 11.3 11.1 11.0 11.0 11.1 12.4 11.7 11.7 11.6 11.4 11.2 11.1 11.0 10.4 11.2 11.1 11.0 10.4 11.2 11.1 11.0 10.4 | 11.8
11.6
11.5
11.6

11.2
11.4
11.3
12.1
12.7
12.3
11.9
11.8
11.8
11.7
11.5
11.3
11.4
11.0 | 11.6
11.8
11.6
11.4
11.7
11.9
11.7
11.2
12.1
11.3
11.4
11.3
11.1
11.6
10.8
10.6
10.3
12.9 | APRIL 11.0 10.6 11.1 10.9 10.9 11.3 10.7 10.6 10.7 11.1 10.8 10.9 10.9 10.1 10.7 10.1 10.7 10.7 9.9 10.1 10.1 10.1 | 11.3
11.3
11.1
11.2
11.5
11.5
11.5
11.2
10.9
11.4
11.1
11.0
10.8
10.9
10.8
10.5
10.4
10.2
11.4 | 10.1
10.1
10.3
10.0
10.0
10.5
10.1
10.0

9.8
9.7
10.1
9.7
9.7
9.6
10.5
10.6
10.1 | MAY 9.3 9.1 9.2 9.4 9.8 9.9 9.6 9.5 9.6 9.5 9.4 9.3 9.3 9.1 9.7 9.3 9.3 9.3 | 9.8
9.5
9.7
10.0
10.0
9.8
9.7
9.8
9.8
9.5
9.6
9.5
9.4
9.4
9.9
9.9
9.9 | JAMES RIVER BASIN OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 02011800 JACKSON RIVER BELOW GATHRIGHT DAM, NEAR HOT SPRINGS, VA--Continued | DAY | MAX | MIN | MEAN | |-------|-----|------|------|-----|------|------|-----|--------|------|------|----------|------| | | | JUNE | | | JULY | | P | AUGUST | | 5 | SEPTEMBE | R | | 1 | 9.1 | 8.4 | 8.7 | 9.5 | 9.2 | 9.3 | 9.2 | 8.8 | 9.0 | 9.5 | 9.1 | 9.3 | | 2 | 9.0 | 8.5 | 8.7 | 9.5 | 9.2 | 9.3 | 9.3 | 8.9 | 9.1 | 9.4 | 9.1 | 9.2 | | 3 | 9.1 | 8.3 | 8.6 | 9.4 | 8.9 | 9.2 | 9.1 | 8.9 | 9.0 | 9.9 | 9.2 | 9.4 | | 4 | 8.8 | 8.3 | 8.6 | 9.2 | 8.8 | 9.0 | 9.3 | 8.9 | 9.0 | 9.8 | 9.2 | 9.4 | | 5 | 8.7 | 8.4 | 8.5 | 9.4 | 8.9 | 9.1 | 9.3 | 8.9 | 9.1 | 10.3 | 9.3 | 9.6 | | 6 | 8.8 | 8.3 | 8.5 | 9.5 | 8.9 | 9.1 | 9.2 | 9.0 | 9.1 | 10.1 | 9.3 | 9.6 | | 7 | 8.9 | 8.4 | 8.6 | 9.1 | 8.9 | 9.0 | 9.4 | 9.0 | 9.2 | 9.7 | 9.1 | 9.4 | | 8 | 8.9 | 8.4 | 8.7 | 9.0 | 8.7 | 8.9 | 9.3 | 9.0 | 9.1 | 9.6 | 9.2 | 9.4 | | 9 | 8.8 | 8.4 | 8.6 | 9.1 | 8.7 | 8.9 | 9.1 | 8.9 | 9.0 | 9.6 | 9.3 | 9.4 | | 10 | 8.8 | 8.4 | 8.6 | 9.0 | 8.8 | 8.9 | 9.1 | 8.9 | 9.0 | 9.7 | 9.3 | 9.5 | | 11 | 8.7 | 8.2 | 8.5 | 9.1 | 8.8 | 8.9 | 9.5 | 9.0 | 9.2 | 9.9 | 9.4 | 9.5 | | 12 | 8.4 | 8.1 | 8.2 | 9.6 | 8.7 | 8.9 | 9.5 | 9.1 | 9.3 | 9.7 | 9.4 | 9.5 | | 13 | 8.3 | 7.8 | 8.1 | 9.0 | 8.7 | 8.8 | 9.5 | 9.1 | 9.2 | 10.1 | 9.7 | 9.8 | | 14 | 8.1 | 7.8 | 8.0 | 9.0 | 8.7 | 8.8 | 9.5 | 9.2 | 9.3 | 10.1 | 9.6 | 9.8 | | 15 | 8.2 | 7.8 | 8.0 | 8.9 | 8.6 | 8.8 | 9.6 | 9.2 | 9.4 | 9.9 | 9.6 | 9.7 | | 16 | 8.2 | 7.9 | 8.1 | 8.9 | 8.6 | 8.7 | 9.6 | 9.3 | 9.4 | 9.9 | 9.5 | 9.7 | | 17 | 8.2 | 7.9 | 8.0 | 9.0 | 8.5 | 8.7 | 9.6 | 9.5 | 9.5 | 9.8 | 9.4 | 9.6 | | 18 | 8.3 | 7.8 | 8.1 | 9.1 | 8.6 | 8.8 | 9.8 | 9.5 | 9.6 | 9.6 | 9.1 | 9.4 | | 19 | 8.7 | 7.9 | 8.3 | 9.0 | 8.6 | 8.7 | 9.8 | 9.5 | 9.6 | 9.5 | 9.1 | 9.3 | | 20 | 8.7 | 8.1 | 8.5 | 8.9 | 8.6 | 8.7 | 9.9 | 9.6 | 9.7 | 9.4 | 9.0 | 9.2 | | 21 | 8.7 | 8.1 | 8.5 | 9.0 | 8.6 | 8.8 | 9.9 | 9.6 | 9.8 | 9.4 | 9.0 | 9.1 | | 22 | 8.9 | 8.4 | 8.6 | 9.0 | 8.6 | 8.8 | 9.8 | 9.6 | 9.7 | 9.7 | 9.0 | 9.1 | | 23 | 8.9 | 8.4 | 8.6 | 8.9 | 8.7 | 8.8 | 9.9 | 9.5 | 9.7 | 9.8 | 9.1 | 9.3 | | 24 | 8.9 | 8.5 | 8.6 | 9.0 | 8.7 | 8.8 | 9.9 | 9.5 | 9.7 | 9.9 | 9.2 | 9.4 | | 25 | 8.8 | 8.3 | 8.5 | 9.0 | 8.7 | 8.9 | 9.9 | 9.5 | 9.7 | 9.5 | 9.2 | 9.3 | | 26 | 8.6 | 8.3 | 8.4 | 9.0 | 8.7 | 8.9 | 9.6 | 9.4 | 9.5 | 9.7 | 9.2 | 9.3 | | 27 | 8.8 | 8.3 | 8.6 | 9.1 | 8.6 | 8.9 | 9.7 | 9.4 | 9.6 | 9.5 | 9.1 | 9.2 | | 28 | 8.9 | 8.4 | 8.7 | 9.0 | 8.6 | 8.8 | 9.7 | 9.4 | 9.5 | 10.1 | 9.1 | 9.3 | | 29 | 9.6 | 8.6 | 9.0 | 9.0 | 8.6 | 8.9 | 9.5 | 9.2 | 9.4 | 9.5 | 9.3 | 9.4 | | 30 | 9.5 | 9.1 | 9.3 | 9.0 | 8.7 | 8.9 | 9.6 | 9.2 | 9.4 | 9.6 | 9.2 | 9.4 | | 31 | | | | 9.1 | 8.7 | 8.9 | 9.5 | 9.1 | 9.4 | | | | | MONTH | 9.6 | 7.8 | 8.5 | 9.6 | 8.5 | 8.9 | 9.9 | 8.8 | 9.4 | 10.3 | 9.0 | 9.4 | ### 02012800 JACKSON RIVER AT FILTRATION PLANT, AT COVINGTON, VA LOCATION.--Lat 37°48'39", long 79°59'19", Covington City, Hydrologic Unit 02080201, on left bank 50 ft upstream from Dry Run and 1.7 mi upstream from Dunlap Creek and bridge on U.S. Highway 60. DRAINAGE AREA. -- 439 mi². PERIOD OF DAILY RECORD.-WATER TEMPERATURE: June 1978 to current year. INSTRUMENTATION.--Water-temperature recorder since June 1978. REMARKS.--Some record in prior years fragmentary due to instrument malfunction. Records represent water temperature at sensor within 0.5°C. U.S. Army Corps of Engineers satellite water-temperature telemeter at station. Temperature at the sensor was compared with the average for the river by temperature cross section on Oct. 1, 1991. A maximum variation of 0.5°C was found within the cross section. EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum recorded, 30.5°C, July 21, 1980; minimum recorded, 0.0°C on many days during winter periods. EXTREMES FOR CURRENT YEAR. -- WATER TEMPERATURE: Maximum recorded, 22.1°C, June 26; minimum, 1.9°C, Jan. 1. WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | MEAN | |-------|------|---------|------|------|---------|------|------|---------|------|------|---------|------| | | | OCTOBER | 2 | N | OVEMBER | | DI | ECEMBER | | | JANUARY | | | 1 | 16.2 | 14.8 | 15.7 | 14.1 | 12.6 | 13.3 | 10.3 | 8.1 | 9.5 | 2.9 | 1.9 | 2.4 | | 2 | 15.9 | 13.6 | 14.6 | 13.9 | 12.8 | 13.3 | 8.1 | 6.6 | 7.2 | 4.1 | 2.4 | 3.2 | | 3 | 16.2 | 13.5 | 14.7 | 12.8 | 11.2 | 11.8 | 7.6 | 6.3 | 6.9 | 5.1 | 3.7 | 4.3 | | 4 | 17.4 | 14.4 | 15.7 | 11.2 | 9.6 | 10.6 | 9.2 | 7.6 | 8.5 | 5.5 | 4.2 | 4.8 | | 5 | 18.5 | 15.8 | 16.9 | 10.4 | 9.0 | 9.5 | 8.7 | 6.6 | 7.9 | 6.1 | 4.8 | 5.4 | | 6 | 19.0 | 16.6 | 17.5 | 10.1 | 8.6 | 9.4 | 6.6 | 4.6 | 5.4 | 8.0 | 6.1 | 7.0 | | 7 | 18.3 | 16.2 | 17.1 | 11.1 | 9.9 | 10.6 | 4.9 | 4.3 | 4.6 | 9.4 | 8.0 | 8.6 | | 8 | 18.4 | 16.2 | 17.1 | 10.8 | 10.3 | 10.6 | 6.1 | 4.8 | 5.5 | 10.5 | 9.4 | 10.1 | | 9 | 18.5 | 16.7 | 17.3 | 11.2 | 10.4 | 10.7 | 6.5 | 6.0 | 6.3 | 10.3 | 8.3 | 9.4 | | 10 | 18.2 | 16.6 | 17.3 | 11.0 | 9.8 | 10.5 | 7.2 | 6.4 | 6.8 | 8.3 | 6.6 | 7.3 | | 11 | 17.6 | 15.5 | 16.4 | 10.5 | 9.8 | 10.2 | 7.4 | 6.8 | 7.1 | 7.0 | 5.9 | 6.5 | | 12 | 17.6 | 15.4 | 16.4 | 9.9 | 9.2 | 9.5 | 7.0 | 6.3 | 6.7 | 6.6 | 6.5 | 6.6 | | 13 | 18.0 | 15.9 | 16.8 | 9.2 | 8.1 | 8.7 | 6.3 | 5.3 | 5.8 | 7.7 | 6.6 | 6.9 | | 14 | 17.0 | 15.6 | 16.5 | 9.0 | 8.0 | 8.5 | 5.4 | 4.4 | 5.0 | 6.6 | 5.1 | 5.7 | | 15 | 16.5 | 14.6 | 15.4 | 8.8 | 7.8 | 8.6 | 4.7 | 3.6 | 4.2 | 5.6 | 5.2 | 5.4 | | 16 | 15.0 | 13.2 | 14.1 | 7.8 | 6.8 | 7.2 | 5.0 | 3.7 | 4.4 | 7.2 | 5.6 | 6.4 | | 17 | 13.7 | 12.8 | 13.2 | 7.6 | 6.1 | 6.8 | 5.3 | 4.0 | 4.7 | 7.1 | 6.3 | 6.8 | | 18 | 14.2 | 13.2 | 13.6 | 7.2 | 5.6 | 6.5 | 5.5 | 4.2 | 4.9 | 6.4 | 5.6 | 6.0 |
 19 | 15.6 | 13.9 | 14.6 | 7.3 | 5.4 | 6.4 | 5.8 | 4.5 | 5.1 | 6.4 | 5.4 | 5.9 | | 20 | 14.7 | 12.9 | 13.8 | 7.8 | 6.0 | 6.9 | 5.9 | 4.5 | 5.3 | 6.0 | 5.1 | 5.7 | | 21 | 13.3 | 12.1 | 12.6 | 7.7 | 7.2 | 7.5 | 6.3 | 5.5 | 5.9 | 5.8 | 4.3 | 5.1 | | 22 | 12.6 | 11.0 | 11.8 | 9.7 | 7.7 | 8.7 | 6.1 | 5.8 | 6.0 | 5.8 | 5.3 | 5.6 | | 23 | 11.7 | 9.6 | 10.8 | 10.3 | 9.1 | 9.7 | 6.7 | 5.7 | 6.2 | 6.2 | 5.5 | 5.8 | | 24 | 11.0 | 10.5 | 10.8 | 9.1 | 6.2 | 7.6 | 6.7 | 6.5 | 6.6 | 6.2 | 5.6 | 6.0 | | 25 | 14.0 | 10.8 | 12.3 | 6.2 | 4.7 | 5.6 | 7.1 | 6.4 | 6.8 | 6.2 | 5.1 | 5.6 | | 26 | 14.0 | 12.8 | 13.5 | 6.6 | 5.5 | 6.0 | 7.8 | 6.6 | 7.1 | 6.1 | 4.7 | 5.4 | | 27 | 12.8 | 11.3 | 12.5 | 8.0 | 6.3 | 7.1 | 6.6 | 4.8 | 5.5 | 5.4 | 4.1 | 5.0 | | 28 | 11.8 | 10.1 | 10.9 | 7.7 | 6.6 | 7.2 | 5.4 | 4.5 | 4.9 | 5.5 | 4.0 | 4.7 | | 29 | 12.0 | 9.8 | 10.9 | 9.5 | 7.4 | 8.6 | 4.7 | 2.8 | 3.9 | 6.4 | 4.8 | 5.5 | | 30 | 12.4 | 10.2 | 11.3 | 10.4 | 9.5 | 10.1 | 4.1 | 3.0 | 3.4 | 6.0 | 5.4 | 5.6 | | 31 | 12.8 | 10.9 | 11.9 | | | | 4.1 | 2.8 | 3.6 | 6.4 | 5.1 | 5.6 | | MONTH | 19.0 | 9.6 | 14.3 | 14.1 | 4.7 | 8.9 | 10.3 | 2.8 | 5.9 | 10.5 | 1.9 | 5.9 | JAMES RIVER BASIN # 02012800 JACKSON RIVER AT FILTRATION PLANT, AT COVINGTON, VA WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|--|--|--|--|--|--|--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 6.0
5.8
5.7
5.6
6.5 | 4.2
4.3
5.2
4.8
4.9 | 5.1
5.1
5.4
5.0
5.8 | 8.6
7.8
7.1
7.2
8.2 | 6.6
6.2
6.1
6.0
5.8 | 7.5
7.0
6.5
6.5
7.0 | 13.3
13.1
12.0
10.8
12.1 | 11.3
9.7
9.9
8.9
8.5 | 12.3
11.6
10.6
9.8
10.0 | 13.5
13.9
14.5
14.1
13.7 | 12.0
12.9
12.6
12.6
11.9 | 12.8
13.4
13.6
13.5
12.9 | | 6
7
8
9
10 | 5.9
6.1
6.4
6.5
6.8 | 4.8
5.0
5.1
4.6
4.8 | 5.2
5.5
5.6
5.4
5.7 | 8.4
8.1
7.7
8.7
7.6 | 5.4
6.8
7.2
7.6
5.6 | 7.1
7.5
7.5
8.2
6.7 | 12.0
12.4
14.2
13.7
11.2 | 8.6
8.1
8.3
10.7
9.5 | 10.1
10.0
10.7
11.8
10.1 | 15.3
13.5
14.2
14.7
15.3 | 11.9
12.2
12.4
12.6
12.5 | 13.4
12.7
13.1
13.6
13.7 | | 11
12
13
14
15 | 6.0
6.8
6.6
6.5 | 4.9
5.7
5.5
5.0
4.5 | 5.4
5.9
6.0
5.7
5.5 | 6.3
7.0
7.2
7.8
8.0 | 5.4
5.1
4.3
5.3
5.1 | 5.8
5.8
5.7
6.4
6.5 | 12.5
12.6
12.5
12.7
13.1 | 8.5
8.6
8.5
9.5
9.6 | 10.2
10.4
10.4
10.8
11.2 | 14.1
13.8
16.7
17.6
18.4 | 12.9
13.1
13.0
13.6
14.5 | 13.5
13.4
14.6
15.7
16.6 | | 16
17
18
19
20 | 5.6
7.5
7.8
5.9
6.1 | 4.9
5.5
5.8
5.7
5.6 | 5.3
6.6
7.0
5.8
5.8 | 6.9
6.7
7.3
9.8
8.5 | 5.5
5.6
6.1
6.7
6.8 | 6.0
6.2
6.7
8.0
7.5 | 12.0
13.3
12.8
10.8
12.5 | 9.9
10.2
10.5
10.5
8.6 | 11.0
11.7
11.3
10.7 | 18.2
19.7
19.3
19.6
20.1 | 15.9
16.4
15.9
16.2
17.4 | 17.3
18.1
17.8
18.0
18.7 | | 21
22
23
24
25 | 5.9
6.7
6.3
6.6
7.8 | 5.6
5.5
5.7
5.6
5.7 | 5.7
6.0
5.9
6.0
6.6 | 8.7
8.1
7.2
7.3
7.2 | 8.0
6.3
6.1
6.1 | 8.3
7.1
6.5
6.6
6.6 | 10.0
10.0
12.0
13.9
13.7 | 8.1
8.5
10.0
10.4
10.8 | 8.9
9.1
11.0
11.9
12.4 | 20.1
19.5
18.8
18.9
19.5 | 17.6
16.4
16.3
16.3
17.1 | 18.8
18.1
17.4
17.6
18.5 | | 26
27
28
29
30
31 | 7.9
7.4
8.6
 | 5.3
6.0
6.5
 | 6.5
6.7
7.4
 | 9.1
10.9
11.2
10.3
12.4
13.8 | 6.1
7.2
7.8
7.6
7.8
10.5 | 7.4
8.9
9.4
9.0
9.9 | 14.1
13.9
14.5
14.2
13.7 | 10.9
11.6
10.6
11.3
12.0 | 12.5
12.5
12.6
12.9
13.0 | 19.1
18.3
19.0
19.6
19.9
20.4 | 17.7
15.4
15.1
16.3
16.9
17.8 | 18.4
16.6
16.8
18.0
18.6
19.2 | | MONTH | 8.6 | 4.2 | 5.8 | 13.8 | 4.3 | 7.4 | 14.5 | 8.1 | 11.1 | 20.4 | 11.9 | 15.9 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | lR. | | DAY 1 2 3 4 5 | MAX
21.0
19.5
20.5
19.5
17.8 | | MEAN 19.7 18.7 19.0 18.4 16.6 | MAX 21.3 19.8 20.7 20.0 21.5 | | MEAN 19.5 19.1 19.2 18.7 19.3 | | | MEAN 19.1 19.1 19.3 19.6 | | | | | 1
2
3
4 | 21.0
19.5
20.5
19.5 | JUNE
18.6
17.3
17.4
17.7 | 19.7
18.7
19.0
18.4 | 21.3
19.8
20.7
20.0 | JULY 18.1 18.4 17.7 18.1 | 19.5
19.1
19.2
18.7 | 20.6
20.5
20.5
20.7 | 17.8
17.7
17.5
17.7 | 19.1
19.1
19.1
19.3 | 19.5
20.7
19.3
19.7 | 18.0
18.4
17.8
17.3 | 18.9
19.4
18.4
18.4 | | 1
2
3
4
5
6
7
8
9 | 21.0
19.5
20.5
19.5
17.8
16.9
16.0
17.2
16.9 | JUNE 18.6 17.3 17.4 17.7 16.1 15.6 14.5 13.8 15.3 | 19.7
18.7
19.0
18.4
16.6
16.1
15.3
15.6
16.2 | 21.3
19.8
20.7
20.0
21.5
21.0
21.0
20.8
21.2 | JULY 18.1 18.4 17.7 18.1 17.7 19.6 19.3 19.1 | 19.5
19.1
19.2
18.7
19.3
20.4
20.3
19.8
20.1 | 20.6
20.5
20.5
20.7
20.8
20.8
20.8
20.0 | AUGUST 17.8 17.7 17.5 17.7 18.1 18.4 18.3 17.8 17.3 | 19.1
19.1
19.3
19.6
19.7
19.6
18.7
18.5 | 19.5
20.7
19.3
19.7
20.6
19.9
19.9
19.4
16.9 | 18.0
18.4
17.8
17.3
18.1
17.5
18.0
16.9
15.4 | 18.9
19.4
18.4
18.4
19.2
18.8
19.0
18.6
16.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 21.0
19.5
20.5
19.5
17.8
16.9
16.0
17.2
16.9
19.2 | JUNE 18.6 17.3 17.4 17.7 16.1 15.6 14.5 13.8 15.3 14.9 17.8 17.0 17.8 | 19.7
18.7
19.0
18.4
16.6
16.1
15.3
15.6
16.2
16.8
18.2
18.8
18.3 | 21.3
19.8
20.7
20.0
21.5
21.0
21.0
20.8
21.2
21.2
20.9
20.4
20.6
20.5 | JULY 18.1 18.4 17.7 18.1 17.7 19.6 19.3 19.1 19.2 18.8 18.1 18.9 19.1 | 19.5
19.1
19.2
18.7
19.3
20.4
20.3
19.8
20.1
20.3 | 20.6
20.5
20.5
20.7
20.8
20.8
20.0
20.0
20.0
20.2
20.2
20.3
19.7
18.9 | AUGUST 17.8 17.7 17.5 17.7 18.1 18.4 18.3 17.8 17.3 18.3 17.7 18.7 18.7 18.7 | 19.1
19.1
19.3
19.6
19.7
19.6
18.7
18.5
19.2 | 19.5
20.7
19.3
19.7
20.6
19.9
19.9
19.4
16.9
17.7 | 18.0
18.4
17.8
17.3
18.1
17.5
18.0
16.9
15.4
14.7
15.7
16.6
16.7
17.2 | 18.9
19.4
18.4
18.4
19.2
18.8
19.0
18.6
16.2
16.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 21.0
19.5
20.5
19.5
17.8
16.9
16.0
17.2
16.9
19.2
18.7
19.4
19.9
19.0
19.9
21.0
21.0
20.1 | JUNE 18.6 17.3 17.4 17.7 16.1 15.6 14.5 13.8 15.3 14.9 17.8 17.0 17.8 17.5 17.8 | 19.7
18.7
19.0
18.4
16.6
16.1
15.3
16.2
16.8
18.2
18.8
18.3
18.8
19.7
19.0
19.2 |
21.3
19.8
20.7
20.0
21.5
21.0
21.0
21.2
21.2
20.9
20.4
20.5
19.9 | JULY 18.1 18.4 17.7 18.1 17.7 19.6 19.3 19.1 19.2 18.8 18.1 18.9 19.1 18.6 | 19.5
19.1
19.2
18.7
19.3
20.4
20.3
19.8
20.1
20.3
19.9
19.4
19.9
19.3
19.4
20.0
19.3 | 20.6
20.5
20.5
20.7
20.8
20.8
20.0
20.0
20.2
20.2
20.3
19.7
18.9
18.1
17.7
19.2
19.4
20.8 | AUGUST 17.8 17.7 17.5 17.7 18.1 18.4 18.3 17.8 17.3 18.7 18.7 18.7 18.7 17.3 17.2 17.0 17.9 18.3 | 19.1
19.1
19.3
19.6
19.7
19.6
18.7
18.5
19.2
18.9
19.6
17.1
18.4
17.6 | 19.5
20.7
19.3
19.7
20.6
19.9
19.9
19.4
16.9
17.7
18.1
19.2
19.3
19.8 | 18.0
18.4
17.8
17.3
18.1
17.5
18.0
16.9
15.4
14.7
15.7
16.6
16.7
17.2
17.5 | 18.9
19.4
18.4
18.4
19.2
18.8
19.0
18.6
16.2
16.0
16.9
17.7
17.8
18.2
18.6
18.5
18.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 21.0
19.5
20.5
19.5
17.8
16.9
16.0
17.2
16.9
19.2
18.7
19.9
21.0
19.9
21.0
20.0
20.1
21.0 | JUNE 18.6 17.3 17.4 17.7 16.1 15.6 14.5 13.8 15.3 14.9 17.8 17.8 17.5 17.8 18.4 18.3 17.7 18.5 17.7 | 19.7
18.7
19.0
18.4
16.6
16.1
15.3
16.2
16.8
18.2
18.8
18.3
18.8
19.7
19.0
19.2
19.4
19.2 | 21.3
19.8
20.7
20.0
21.5
21.0
21.0
21.2
21.2
20.9
20.4
20.5
19.9
20.5
20.8
20.1
20.5
20.8
20.5
20.8
20.5
20.8
20.5
20.6
20.5
20.8
20.5
20.6
20.5
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6 | JULY 18.1 18.4 17.7 18.1 17.7 19.6 19.3 19.1 19.2 18.8 18.1 18.9 19.1 18.6 18.3 19.0 18.2 19.0 18.2 19.2 | 19.5
19.1
19.2
18.7
19.3
20.4
20.3
19.8
20.1
20.3
19.9
19.4
20.0
19.3
19.9
19.3
19.6 | 20.6
20.5
20.5
20.7
20.8
20.8
20.0
20.0
20.2
20.2
20.2
20.3
19.7
18.9
18.1
17.7
19.2
19.4
20.8
20.0
20.0 | AUGUST 17.8 17.7 18.1 18.4 18.3 17.8 17.3 18.3 17.7 18.7 18.7 18.7 18.7 17.0 17.9 18.3 17.4 | 19.1
19.1
19.3
19.6
19.7
19.6
18.7
18.5
19.2
18.9
19.1
18.4
17.6
17.3
17.9
18.7
19.4
18.8 | 19.5
20.7
19.3
19.7
20.6
19.9
19.4
16.9
17.7
18.1
19.2
19.3
19.8
19.6
19.1
19.7
19.8 | SEPTEMBE 18.0 18.4 17.8 17.3 18.1 17.5 18.0 16.9 15.4 14.7 15.7 16.6 16.7 17.2 17.5 18.0 18.0 17.9 18.3 17.9 17.6 17.4 16.9 17.4 16.9 15.1 | 18.9
19.4
18.4
19.2
18.8
19.0
18.6
16.2
16.0
16.9
17.7
17.8
18.2
18.6
18.5
18.6
18.5
18.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
20
20
20
20
20
20
20
20
20
20
20
20 | 21.0
19.5
20.5
19.5
17.8
16.9
16.0
17.2
16.9
19.2
18.7
19.4
19.9
21.0
19.9
21.0
20.1
21.0
20.3
21.1
21.0
20.3
21.1
21.5 | JUNE 18.6 17.3 17.4 17.7 16.1 15.6 14.5 13.8 15.3 14.9 17.8 17.0 17.8 17.5 17.8 18.4 18.3 17.7 18.5 17.7 18.5 19.0 19.0 19.8 19.0 | 19.7
18.7
19.0
18.4
16.6
16.1
15.3
16.2
16.8
18.2
18.0
18.8
19.7
19.0
19.2
19.3
20.0
20.1
20.3
20.3
19.7
19.8 | 21.3
19.8
20.7
20.0
21.5
21.0
21.0
21.2
21.2
20.9
20.4
20.5
19.9
20.5
20.8
20.1
20.9
20.4
20.5
20.9
20.4
20.9
20.4
20.9
20.4
20.9
20.8
20.9
20.9
20.8
20.9
20.8
20.9
20.8
20.9
20.8
20.9
20.8
20.8
20.8
20.8
20.8
20.8
20.8
20.8 | JULY 18.1 18.4 17.7 18.1 17.7 19.6 19.3 19.1 19.2 18.8 18.1 18.9 19.1 18.6 18.3 19.0 18.2 19.0 18.2 19.2 19.2 19.0 18.6 19.7 18.6 18.3 | 19.5 19.1 19.2 18.7 19.3 20.4 20.3 19.8 20.1 20.3 19.9 19.4 19.8 19.9 19.3 19.4 20.0 19.3 19.6 19.6 19.1 19.3 18.2 19.0 19.8 20.0 | 20.6
20.5
20.5
20.7
20.8
20.8
20.0
20.0
20.2
20.2
20.3
19.7
18.9
18.1
17.7
19.2
19.4
20.8
20.0
20.6
20.6
21.1
21.1
21.3
20.8
21.3
20.8 | AUGUST 17.8 17.7 18.1 18.4 18.3 17.3 18.3 17.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 | 19.1
19.1
19.3
19.6
19.7
19.6
18.7
18.5
19.2
18.9
19.6
19.1
17.6
17.3
17.9
18.7
19.4
18.8
19.5
19.7
19.7
19.9
20.0 | 19.5
20.7
19.3
19.7
20.6
19.9
19.9
19.4
16.9
17.7
18.1
19.2
19.0
19.3
19.8
19.6
19.1
19.7
19.8
19.7
19.7
19.8 | SEPTEMBE 18.0 18.4 17.8 17.3 18.1 17.5 18.0 16.9 15.4 14.7 15.7 16.6 16.7 17.2 17.5 18.0 17.9 18.0 17.9 17.6 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 16.9 17.4 | 18.9
19.4
18.4
18.4
19.2
18.8
19.0
18.6
16.2
16.0
16.9
17.7
17.8
18.2
18.6
18.5
18.6
18.5
18.6
18.6
17.9
17.6
17.9
17.6
18.4
18.4
19.2 | ### 02013000 DUNLAP CREEK NEAR COVINGTON, VA LOCATION.--Lat 37°48'10", long 80°02'50", Alleghany County, Hydrologic Unit 02080201, on right bank 20 ft downstream from bridge on U.S. Highway 60, 2.2 mi downstream from Ogle Creek, and 3.0 mi west of Covington. DRAINAGE AREA. -- 164 mi². PERIOD OF RECORD.--October 1928 to current year. Monthly discharge only for some periods, published in WSP 1303. REVISED RECORDS.--WSP 972: 1929-30, 1932-34, 1942. WSP 1303: 1929-35(M), 1937-38(M), 1941-48(M). WSP 2104: Drainage area. WDR VA-74-1: 1969(M), 1972, 1973(P). GAGE.--Water-stage recorder. Datum of gage is 1,294.70 ft above sea level. Prior to Dec. 8, 1949, nonrecording gage at same site and datum. REMARKS.--Records good except those for period of doubtful gage-height record Sept. 8-30, which is fair. Occasional diurnal fluctuation caused by dam 7.9 mi upstream from station. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. Maximum discharge, 27,400 ft³/s, from rating curve extended above 4,500 ft³/s on basis of step-backwater computations and contracted-opening measurement at gage height 15.65 ft. Minimum gage height, 0.69 ft, June 6, July 14, 1969. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1913 reached a stage of 18 ft, from information by local residents. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1100 | 5,000 | 8.27 | Apr. 17 | 1330 | 2,380 | 5.76 | | Feb. 4 | 2100 | 3,090 | 6.49 | Apr. 20 | 0030 | *5,480 | *8.62 | | Feb. 17 | 2330 | 5,240 | 8.45 | May 8 | 2330 | 2,130 | 5.48 | | Mar. 19 | 0700 | 2,230 | 5.59 | May 27 | 1730 | 2,350 | 5.72 | | Mar. 21 | 0800 | 4.820 | 8.14 | | | , | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 15 ft³/s, Oct. 6, 7, 8-9, gage height, 1.33 ft. | | | | | | D | AILY MEAN | VALUES | | | | | | |---------|----------|----------|----------|------------|-------------|------------|------------|------------|------------|----------|----------|----------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 17 | 31 | 110 | 43 | 462 | 329 | 159 | 189 | 165 | 57 | 27 | 21 | | 2 | 16 | 41 | 91 | 41 | 380 | 271 | 152 | 433 | 138 | 52 | 25 | 20 | | 3
4 | 16
18 | 48
42 | 61
53 | 67 | 342
1640 | 228
191 | 139
272 | 415
753 | 118
108 | 50
49 | 23
22 | 19
19 | | 5 | 16 | 36 | 49 | 141
269 | 1870 | 163 | 461 | 1270 | 99 | 49 | 22 | 20 | | 3 | 10 | 30 | 49 | 209 | 1070 | 103 | 401 | 1270 | 99 | 43 | 22 | 20 | | 6 | 16 | 32 | 43 | 339 | 1480 | 140 | 355 | 770 | 94 | 48 | 21 | 20 | | 7 | 15 | 31 | 38 | 297 | 1110 | 125 | 279 | 491 | 84 | 46 | 21 | 21 | | 8 | 15 | 38 | 33 | 2870 | 784 | 133 | 237 | 1180 | 77 | 53 | 25 | e28 | | 9
10 | 16 | 49 | 31 | 845 | 669
592 | 415
536 | 499 | 1400 | 72 | 70
55 | 30 | e26 | | 10 | 16 | 47 | 32 | 415 | 592 | 536 | 746 | 692 | 72 | 55 | 35 | e22 | | 11 | 16 | 39 | 50 | 265 | 594 | 365 | 505 | 844 | 71 | 49 | 45 | e21 | | 12 | 17 | 34 | 60 | 197 | 734 | 280 | 388 | 641 | 70 | 48 | 36 | e21 | | 13 | 16 | 31 | 51 | 171 | 779 | 227 | 311 | 441 | 74 | 47 | 31 | e21 | | 14 | 16 | 32 | 43 | 156 | 572 | 202 | 265 | 329 | 82 | 37 | 29 | e21 | | 15 | 16 | 32 | 37 | 177 | 438 | 174 | 232 | 259 | 100 | 37 | 31 | e20 | | 16 | 16 | 31 | 33 | 453 | 370 | 149 | 208 | 217 | 108 | 38 | 87 | e19 | | 17 | 17 | 30 | 31 | 451 | 1740 | 131 | 1350 | 186 | 90 | 37 | 215 | e19 | | 18 | 17 | 29 | 30 | 323 | 2730 | 198 | 869 | 159 | 78 | 37 | 95 | e19 | | 19 | 17 | 28 | 29 | 242 | 1170 | 1660 | 1960 | 140 | 78 | 38 | 68 | e18 | | 20 | 17 | 27 | 28 | 193 | 800 | 1290 | 2980 | 123 | 85 | 35 | 50 | e18 | | 21 | 18 | 28 | 27 | 155 | 665 | 3680 | 918 | 115 | 72 | 34 | 41 | e19 | | 22 | 18 | 39 | 30 | 134 | 472 | 1470 | 556 | 104 | 66 | 33 | 36 | e20 | | 23 | 19 | 55 | 38 | 475 | 443 | 710 | 410 | 111 | 59 | 33 | 32 | e20 | | 24 | 21 | 48 | 45 | 663 | 551 | 465 | 334 | 149 | 55 | 34 | 29 | e21 | | 25 | 25 | 40 | 99 | 568 | 461 | 339 | 265 | 257 | 57 | 34 | 27 |
e21 | | 26 | 26 | 36 | 112 | 415 | 411 | 273 | 229 | 188 | 52 | 33 | 26 | e20 | | 27 | 28 | 33 | 93 | 329 | 372 | 240 | 210 | 1110 | 50 | 33 | 25 | e20 | | 28 | 27 | 30 | 75 | 836 | 355 | 214 | 185 | 1010 | 52 | 32 | 23 | e20 | | 29 | 24 | 28 | 65 | 812 | | 193 | 165 | 438 | 64 | 30 | 22 | e20 | | 30 | 23 | 29 | 60 | 806 | | 174 | 156 | 274 | 62 | 28 | 22 | e20 | | 31 | 23 | | 52 | 586 | | 160 | | 204 | | 27 | 21 | | | TOTAL | 578 | 1074 | 1629 | 13734 | 22986 | 15125 | 15795 | 14892 | 2452 | 1283 | 1242 | 614 | | MEAN | 18.6 | 35.8 | 52.5 | 443 | 821 | 488 | 527 | 480 | 81.7 | 41.4 | 40.1 | 20.5 | | MAX | 28 | 55 | 112 | 2870 | 2730 | 3680 | 2980 | 1400 | 165 | 70 | 215 | 28 | | MIN | 15 | 27 | 27 | 41 | 342 | 125 | 139 | 104 | 50 | 27 | 21 | 18 | | CFSM | .11 | .22 | .32 | 2.70 | 5.01 | 2.98 | 3.21 | 2.93 | .50 | . 25 | .24 | .12 | | IN. | .13 | .24 | .37 | 3.12 | 5.21 | 3.43 | 3.58 | 3.38 | .56 | . 29 | .28 | .14 | e Estimated. # 02013000 DUNLAP CREEK NEAR COVINGTON, VA--Continued 15 | | OCT | NOV | DEC | JAN | FEE | 3 | MAR | APR | MA | Y | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|-----------|---------|----|------|----------|---------|-----|------|----------|----------|---------| | MEAN | 66.5 | 107 | 170 | 250 | 312 | 2 | 404 | 285 | 21 | 5 | 106 | 48.6 | 56.8 | 38.1 | | MAX | 431 | 659 | 694 | 770 | 821 | | 1053 | 1071 | 53 | 6 | 584 | 358 | 514 | 336 | | (WY) | 1990 | 1986 | 1974 | 1996 | 1998 | 3 | 1993 | 1987 | 198 | 9 | 1972 | 1972 | 1984 | 1989 | | MIN | 13.4 | 15.7 | 21.5 | 24.2 | 21.5 | , | 59.1 | 54.7 | 43. | 7 | 24.3 | 14.3 | 12.5 | 11.0 | | (WY) | 1942 | 1932 | 1956 | 1981 | 1934 | ŀ | 1988 | 1986 | 193 | 0 | 1934 | 1966 | 1932 | 1970 | | | | | | | | | _ | | | | | | | | | SUMMARY | Y STATIST | ICS | FOR 1 | 1997 CALE | NDAR YE | AR | F | FOR 1998 | WATER Y | EAR | | WATER YE | ARS 1929 | - 1998 | | ANNUAL | TOTAL | | | 49841 | | | | 91404 | | | | | | | | ANNUAL | MEAN | | | 137 | | | | 250 | | | | 171 | | | | HIGHEST | r annual i | MEAN | | | | | | | | | | 320 | | 1973 | | LOWEST | ANNUAL M | EAN | | | | | | | | | | 67.3 | | 1941 | | HIGHEST | r DAILY M | EAN | | 2540 | Mar | 3 | | 3680 | Mar | 21 | | 10400 | Jan : | 1996 | | LOWEST | DAILY ME. | AN | | 13 | aSep | 4 | | 15 | b0ct | 7 | | 7.0 | Sep | 9 1966 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 14 | Sep | 1 | | 16 | Oct | 5 | | 7.6 | Sep | 6 1966 | | INSTANT | CANEOUS P | EAK FLOW | | | | | | 5480 | Apr | 20 | | 27400 | Jun : | 21 1972 | | INSTANT | FANEOUS P | EAK STAGE | | | | | | 8. | .62 Apr | 20 | | 15.65 | Jun : | 21 1972 | | INSTANT | FANEOUS L | OW FLOW | | | | | | 15 | c0ct | 6 | | 2.0 | Jul | 4 1970 | | ANNUAL | RUNOFF (| CFSM) | | .8 | 3 | | | 1. | . 53 | | | 1.04 | | | | ANNUAL | RUNOFF (| INCHES) | | 11.3 | 1 | | | 20. | . 73 | | | 14.16 | | | | 10 PERC | CENT EXCE | EDS | | 279 | | | | 678 | | | | 370 | | | | 50 PERC | CENT EXCE | EDS | | 60 | | | | 65 | | | | 68 | | | 90 PERCENT EXCEEDS a Also Sept. 5, 6, 1997. b Also Oct. 8, 1997. c Also Oct. 7, 8-9, 1997. #### 02013100 JACKSON RIVER BELOW DUNLAP CREEK, AT COVINGTON, VA LOCATION.--Lat 37°47'19", long 80°00'03", Covington City, Hydrologic Unit 02080201, on left bank in city recreation park and 0.5 mi downstream from Dunlap Creek. DRAINAGE AREA. -- 614 mi². PERIOD OF RECORD. -- October 1974 to current year. REVISED RECORDS. -- WDR VA-76-1: 1975(M). GAGE.--Water-stage recorder. Datum of gage is 1,206.53 ft above sea level. REMARKS. -- No estimated daily discharges. Records good. Small diurnal fluctuation at low flow caused by Westvaco plant 0.8 mi upstream and occasionally by dam on Dunlap Creek 12.7 mi upstream. Flow regulated since December 1979 by Lake Moomaw (station 02011795) 19.9 mi upstream; since October 1984 by Back Creek Lake 47.9 mi upstream, amount unknown; and since January 1985 by Little Back Creek Lake 51.0 mi upstream, amount unknown. Diversion by Westvaco plant averages 47 ft^3/s for industrial use of which approximately 42 ft^3/s is returned upstream from station. Diversion 2.0 mi upstream from station for city of Covington water supply averages less than 4.0 ft $^3/s$. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Virginia Department of Emergency Services gage-height radio transmitter at station. Maximum discharge, 31,300 ${\rm ft}^3/{\rm s}$, from rating curve extended above 19,000 ${\rm ft}^3/{\rm s}$. Minimum discharge, 41 ${\rm ft}^3/{\rm s}$, Jan. 5, 1981, gage height, 4.38 ft, result of freezeup. Several measurements of water temperature were made during the year. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 21, 1972, reached a stage of 24.36 ft, discharge, 34,000 ft $^3/s$, from floodmarks, and flood of Dec. 27, 1973, reached a stage of 22.09 ft, from floodmarks, discharge, 28,300 ft³/s, from rating curve extended above 19,000 ft³/s. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 7,860 ft^3/s , Apr. 19, gage height, 11.20 ft ; minimum, 199 ft^3/s , Nov. 19, 20, Dec. 21, gage height, 4.65 ft ; minimum daily, 213 ft^3/s , Nov. 20. | | | | | | | D | AILY MEA | N VALUE | S | | | | | | | |--|--|--|--|--|-------------|--|--|--|----------------------------|--|--|--|-----------------------|--|---| | DAY | OCT | NOV | DEC | JAN | 1 | FEB | MAR | AF | PR | MAY | JUN | JUI | | AUG | SEP | | 1
2
3
4
5 | 295
256
252
252
251 | 278
295
276
262
244 | 339
319
277
270
258 | 241
268
351 | 3 | 1780
1640
1460
2760
3190 | 1440
1350
1280
1210
1070 | 60
59
56
88
153 | 91
57
33 | 763
911
897
1500
2540 | 497
456
428
415
454 | 387
376
371
372
369 | 5
L
L | 382
381
380
378
379 | 368
335
337
339
340 | | 6
7
8
9
10 | 248
249
249
251
251 | 234
237
251
279
254 | 253
241
231
229
236 | 600
4210
1650 |)
)
) | 3190
3070
3160
2660
2010 | 845
817
830
1380
2590 | 164
132
119
146
224 | 20
90
50 | 2160
1800
2740
2970
2120 | 395
379
365
359
365 | 360
360
395
397
383 |)
5
7 | 382
387
401
405
428 | 339
344
367
359
359 | | 11
12
13
14
15 | 251
254
254
253
257 | 242
234
228
227
225 | 256
272
259
246
239 | 503
453
417 | 3
3
7 | 1990
2240
2350
2020
1780 | 3130
2710
1470
1420
1280 | 186
168
157
128
147 | 30
70
30 | 2070
1550
1190
947
779 | 361
362
367
375
457 | 368
362
351
351 | 2
7
7 | 432
410
392
391
414 | 352
352
350
352
351 | | 16
17
18
19
20 | 255
256
257
254
253 | 222
217
217
216
213 | 232
225
223
220
216 | 970
1240
1280 |)
)
) | 1600
2590
4900
5760
5630 | 893
788
758
3090
2640 | 141
256
179
320
562 | 0
0
0
0 | 627
573
520
455
430 | 444
423
389
394
398 | 358
359
359
360
358 | 9 | 452
660
483
437
406 | 350
354
357
358
358 | | 21
22
23
24
25 | 251
250
252
253
264 | 221
237
251
245
234 | 215
229
235
250
321 | 647
1200
1940 | 7
)
) | 5300
3720
1920
2090
1920 | 5180
3770
5760
5770
4910 | 513
328
181
167
154 | 30
_0
70 | 422
406
427
479
650 | 376
371
359
352
349 | 353
350
374
389
378 |)
1
9 | 396
389
386
380
383 | 358
359
360
357
356 | | 26
27
28
29
30
31 | 262
261
254
246
248
244 | 228
226
220
218
227 | 341
326
296
282
272
262 | 1570
2180
2340
2370 |)
)
) | 1800
1650
1470
 | 2820
1520
1460
1410
1100
604 | 126
88
83
79
77 | 38
36
94
76 | 524
1720
1790
948
694
570 | 351
346
366
393
382 | 380
371
372
371
371
389 | 7
9
7
7 | 380
382
381
385
380
380 | 358
353
353
353
335 | | TOTAL
MEAN
MAX
MIN
(†)
MEAN‡
CFSM‡
IN.‡ | 7883
254
295
244
-3731
134
.22 | 7158
239
295
213
+2672
328
.53 | 8070
260
341
215
+1361
304
.50 | 1159
4210
241
+20,822
1831
2.98 |)
 | 75650
2702
5760
1460
-1160
2660
4.33
4.51 | 65295
2106
5770
604
-151
2101
3.42
3.95 | 5245
174
562
56
-10
174
2.8
3.1 | 18
20
57
11
15 | 36172
1167
2970
406
+504
1183
1.93
2.22 | 11728
391
497
346
+101
394
.64 | 11496
373
39'
35(
-5092
20' | L
7
0
2
7 | 12602
407
660
378
-6201
206
.34
.39 | 10563
352
368
335
-5949
154
.25 | | CAL YR
WTR YR | 1997 | TOTAL
TOTAL | 227575
334998 | MEAN
MEAN | 623
918 | MAX
MAX | 5030
5770 | MIN
MIN | 213
213 | MEAN‡
MEAN‡ | 570
926 | CFSM‡
CFSM‡ | .93
1.51 | |
12.60
20.48 | [†] Total change in contents, equivalent in cubic feet per second, per month, in Lake Moomaw; provided by U.S. Army Corps of Engineers. ‡ Adjusted for monthly change in contents. #### 02013100 JACKSON RIVER BELOW DUNLAP CREEK, AT COVINGTON, VA--Continued | STATISTICS OF MONTHLY MEA | N DATA FOR WATER | YEARS 1975 - | - 1979, BY WATE | CR YEAR (WY) | [UNREGUL | ATED] | | |--|---|--|---|--|---|---|---| | OCT NOV MEAN 572 425 MAX 1495 853 (WY) 1977 1978 MIN 97.2 118 (WY) 1979 1979 | DEC JAN 712 1258 1020 1930 1978 1979 370 208 1976 1977 | FEB
1079
1757
1979
450
1978 | MAR APR
1794 971
2762 1790
1978 1977
690 472
1976 1976 | MAY
946
1600
1975
296
1977 | JUN
529
906
1979
187
1977 | JUL
231
304
1979
144
1977 | AUG SEP
200 350
270 1058
1978 1979
135 123
1977 1978 | | | | 1976
ARS 1975 - 1 | 1976 1976 | 1977 | 1977 | 1977 | 1977 1976 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 755
905
536
18800
88
92
23200
19.85
80
1.23
16.70
1620
380
135 | Apr 5 Nov 11 Oct 24 Apr 5 Apr 5 Nov 9 | 1979
1976
1977
1978
1978
1977
1977 | | | | | | STATISTICS OF MONTHLY MEA | N DATA FOR WATER | YEARS 1980 - | - 1998, BY WATE | ER YEAR (WY) | [REGULAT | ED, UNADJU | STED] | | MEAN 352 519 MAX 1302 2363 (WY) 1980 1986 MIN 111 114 (WY) 1981 1982 | DEC JAN
549 889
1685 2644
1997 1996
130 119
1981 1981 | 1174
2702
1998 | 211 356 | 958 | JUN
628
1403
1982
303
1980 | 352
526
1995
190 | AUG SEP 378 348 1285 939 1984 1989 117 87.3 1981 | | SUMMARY STATISTICS | FOR 1997 CALE | NDAR YEAR | FOR 1998 | WATER YEAR | , | WATER YEAR | S 1980 - 1998 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 219 | Nov 20
Nov 15 | 199 | Nov 20
Nov 15
Apr 19
20 Apr 19
bNov 19 | | 741
954
348
15100
67
71
31300
23.31
c41
1.21
16.39
1630
367 | aSep 3 1981
Sep 25 1981
Nov 4 1985
Nov 4 1985 | | 90 PERCENT EXCEEDS | 246 | | 244 | | | 214 | | a Also Sept. 27-29, 1981. b Also Nov. 20, Dec. 21, 1997. c Result of freezeup. ### 02014000 POTTS CREEK NEAR COVINGTON, VA LOCATION.--Lat 37°43'44", long 80°02'33", Alleghany County, Hydrologic Unit 02080201, on left bank at downstream side of bridge on State Highway 18, 0.8 mi downstream from Blue Spring Creek, and 5.2 mi southwest of Covington. DRAINAGE AREA. -- 153 mi². PERIOD OF RECORD.--October 1928 to September 1956, October 1965 to current year. REVISED RECORDS.--WSP 1723: 1935, 1936(M), 1940(M), 1942(M), 1948-49(M), 1951-52(M), 1954(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,273.93 ft above sea level. Prior to Sept. 30, 1956, nonrecording gage at site 1.3 mi downstream at different datum. REMARKS.--No estimated daily discharges. Records good. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, $15,400~{\rm ft}^3/{\rm s}$, from rating curve extended above $12,000~{\rm ft}^3/{\rm s}$. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,400 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|------------------| | Jan. 8 | 1530 | 2,990 | 7.56 | Mar. 21 | 0530 | 3,900 | 8.30 | | Feb. 17 | 2200 | 3,170 | 7.71 | Apr. 20 | 0300 | *4,010 | *8.39 | Minimum discharge, 19 ft^3/s , Sept. 15, 17-18. | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | | | | | | | | | | | | | |--|------|------|------|-------|-------|-------|-------|-------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 30 | 42 | 72 | 40 | 352 | 456 | 215 | 241 | 161 | 65 | 25 | 21 | | 2 | 26 | 70 | 55 | 42 | 302 | 419 | 203 | 338 | 142 | 57 | 25 | 21 | | 3 | 25 | 74 | 44 | 60 | 305 | 360 | 181 | 321 | 129 | 53 | 24 | 21 | | 4 | 26 | 68 | 44 | 81 | 1040 | 305 | 340 | 444 | 124 | 52 | 23 | 21 | | 5 | 25 | 46 | 39 | 128 | 1110 | 263 | 529 | 620 | 121 | 56 | 22 | 21 | | 6 | 24 | 37 | 37 | 169 | 1080 | 228 | 414 | 540 | 118 | 53 | 22 | 20 | | 7 | 24 | 37 | 36 | 190 | 774 | 204 | 348 | 445 | 105 | 47 | 21 | 20 | | 8 | 24 | 40 | 34 | 2090 | 601 | 222 | 303 | 811 | 95 | 55 | 25 | 31 | | 9 | 24 | 44 | 33 | 801 | 539 | 546 | 416 | 826 | 90 | 51 | 35 | 26 | | 10 | 25 | 46 | 36 | 435 | 499 | 621 | 539 | 603 | 94 | 46 | 39 | 22 | | 11 | 26 | 40 | 38 | 302 | 545 | 467 | 460 | 750 | 91 | 43 | 49 | 21 | | 12 | 25 | 36 | 44 | 239 | 762 | 378 | 391 | 627 | 98 | 40 | 38 | 21 | | 13 | 25 | 36 | 43 | 215 | 756 | 319 | 339 | 499 | 104 | 38 | 29 | 21 | | 14 | 25 | 38 | 40 | 187 | 600 | 285 | 303 | 407 | 108 | 36 | 27 | 20 | | 15 | 27 | 42 | 35 | 207 | 484 | 250 | 274 | 337 | 117 | 36 | 33 | 20 | | 16 | 26 | 42 | 33 | 386 | 424 | 219 | 260 | 285 | 110 | 35 | 52 | 20 | | 17 | 26 | 38 | 32 | 366 | 1580 | 197 | 905 | 252 | 91 | 34 | 137 | 20 | | 18 | 28 | 36 | 33 | 316 | 2060 | 249 | 725 | 220 | 82 | 33 | 73 | 20 | | 19 | 28 | 33 | 32 | 267 | 1160 | 1260 | 1360 | 193 | 81 | 34 | 56 | 20 | | 20 | 28 | 33 | 31 | 234 | 889 | 1270 | 2490 | 173 | 193 | 32 | 41 | 20 | | 21 | 28 | 35 | 30 | 196 | 757 | 3100 | 974 | 160 | 123 | 30 | 35 | 20 | | 22 | 26 | 45 | 35 | 174 | 604 | 1370 | 649 | 146 | 103 | 29 | 31 | 21 | | 23 | 27 | 48 | 42 | 354 | 587 | 780 | 514 | 153 | 89 | 29 | 28 | 21 | | 24 | 28 | 48 | 51 | 453 | 633 | 564 | 441 | 198 | 79 | 37 | 26 | 21 | | 25 | 32 | 39 | 80 | 427 | 526 | 446 | 362 | 204 | 78 | 33 | 25 | 21 | | 26 | 38 | 36 | 76 | 344 | 461 | 374 | 311 | 178 | 71 | 30 | 24 | 21 | | 27 | 44 | 36 | 73 | 299 | 433 | 326 | 281 | 253 | 63 | 28 | 23 | 21 | | 28 | 38 | 35 | 65 | 379 | 438 | 289 | 254 | 339 | 65 | 28 | 23 | 21 | | 29 | 35 | 33 | 59 | 552 | | 262 | 230 | 268 | 77 | 27 | 23 | 21 | | 30 | 32 | 35 | 52 | 529 | | 239 | 214 | 223 | 65 | 26 | 22 | 21 | | 31 | 32 | | 48 | 434 | | 221 | | 187 | | 26 | 21 | | | TOTAL | 877 | 1268 | 1402 | 10896 | 20301 | 16489 | 15225 | 11241 | 3067 | 1219 | 1077 | 636 | | MEAN | 28.3 | 42.3 | 45.2 | 351 | 725 | 532 | 508 | 363 | 102 | 39.3 | 34.7 | 21.2 | | MAX | 44 | 74 | 80 | 2090 | 2060 | 3100 | 2490 | 826 | 193 | 65 | 137 | 31 | | MIN | 24 | 33 | 30 | 40 | 302 | 197 | 181 | 146 | 63 | 26 | 21 | 20 | | CFSM | .18 | .28 | .30 | 2.30 | 4.74 | 3.48 | 3.32 | 2.37 | .67 | .26 | .23 | .14 | | IN. | .21 | .31 | .34 | 2.65 | 4.94 | 4.01 | 3.70 | 2.73 | .75 | .30 | .26 | .15 | ## 02014000 POTTS CREEK NEAR COVINGTON, VA--Continued | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----------|------|------|------|------|------|------|------|------|------|------|------|------| | MEAN | 96.1 | 128 | 176 | 250 | 303 | 381 | 293 | 225 | 138 | 67.2 | 67.0 | 60.8 | | MAX | 548 | 766 | 643 | 788 | 725 | 1078 | 1184 | 519 | 650 | 288 | 461 | 516 | | (WY) | 1990 | 1986 | 1949 | 1937 | 1998 | 1955 | 1987 | 1971 | 1972 | 1938 | 1940 | 1989 | | MIN | 20.7 | 23.8 | 24.7 | 29.8 | 26.9 | 75.7 | 80.5 | 51.4 | 29.4 | 22.1 | 21.9 | 18.4 | | (7.737) | 1040 | 1040 | 1040 | 1056 | 1024 | 1000 | 1000 | 1024 | 1024 | 1000 | 1020 | 1000 | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1929 - 1956, 1966 - 1998, BY WATER YEAR (WY) | SUMMARY STATISTICS | FOR 1997 CALENDAR YE | EAR | FOR 1998 V | WATER YEAR | WATER YEARS | 1929 - 1956
1966 - 1998 | |--------------------------|----------------------|-----|------------|------------|-------------|----------------------------| | ANNUAL TOTAL | 47520 | | 83698 | | | | | ANNUAL MEAN | 130 | | 229 | | 181 | | | HIGHEST ANNUAL MEAN | | | | | 320 | 1973 | | LOWEST ANNUAL MEAN | | | | | 77.2 | 1988 | | HIGHEST DAILY MEAN | 1240 Mar | 4 | 3100 | Mar 21 | 8870 | Jun 21 1972 | | LOWEST DAILY MEAN | 24 Oct | 6 | 20 | Sep 6 | 15 | Dec 17 1930 | | ANNUAL SEVEN-DAY MINIMUM | 25 Oct | 3 | 20 | Sep 14 | 15 | Dec 17 1930 | | INSTANTANEOUS PEAK FLOW | | | 4010 | Apr 20 | 15400 | Nov 4 1985 | | INSTANTANEOUS PEAK STAGE | | | 8.3 | 39 Apr 20 | 13.46 | Nov 4 1985 | | INSTANTANEOUS LOW FLOW | | | 19 | aSep 15 | b13 | Nov 29 1930 | | ANNUAL RUNOFF (CFSM) | .85 | | 1.5 | 50 | 1.19 | | | ANNUAL RUNOFF (INCHES) | 11.55 | | 20.3 | 35 | 16.12 | | | 10 PERCENT EXCEEDS | 255 | | 573 | | 401 | | | 50 PERCENT EXCEEDS | 73 | | 70 | | 87 | | | 90 PERCENT
EXCEEDS | 28 | | 23 | | 28 | | a Also Sept. 17-18, 1998. b Minimum observed. ### 02016000 COWPASTURE RIVER NEAR CLIFTON FORGE, VA LOCATION.--Lat 37°47'30", long 79°45'35", Alleghany County, Hydrologic Unit 02080201, on left bank 100 ft downstream from bridge on State Highway 633, 2.5 mi upstream from confluence with Jackson River, and 4.0 mi southeast of Clifton Forge. DRAINAGE AREA. -- 461 mi². PERIOD OF RECORD.--March 1925 to current year. Records for May 1907 to August 1908, published in WSP 242, are unreliable and should not be used. REVISED RECORDS.--WSP 952: 1925-41. WSP 2104: Drainage area. See also PERIOD OF RECORD. GAGE.--Water-stage recorder. Datum of gage is 1,006.93 ft above sea level (levels by U.S. Army Corps of Enginneers).Prior to October 1934, nonrecording gage at site 100 ft upstream at present datum. REMARKS.--Records good, except for period of no gage-height record, Sept. 8-10, which is fair. Low flow affected by springs and by occasional regulation from unknown source. Maximum discharge, 40,900 ft³/s, from rating curve extended above 13,000 ft³/s on basis of slope-area measurements at gage heights 15.70 ft and 19.15 ft. Minimum gage height, 1.43 ft, Jan. 31, 1981, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in March 1913 reached a stage of 20.8 ft, from floodmarks, discharge, about $45,000 \text{ ft}^3/\text{s}$, from rating curve extended above $13,000 \text{ ft}^3/\text{s}$ on basis of records for other stations in James River Basin. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 5,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1915 | *20,800 | 14.39 | Mar. 19 | 1345 | 8,560 | 9.51 | | Feb. 4 | 1745 | 6,510 | 8.37 | Mar. 21 | 1430 | 11,900 | 11.07 | | Feb. 18 | 0845 | 7,570 | 8.98 | Apr. 20 | 1130 | 6,730 | 8.50 | | Mar. 10 | 0200 | 5,700 | 7.87 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, $74~{\rm ft}^3/{\rm s}$, Sept. 29-30, gage height, 1.50 ft. | | | | | | Di | AILY MEAN | VALUES | | | | | | |--------|------|-------|------|-------|-------|-----------|--------|-------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 134 | 187 | 379 | 301 | 1250 | 1220 | 532 | 517 | 281 | 352 | 101 | 82 | | 2 | 104 | 549 | 324 | 267 | 1010 | 1130 | 612 | 773 | 259 | 278 | 97 | 81 | | 3 | 97 | 555 | 256 | 309 | 925 | 950 | 565 | 840 | 239 | 233 | 93 | 79 | | 4 | 94 | 383 | 251 | 387 | 3510 | 806 | 874 | 867 | 224 | 204 | 91 | 79 | | 5 | 93 | 285 | 252 | 599 | 3020 | 690 | 1830 | 1380 | 217 | 197 | 88 | 79 | | 6 | 91 | 235 | 243 | 934 | 2220 | 606 | 1300 | 1430 | 210 | 194 | 86 | 79 | | 7
8 | 90 | 416 | 225 | 1160 | 2120 | 542 | 994 | 1160 | 202 | 174 | 85 | 79 | | | 89 | 1230 | 207 | 13300 | 1700 | 567 | 827 | 2430 | 194 | 180 | 93 | e94 | | 9 | 88 | 1290 | 196 | 9750 | 1440 | 2830 | 1210 | 2120 | 186 | 205 | 101 | e87 | | 10 | 87 | 721 | 201 | 2830 | 1220 | 4090 | 2930 | 1520 | 194 | 191 | 114 | e84 | | 11 | 86 | 498 | 256 | 1670 | 1170 | 1990 | 1820 | 1160 | 193 | 160 | 115 | 85 | | 12 | 86 | 380 | 346 | 1170 | 1490 | 1340 | 1270 | 955 | 199 | 146 | 112 | 82 | | 13 | 85 | 309 | 326 | 965 | 2010 | 1020 | 1000 | 806 | 196 | 139 | 110 | 79 | | 14 | 86 | 281 | 306 | 810 | 1690 | 868 | 855 | 682 | 200 | 134 | 98 | 78 | | 15 | 87 | 297 | 281 | 825 | 1310 | 758 | 761 | 596 | 301 | 127 | 104 | 77 | | 16 | 87 | 330 | 255 | 1570 | 1050 | 652 | 675 | 531 | 520 | 124 | 160 | 77 | | 17 | 86 | 301 | 235 | 1500 | 2400 | 574 | 1150 | 489 | 543 | 122 | 199 | 77 | | 18 | 87 | 270 | 224 | 1130 | 5960 | 665 | 916 | 579 | 358 | 122 | 152 | 77 | | 19 | 87 | 240 | 214 | 898 | 3290 | 6910 | 1170 | 463 | 302 | 119 | 131 | 77 | | 20 | 86 | 219 | 205 | 772 | 2420 | 4230 | 5220 | 404 | 379 | 114 | 119 | 78 | | 21 | 86 | 211 | 192 | 652 | 2180 | 10400 | 2630 | 357 | 411 | 111 | 108 | 77 | | 22 | 86 | 246 | 194 | 571 | 1720 | 5460 | 1650 | 333 | 317 | 109 | 103 | 79 | | 23 | 86 | 313 | 217 | 1630 | 1550 | 2600 | 1250 | 326 | 271 | 109 | 99 | 79 | | 24 | 89 | 305 | 229 | 2730 | 1800 | 1720 | 1060 | 350 | 238 | 121 | 96 | 76 | | 25 | 106 | 269 | 456 | 1970 | 1500 | 1270 | 870 | 395 | 214 | 113 | 93 | 75 | | 26 | 131 | 244 | 540 | 1400 | 1280 | 1010 | 742 | 336 | 205 | 106 | 90 | 75 | | 27 | 148 | 230 | 467 | 1100 | 1160 | 875 | 671 | 657 | 230 | 102 | 87 | 76 | | 28 | 138 | 217 | 436 | 1690 | 1120 | 774 | 623 | 709 | 217 | 101 | 85 | 76 | | 29 | 136 | 202 | 398 | 1600 | | 690 | 546 | 470 | 297 | 101 | 84 | 74 | | 30 | 114 | 196 | 375 | 1680 | | 623 | 510 | 364 | 500 | 99 | 83 | 74 | | 31 | 107 | | 338 | 1590 | | 568 | | 317 | | 105 | 82 | | | TOTAL | 3057 | 11409 | 9024 | 57760 | 53515 | 58428 | 37063 | 24316 | 8297 | 4692 | 3259 | 2371 | | MEAN | 98.6 | 380 | 291 | 1863 | 1911 | 1885 | 1235 | 784 | 277 | 151 | 105 | 79.0 | | MAX | 148 | 1290 | 540 | 13300 | 5960 | 10400 | 5220 | 2430 | 543 | 352 | 199 | 94 | | MIN | 85 | 187 | 192 | 267 | 925 | 542 | 510 | 317 | 186 | 99 | 82 | 74 | | CFSM | .21 | .82 | .63 | 4.04 | 4.15 | 4.09 | 2.68 | 1.70 | .60 | .33 | .23 | .17 | | IN. | .25 | .92 | .73 | 4.66 | 4.32 | 4.71 | 2.99 | 1.96 | .67 | .38 | .26 | .19 | e Estimated. 02016000 COWPASTURE RIVER NEAR CLIFTON FORGE, VA--Continued | STATIST | ICS OF MO | ONTHLY MEAN | DATA | FOR WATER | YEARS 1925 | - 1998, | BY WATE | R YEAR (WY) | | | | | |----------|-----------|-------------|------|-----------|------------|---------|---------|-------------|------|----------|-----------|--------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 278 | 380 | 570 | 751 | 878 | 1116 | 848 | 649 | 388 | 220 | 234 | 214 | | MAX | 1474 | 2745 | 1883 | 2253 | 1911 | 2531 | 2878 | 2342 | 1484 | 1213 | 1531 | 1510 | | (WY) | 1938 | 1986 | 1974 | 1996 | 1998 | 1993 | 1987 | 1989 | 1982 | 1972 | 1969 | 1996 | | MIN | 45.4 | 62.8 | 82.9 | 95.3 | 89.9 | 203 | 235 | 147 | 98.1 | 64.9 | 64.9 | 60.3 | | (WY) | 1931 | 1932 | 1966 | 1981 | 1934 | 1981 | 1995 | 1930 | 1964 | 1930 | 1930 | 1932 | | SUMMARY | STATIST | ICS | FOR | 1997 CALE | ENDAR YEAR | F | OR 1998 | WATER YEAR | | WATER YE | EARS 1926 | - 1998 | | ANNUAL | TOTAL | | | 158311 | | | 273191 | | | | | | | ANNUAL | MEAN | | | 434 | | | 748 | | | 542 | | | | HIGHEST | ANNUAL N | MEAN | | | | | | | | 935 | | 1973 | | LOWEST . | ANNUAL M | EAN | | | | | | | | 248 | | 1981 | | HIGHEST | DAILY M | EAN | | 8020 | Mar 4 | | 13300 | Jan 8 | | 33900 | Nov | 5 1985 | | LOWEST | DAILY MEA | AN | | 85 | Oct 13 | | 74 | aSep 29 | | 40 | Sep | 1 1932 | | ANNUAL | SEVEN-DAY | MINIMUM Y | | 86 | Oct 11 | | 75 | Sep 24 | | 43 | Oct | 8 1930 | | INSTANT. | ANEOUS PI | EAK FLOW | | | | | 20800 | Jan 8 | | 40900 | Nov | 5 1985 | | INSTANT. | ANEOUS PI | EAK STAGE | | | | | 14. | 39 Jan 8 | | 19.15 | Nov | 5 1985 | | INSTANT. | ANEOUS LO | OW FLOW | | | | | 74 | aSep 29 | | 38 | Sep | 2 1932 | | ANNUAL | RUNOFF (| CFSM) | | . 9 | 94 | | 1. | 62 | | 1.18 | 3 | | | ANNUAL | RUNOFF (| INCHES) | | 12.7 | 77 | | 22. | 04 | | 15.98 | 3 | | | 10 PERC | ENT EXCE | EDS | | 879 | | | 1680 | | | 1170 | | | | 50 PERC | ENT EXCE | EDS | | 292 | | | 302 | | | 261 | | | | 90 PERC | ENT EXCE | EDS | | 93 | | | 86 | | | 87 | | | a Also Sept. 30, 1998. #### 02016500 JAMES RIVER AT LICK RUN, VA LOCATION.--Lat 37°46'25", long 79°47'05", Botetourt County, Hydrologic Unit 02080201, on right bank at community of Lick Run, 1,000 ft downstream from bridge on U.S. Highway 220, 0.9 mi downstream from confluence of Cowpasture and Jackson Rivers, 1.8 mi south of Iron Gate, and at mile 342.3. DRAINAGE AREA. -- 1,373 mi². PERIOD OF RECORD. -- April 1925 to current year. REVISED RECORDS.--WSP 852: 1936-37. WSP 972: 1927, 1930(M), 1932(M), 1935-36. WSP 1303: 1927-28(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 978.30 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Oct. 26, 1928, nonrecording gage at same site and datum. REMARKS.--No estimated daily discharges. Records good. Flow regulated since December 1979 by Lake Moomaw (station 02011795) 43.7 mi upstream from station; since October 1984 by Back Creek Lake 71.7 mi upstream; and since January 1985 by Little Back Creek Lake 74.8 mi upstream, amount unknown. National Weather Service gage-height telemeter at station. Maximum discharge, 87,500 ft³/s, from rating curve extended above 66,000 ft³/s. Minimum discharge, 133 ft³/s, result of freezeup. Several measurements of water tempera- ture were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in November 1877 reached a stage of about 33 ft, discharge, about 120,000 ${\rm ft^3/s.}$ Flood in March 1913 reached a stage of 30.4 ft, from floodmarks, discharge, about 98,000 ${\rm ft^3/s.}$ DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 EXTREMES FOR CURRENT YEAR.--Maximum discharge, 33,000 ft^3/s , Jan. 8, gage height, 18.43 ft ; minimum, 348 ft^3/s , Oct. 13, gage height, 1.77 ft ; minimum daily, 362 ft^3/s , Oct. 23. DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 2.2 ---3.0 ------TOTAL MEAN MAX MTN -3731 +2672 +1361 +20822 -1160 -151 -101 +504 +101 -5092 -5949 (†) MEAN‡ .36 CFSM: . 20 .59 . 55 3.46 4.65 3.92 3.01 2.04 .77 . 29 .18 IN.‡ .66 .63 3.99 4.84 4.52 3.36 2.35 .86 .42 .33 .20 .23 CAL YR 1996 12.80 TOTAL MEAN MAX MTN MEAN1 CFSM1
.94 TN. ± CFSM‡ 1.65 WTR YR 1997 TOTAL MEAN MAX MIN MEAN‡ 22.40 [†] Total change in contents, equivalent in cubic feet per second, per month, in Lake Moomaw; provided by U.S. Army Corps of Engineers. Adjusted for monthly change in contents. # 02016500 JAMES RIVER AT LICK RUN, VA--Continued a Result of freezeup. # 02018000 CRAIG CREEK AT PARR, VA LOCATION.--Lat 37°39'57", long 79°54'42", Botetourt County, Hydrologic Unit 02080201, on right bank 12 ft upstream from abandoned railway bridge, 700 ft downstream from Stony Run, 0.2 mi northeast of Horton, 0.4 mi northwest of Parr, and at mile 12.0. DRAINAGE AREA. -- 329 mi². PERIOD OF RECORD. -- April 1925 to current year. REVISED RECORDS.--WSP 852: 1937. WSP 892: 1935-36. WSP 1303: 1929-30(M), 1932-35(M), 1937-38(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 992.50 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to June 7, 1937, nonrecording gage at same site and datum. REMARKS.--Records good, except for period of no gage-height record, May 8-14, which is fair. Maximum discharge, 58,500 ft³/s, from rating curve extended above 11,000 ft³/s on basis of slope-area measurement of peak flow. Minimum discharge, 20 ft³/s, probably occurred Dec. 21, 25, 1980, and Jan. 4, 1981, gage height, 3.20 ft, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 4,200 ${\rm ft}^3/{\rm s}$ and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | Date | Time | Discharge (ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |---------|------|--------------------------------|---------------------|---------|------|-----------------------------------|------------------| | Jan. 8 | 1915 | *8,820 | *11.83 | Mar. 21 | 1230 | *8,820 | *11.83 | | Feb. 5 | 0415 | 7,000 | 10.91 | Apr. 17 | 1845 | 4,520 | 9.41 | | Feb. 18 | 0400 | 7,640 | 11.25 | Apr. 20 | 1015 | 5,920 | 10.30 | Minimum discharge, 39 $\mathrm{ft^3/s}$, Sept. 17-19, 30, gage height, 3.40 ft . | | | | | | Di | AILY MEAN | VALUES | | | | | | |-------|------|------|------|-------|-------|-----------|--------|-------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 64 | 69 | 73 | 103 | 1240 | 721 | 433 | 457 | 277 | 110 | 48 | 45 | | 2 | 53 | 83 | 70 | 90 | 974 | 662 | 403 | 1030 | 246 | 99 | 47 | 44 | | 3 | 45 | 103 | 71 | 100 | 841 | 600 | 366 | 902 | 220 | 92 | 46 | 43 | | 4 | 43 | 102 | 70 | 116 | 2830 | 536 | 524 | 912 | 207 | 88 | 45 | 43 | | 5 | 43 | 84 | 69 | 177 | 5100 | 469 | 1140 | 1210 | 209 | 90 | 43 | 42 | | 6 | 42 | 79 | 68 | 286 | 3320 | 409 | 908 | 1100 | 207 | 87 | 43 | 42 | | 7 | 42 | 75 | 67 | 344 | 2720 | 374 | 751 | 904 | 204 | 82 | 42 | 42 | | 8 | 41 | 70 | 65 | 5020 | 1860 | 385 | 650 | e1850 | 187 | 81 | 43 | 49 | | 9 | 41 | 68 | 63 | 2720 | 1450 | 1220 | 759 | e1700 | 174 | 77 | 58 | 43 | | 10 | 41 | 67 | 65 | 1290 | 1200 | 1660 | 1340 | e1300 | 174 | 76 | 93 | 42 | | 11 | 41 | 64 | 67 | 881 | 1090 | 1100 | 1060 | e1350 | 175 | 73 | 91 | 41 | | 12 | 42 | 62 | 69 | 696 | 1220 | 858 | 859 | e1200 | 256 | 68 | 103 | 42 | | 13 | 42 | 63 | 72 | 617 | 1320 | 715 | 734 | e1000 | 302 | 67 | 75 | 41 | | 14 | 44 | 66 | 69 | 549 | 1140 | 631 | 652 | e850 | 261 | 65 | 62 | 41 | | 15 | 42 | 68 | 68 | 534 | 931 | 557 | 590 | 712 | 251 | 63 | 62 | 41 | | 16 | 42 | 73 | 66 | 1220 | 802 | 485 | 564 | 594 | 254 | 63 | 70 | 41 | | 17 | 43 | 76 | 65 | 1280 | 2740 | 431 | 2230 | 511 | 226 | 63 | 86 | 39 | | 18 | 44 | 70 | 64 | 936 | 5060 | 411 | 2360 | 418 | 209 | 58 | 132 | 39 | | 19 | 45 | 66 | 64 | 733 | 2320 | 2090 | 1660 | 363 | 188 | 56 | 110 | 40 | | 20 | 45 | 64 | 63 | 626 | 1760 | 2850 | 4530 | 323 | 194 | 55 | 85 | 41 | | 21 | 46 | 65 | 61 | 529 | 1470 | 7800 | 2390 | 294 | 192 | 53 | 73 | 41 | | 22 | 45 | 72 | 67 | 451 | 1190 | 3440 | 1650 | 271 | 169 | 51 | 65 | 45 | | 23 | 44 | 82 | 74 | 670 | 1170 | 2010 | 1320 | 262 | 152 | 50 | 60 | 49 | | 24 | 45 | 93 | 89 | 1170 | 1540 | 1500 | 1140 | 314 | 138 | 52 | 56 | 44 | | 25 | 53 | 91 | 109 | 1070 | 1220 | 1190 | 930 | 336 | 126 | 52 | 53 | 43 | | 26 | 60 | 82 | 121 | 862 | 1010 | 978 | 780 | 324 | 126 | 52 | 51 | 43 | | 27 | 74 | 78 | 141 | 720 | 884 | 848 | 681 | 323 | 112 | 51 | 49 | 42 | | 28 | 76 | 72 | 143 | 1700 | 795 | 737 | 593 | 437 | 106 | 50 | 48 | 42 | | 29 | 75 | 69 | 139 | 2890 | | 645 | 511 | 401 | e105 | 50 | 47 | 41 | | 30 | 65 | 68 | 131 | 2090 | | 566 | 444 | 351 | e118 | 49 | 46 | 40 | | 31 | 58 | | 119 | 1670 | | 497 | | 310 | | 49 | 46 | | | TOTAL | 1526 | 2244 | 2542 | 32140 | 49197 | 37375 | 32952 | 22309 | 5765 | 2072 | 1978 | 1271 | | MEAN | 49.2 | 74.8 | 82.0 | 1037 | 1757 | 1206 | 1098 | 720 | 192 | 66.8 | 63.8 | 42.4 | | MAX | 76 | 103 | 143 | 5020 | 5100 | 7800 | 4530 | 1850 | 302 | 110 | 132 | 49 | | MIN | 41 | 62 | 61 | 90 | 795 | 374 | 366 | 262 | 105 | 49 | 42 | 39 | | CFSM | .15 | .23 | . 25 | 3.15 | 5.34 | 3.66 | 3.34 | 2.19 | .58 | . 20 | .19 | .13 | | IN. | .17 | .25 | . 29 | 3.63 | 5.56 | 4.23 | 3.73 | 2.52 | .65 | .23 | .22 | .14 | e Estimated. # 02018000 CRAIG CREEK AT PARR, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1925 | - 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---------|----|-------|------|-----|---| | | | | | | | | | | | | | | | | | | OCT | NOV | DEC | JAN | FEB | 3 | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|------------|---------|----|------|---------|------------|------|----------|----------|--------| | MEAN | 191 | 284 | 393 | 566 | 670 | 1 | 800 | 657 | 458 | 271 | 137 | 162 | 142 | | MAX | 1093 | 2112 | 1519 | 1642 | 1757 | | 2116 | 2427 | 1202 | 1134 | 979 | 1290 | 974 | | (WY) | 1938 | 1986 | 1949 | 1937 | 1998 | | 1993 | 1987 | 1942 | 1972 | 1941 | 1940 | 1928 | | MIN | 34.9 | 45.9 | 48.9 | 51.2 | 55.6 | | 141 | 143 | 93.2 | 66.2 | 33.5 | 35.6 | 34.1 | | (WY) | 1931 | 1931 | 1966 | 1956 | 1934 | : | 1988 | 1995 | 1930 | 1926 | 1966 | 1964 | 1968 | | | | | | | | | | | | | | | | | SUMMARY | STATIST | ICS | FOR 1 | 1997 CALEN | NDAR YE | AR | F | OR 1998 | WATER YEAR | | WATER YE | ARS 1925 | - 1998 | | ANNUAL | TOTAL | | | 101354 | | | | 191371 | | | | | | | ANNUAL | MEAN | | | 278 | | | | 524 | | | 394 | | | | HIGHEST | ' ANNUAL N | MEAN | | | | | | | | | 655 | | 1973 | | LOWEST | ANNUAL MI | EAN | | | | | | | | | 185 | | 1981 | | HIGHEST | DAILY M | EAN | | 4070 | Mar | 4 | | 7800 | Mar 21 | | 21000 | Nov | 4 1985 | | LOWEST | DAILY MEA | AN | | 36 | Sep | 6 | | 39 | Sep 17 | | 25 | Sep | 4 1966 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 37 | Sep | 3 | | 40 | Sep 13 | | 27 | Aug 2 | 2 1964 | | INSTANT | 'ANEOUS PI | EAK FLOW | | | | | | 8820 | aJan 8 | | 58500 | Nov | 4 1985 | | INSTANT | 'ANEOUS PI | EAK STAGE | | | | | | 11. | 83 aJan 8 | | b24.76 | Nov | 4 1985 | | INSTANT | ANEOUS LO | OW FLOW | | | | | | 39 | cSep 17 | | d20 | fDec 2 | 1980 | | ANNUAL | RUNOFF (| CFSM) | | .84 | 4 | | | 1. | 59 | | 1.20 | | | | ANNUAL | RUNOFF (| INCHES) | | 11.46 | 5 | | | 21. | 64 | | 16.27 | | | | 10 PERC | ENT EXCE | EDS | | 573 | | | | 1320 | | | 874 | | | | 50 PERC | ENT EXCE | EDS | | 131 | | | | 112 | | | 183 | | | 43 49 90 PERCENT EXCEEDS a Also Mar. 21, 1998. b From floodmarks. c Also Sept. 18-19, 30, 1998. d Result of freezeup. f Also probably occurred Dec. 25, 1980, and Jan. 4, 1981. #### 02019500 JAMES RIVER AT BUCHANAN, VA LOCATION.--Lat 37°31'50", long 79°40'45", Botetourt County, Hydrologic Unit 02080201, on left bank 300 ft upstream from bridge on U.S. Highway 11 at Buchanan, 1,000 ft upstream from Purgatory Creek, 1.5 mi downstream from Looney Creek, and at mile 306.4. DRAINAGE AREA. -- 2,075 mi². PERIOD OF RECORD.--February 1898 to current year. Monthly discharge only for some periods, published in WSP 1303. Records for August 1895 to Feb. 11, 1898, published in WSP 11, 15, and 27 are in error and should not be used. Gage-height records collected at this site since 1893 are contained in reports of the National Weather Service. REVISED RECORDS.--WSP 602: 1917-24. WSP 972: 1935-36. WSP 1303: 1898-1916, 1917-20(M), 1922(M), 1924(M). WSP 1383: 1927. WSP 2104: Drainage area. WDR VA-72-1: 1913(M). See also PERIOD OF RECORD. GAGE.--Water-stage recorder. Datum of gage is 802.90 ft above sea level. Prior to July 1, 1927, nonrecording gage at same site and datum. REMARKS.--Records good except for period of no gage-height record, Mar. 21-22, which is fair. Flow regulated since December 1979 by Lake Moomaw (station 02011795) 79.6 mi upstream; since October 1984 by Back Creek Lake 107.6 mi upstream, amount unknown; and since January 1985 by Little Back Creek Lake 110.7 mi upstream, amount unknown. National Weather Service gage-height telemeter at station. Maximum discharge, 179,000 ft³/s, from rating curve extended above 110,000 ft³/s. Minimum gage height, 1.44 ft, Sept. 8, 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in November 1877 reached a stage of 34.9 ft, from floodmark, discharge, about $142,000 \text{ ft}^3/\text{s}$, from rating curve extended above $110,000 \text{ ft}^3/\text{s}$. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES EXTREMES FOR CURRENT YEAR.--Maximum discharge, 51,000 ft 3 /s, Jan. 9, gage height, 19.95 ft; minimum, 458 ft 3 /s, Oct. 11-14, 22-24, gage height, 2.12 ft; minimum daily, 460 ft 3 /s, Oct. 12, 13. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-------|-------|-------|--------|--------|--------
--------|--------|-------|-------|-------|-------| | 1 | 648 | 596 | 808 | 978 | 7340 | 5460 | 3130 | 2980 | 2060 | 1390 | 748 | 663 | | 2 | 617 | 1040 | 1180 | 882 | 5980 | 5230 | 3030 | 3810 | 1820 | 1220 | 721 | 654 | | 3 | 522 | 1290 | 957 | 883 | 5360 | 4630 | 2960 | 4410 | 1650 | 1120 | 694 | 620 | | 4 | 495 | 1120 | 857 | 1040 | 16700 | 4180 | 3440 | 4690 | 1530 | 1070 | 687 | 607 | | 5 | 486 | 882 | 830 | 1390 | 27000 | 3820 | 6160 | 6310 | 1490 | 1150 | 686 | 597 | | 6 | 487 | 764 | 791 | 2180 | 16800 | 3350 | 6420 | 7070 | 1480 | 1050 | 669 | 602 | | 7 | 482 | 769 | 745 | 2790 | 15500 | 3050 | 5510 | 5900 | 1400 | 995 | 661 | 599 | | 8 | 478 | 1380 | 707 | 30300 | 12000 | 3200 | 4630 | 7410 | 1340 | 988 | 669 | 656 | | 9 | 471 | 2040 | 675 | 33200 | 9850 | 6270 | 4580 | 11100 | 1280 | 1040 | 746 | 698 | | 10 | 468 | 1600 | 669 | 9670 | 7860 | 12500 | 8540 | 7890 | 1270 | 1020 | 766 | 641 | | 11 | 465 | 1160 | 711 | 5840 | 7120 | 9630 | 7760 | 6710 | 1280 | 960 | 912 | 623 | | 12 | 460 | 934 | 806 | 4250 | 7920 | 7820 | 6230 | 6680 | 1270 | 905 | 872 | 620 | | 13 | 460 | 803 | 889 | 3600 | 9270 | 5910 | 5360 | 5270 | 1400 | 870 | 827 | 621 | | 14 | 464 | 757 | 850 | 3140 | 8400 | 4660 | 4820 | 4400 | 1360 | 846 | 792 | 609 | | 15 | 477 | 757 | 801 | 3030 | 6880 | 4290 | 4280 | 3840 | 1420 | 828 | 778 | 602 | | 16 | 468 | 770 | 788 | 5300 | 5830 | 3690 | 4220 | 3390 | 1750 | 829 | 925 | 595 | | 17 | 467 | 772 | 744 | 6200 | 11700 | 3170 | 8420 | 3010 | 1780 | 826 | 1170 | 588 | | 18 | 470 | 732 | 677 | 5220 | 30200 | 2950 | 11800 | 2780 | 1650 | 814 | 1360 | 583 | | 19 | 479 | 686 | 660 | 4540 | 18900 | 14000 | 7700 | 2540 | 1430 | 803 | 1100 | 587 | | 20 | 478 | 652 | 639 | 4050 | 15300 | e15500 | 26300 | 2260 | 1390 | 797 | 957 | 578 | | 21 | 469 | 645 | 622 | 3410 | 13700 | e31100 | 18000 | 2080 | 1570 | 780 | 890 | 579 | | 22 | 465 | 704 | 638 | 2880 | 11100 | e18100 | 11700 | 1940 | 1410 | 765 | 846 | 583 | | 23 | 461 | 790 | 728 | 3940 | 8520 | e16400 | 7850 | 1870 | 1300 | 769 | 798 | 578 | | 24 | 467 | 853 | 765 | 8780 | 9240 | 13400 | 6280 | 2030 | 1210 | 791 | 766 | 574 | | 25 | 519 | 814 | 967 | 7920 | 8080 | 11400 | 5380 | 2360 | 1140 | 807 | 740 | 570 | | 26 | 568 | 755 | 1440 | 6320 | 6940 | 8620 | 4730 | 2400 | 1070 | 775 | 737 | 566 | | 27 | 641 | 711 | 1380 | 5320 | 6320 | 6090 | 4050 | 2190 | 1070 | 760 | 722 | 563 | | 28 | 633 | 678 | 1350 | 9060 | 5730 | 5050 | 3620 | 5110 | 1040 | 749 | 709 | 560 | | 29 | 591 | 658 | 1250 | 13000 | | 4630 | 3260 | 3690 | 1360 | 743 | 692 | 552 | | 30 | 576 | 649 | 1190 | 10400 | | 4290 | 3030 | 2820 | 1440 | 731 | 675 | 546 | | 31 | 541 | | 1090 | 9270 | | 3570 | | 2360 | | 735 | 673 | | | TOTAL | 15773 | 26761 | 27204 | 208783 | 315540 | 245960 | 203190 | 131300 | 42660 | 27926 | 24988 | 18014 | | MEAN | 509 | 892 | 878 | 6735 | 11270 | 7934 | 6773 | 4235 | 1422 | 901 | 806 | 600 | | MAX | 648 | 2040 | 1440 | 33200 | 30200 | 31100 | 26300 | 11100 | 2060 | 1390 | 1360 | 698 | | MIN | 460 | 596 | 622 | 882 | 5360 | 2950 | 2960 | 1870 | 1040 | 731 | 661 | 546 | | (†) | -3731 | +2672 | +1361 | +20822 | -1160 | -151 | -101 | +504 | +101 | -5092 | -6201 | -5949 | | MEAN‡ | 388 | 981 | 921 | 7407 | 11230 | 7929 | 6770 | 4252 | 1425 | 737 | 606 | 402 | | CFSM‡ | .19 | . 47 | . 44 | 3.57 | 5.41 | 3.82 | 3.26 | 2.05 | .69 | .35 | .29 | .19 | | IN.‡ | .22 | .53 | .51 | 4.12 | 5.64 | 4.41 | 3.64 | 2.36 | .77 | .41 | .34 | .22 | $[\]dagger$ Total change in contents, equivalent in cubic feet per second, per month, in Lake Moomaw; provided by U.S. Army Corps of Engineers. 26000 33200 MIN MIN 460 MEAN‡ MEAN‡ 1908 3537 CFSM‡ CFSM1 1.70 TN. ± 23.15 1962 3529 MAX MEAN MEAN 715976 1288099 TOTAL TOTAL CAL YR 1996 WTR YR 1997 [‡] Adjusted for monthly change in contents. e Estimated. # 02019500 JAMES RIVER AT BUCHANAN, VA--Continued | | IICS OF M | ONTHLY MEAN | DATA E | OR WATER | YEARS 189 | 3 - 1979, | BY WATER | YEAR (WY) | [UNRE | GULATED] | | | |--|---|---|--|---|---|--|--|---|-------------------------------------|---|--|--| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 1261 | 1488 | 2488 | 3426 | 4035 | 5103 | 3873 | 2897 | 1923 | | 1192 | 921 | | MAX
(WY) | 6980
1907 | 5807
1973 | 8377 | 10140 | 8459
1927 | 11460
1955 | 8920
1901 | 7186
1942 | 7606
1972 | 5080
1905 | 6187
1940 | 4507
1979 | | (WY)
MIN | 294 | 329 | 351 | 1937
371
1956 | 412 | 1779 | 1097 | 685 | 525 | 263 | 289 | 281 | | (WY) | 1931 | 1932 | 8377
1949
351
1966 | 1956 | 1934 | 1940 | 1915 | 1930 | 1970 | 1966 | 1964 | 1968 | | SUMMARY | Y STATIST | ICS | V | ATER YEAR | s 1898 - 1 | 1979 | | | | | | | | ANNUAL HIGHES' LOWEST HIGHES' LOWEST ANNUAL INSTAN' INSTAN' ANNUAL 10 PERC | MEAN I ANNUAL M ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P TANEOUS L RUNOFF (CENT EXCE CENT EXCE | MEAN EAN EAN Y MINIMUM EAK FLOW EAK STAGE OW FLOW CFSM) INCHES) EDS EDS EDS | 11 | 2475
4138
1318
22200
207
212
50000
a31.00
202
1.19
16.20
5220
1300
410 | Jun 22
Sep 12
Sep 7
Mar 27
Mar 27
Sep 8 | 1973
1956
1972
1966
1966
1913
1913
1966 | | | | | | | | STATIST | TICS OF M | ONTHLY MEAN | DATA E | OR WATER | YEARS 198 |) - 1998, | BY WATER | YEAR (WY) | [REGU | LATED, UNADJ | USTED] | | | | OCT | NOV | DEC | JAN | FEB | MAR | | | | | | | | MEAN | | | | | | | APR | MAY | JUN | JUL | AUG | SEP | | | 1263 | 2030 | 2345 | 3714 | 4299 | 5444 | 4748 | 3271 | 2215 | 1075 | 1071 | 1127 | | MAX | 5679 | 2030
10190 | 2345
6450 | 3714
10310 | 4299
11270 | 5444
12790 | 4748
16170 | 3271
8908 | 2215
5251 | 1075
2236 | 1071
3834 | 1127
4288 | | (WY) | 5679
1990 | 2030
10190
1986 | 2345
6450
1997 | 3714
10310
1996 | 4299
11270
1998 | 5444
12790
1993 | 4748
16170
1987 | 3271
8908
1989 | 2215
5251
1982 | 1075
2236
1989 | 1071
3834
1984 | 1127
4288
1996 | | (WY)
MIN | 5679
1990
419 | 2030
10190
1986 | 2345
6450
1997 | 3714
10310
1996
396 | 4299
11270
1998
1260 | 5444
12790
1993
922 | 4748
16170
1987
1081 | 3271
8908
1989
1515 | 2215
5251
1982
841 | 1075
2236
1989
651 | 1071
3834
1984
338 | 1127
4288
1996
361 | | (WY) | 5679
1990
419 | 2030
10190
1986 | 2345
6450
1997 | 3714
10310
1996 | 4299
11270
1998 | 5444
12790
1993
922 | 4748
16170
1987
1081 | 3271
8908
1989 | 2215
5251
1982 | 1075
2236
1989 | 1071
3834
1984 | 1127
4288
1996 | | (WY) MIN (WY) | 5679
1990
419
1981
Y STATIST | 2030
10190
1986
453
1982 | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981 | 4299
11270
1998
1260
1981 | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995 | 3271
8908
1989
1515
1991 | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981 | 1071
3834
1984
338
1981 | 1127
4288
1996
361
1981 | | (WY) MIN (WY) | 5679
1990
419
1981
Y STATIST | 2030
10190
1986
453
1982 | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981 | 4299
11270
1998
1260
1981 | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995 | 3271
8908
1989
1515
1991 | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981 | 1071
3834
1984
338
1981 | 1127
4288
1996
361
1981 | | (WY) MIN (WY) | 5679
1990
419
1981
Y STATIST | 2030
10190
1986
453
1982 | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981
1997 CALE | 4299
11270
1998
1260
1981 | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995
OR 1998 WA | 3271
8908
1989
1515
1991 | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981 | 1071
3834
1984
338
1981 | 1127
4288
1996
361
1981 | | (WY) MIN (WY) | 5679
1990
419
1981
Y STATIST | 2030
10190
1986
453
1982 | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981
1997 CALE | 4299
11270
1998
1260
1981 | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995
OR 1998 WA | 3271
8908
1989
1515
1991 | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981
WATER YEA | 1071
3834
1984
338
1981 | 1127
4288
1996
361
1981 | | (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES | 5679
1990
419
1981
Y STATIST
TOTAL
MEAN
F ANNUAL |
2030
10190
1986
453
1982
ICS | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981
1997 CALE
715976
1962 | 4299
11270
1998
1260
1981
NDAR YEAR | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995
OR 1998 WA | 3271
8908
1989
1515
1991 | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981
WATER YEA | 1071
3834
1984
338
1981 | 1127
4288
1996
361
1981
- 1998 | | (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES | 5679
1990
419
1981
Y STATIST
TOTAL
MEAN
F ANNUAL | 2030
10190
1986
453
1982
ICS | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981
1997 CALE
715976
1962 | 4299
11270
1998
1260
1981
NDAR YEAR | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995
OR 1998 WA | 3271
8908
1989
1515
1991 | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981
WATER YEA
2707
3664 | 1071
3834
1984
338
1981
ARS 1980 | 1127
4288
1996
361
1981
- 1998 | | (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES | 5679
1990
419
1981
Y STATIST
TOTAL
MEAN
F ANNUAL | 2030
10190
1986
453
1982
ICS | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981
1997 CALE
715976
1962 | 4299
11270
1998
1260
1981
NDAR YEAR | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995
OR 1998 WA
1288099
3529 | 3271
8908
1989
1515
1991
ATER YEAR | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981
WATER YEA
2707
3664
1092 | 1071
3834
1984
338
1981
ARS 1980 | 1127
4288
1996
361
1981
- 1998 | | (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES | 5679
1990
419
1981
Y STATIST
TOTAL
MEAN
F ANNUAL | 2030
10190
1986
453
1982
ICS | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981
1997 CALE
715976
1962 | 4299
11270
1998
1260
1981
NDAR YEAR | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995
OR 1998 W
1288099
3529 | 3271
8908
1989
1515
1991
ATER YEAR
Jan 9
Oct 12 | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981
WATER YEA
2707
3664
1092
102000 | 1071
3834
1984
338
1981
ARS 1980
Nov
Oct | 1127
4288
1996
361
1981
- 1998
1987
1987
1981
5 1985 | | (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES' LOWEST LOWEST ANNUAL | 5679
1990
419
1981
Y STATIST
TOTAL
MEAN
F ANNUAL | 2030
10190
1986
453
1982
ICS
MEAN
EAN
EAN
AN | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981
1997 CALE
715976
1962 | 4299
11270
1998
1260
1981
NDAR YEAR | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995
POR 1998 WA
1288099
3529
33200
460 | 3271
8908
1989
1515
1991
ATER YEAR
Jan 9
Oct 12 | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981
WATER YEA
2707
3664
1092
102000
257 | 1071
3834
1984
338
1981
ARS 1980
Nov
Oct
Sep | 1127
4288
1996
361
1981
- 1998
1987
1981
5 1985
1 1981 | | (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES' LOWEST HIGHES' ANNUAL INSTAN' | 5679 1990 419 1981 Y STATIST TOTAL MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P TANEOUS P | 2030 10190 1986 453 1982 ICS MEAN EAN EAN Y MINIMUM EAK FLOW EAK STAGE | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981
1997 CALE
715976
1962
26000
460
466 | 4299
11270
1998
1260
1981
NDAR YEAR
Mar 4
Oct 12
Oct 11 | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995
FOR 1998 Wi
1288099
3529
33200
460
466
51000 | 3271
8908
1989
1515
1991
ATER YEAR
Jan 9
Oct 12
Oct 11
Jan 9
5 Jan 9 | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981
WATER YEA
2707
3664
1092
102000
257
268
179000
a38.84 | 1071
3834
1984
338
1981
RS 1980
NOV
Oct
Sep
Nov | 1127
4288
1996
361
1981
- 1998
1987
1981
5 1985
1 1981
29 1981 | | (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES' LOWEST HIGHES' ANNUAL INSTAN' | 5679 1990 419 1981 Y STATIST TOTAL MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P TANEOUS P | 2030 10190 1986 453 1982 ICS MEAN EAN EAN Y MINIMUM EAK FLOW EAK STAGE | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981
1997 CALE
715976
1962
26000
460
466 | 4299
11270
1998
1260
1981
NDAR YEAR
Mar 4
Oct 12
Oct 11 | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995
FOR 1998 Wi
1288099
3529
33200
460
466
51000 | 3271
8908
1989
1515
1991
ATER YEAR
Jan 9
Oct 12
Oct 11
Jan 9
5 Jan 9 | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981
WATER YEA
2707
3664
1092
102000
257
268
179000
a38.84 | 1071
3834
1984
338
1981
.RS 1980
Nov
Oct
Sep
Nov
Nov | 1127
4288
1996
361
1981
- 1998
1987
1981
5 1985
1 1985
1 1985
1 1985
5 1985 | | (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES' LOWEST HIGHES' ANNUAL INSTAN' | 5679 1990 419 1981 Y STATIST TOTAL MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P TANEOUS P | 2030 10190 1986 453 1982 ICS MEAN EAN EAN Y MINIMUM EAK FLOW EAK STAGE | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981
1997 CALE
715976
1962
26000
460
466 | 4299
11270
1998
1260
1981
NDAR YEAR
Mar 4
Oct 12
Oct 11 | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995
FOR 1998 Wi
1288099
3529
33200
460
466
51000
19.99
458
1.70 | 3271
8908
1989
1515
1991
ATER YEAR
Jan 9
Oct 12
Oct 11
Jan 9
5 Jan 9
bOct 11 | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981
WATER YEA
2707
3664
1092
102000
257
268
179000
a38.84
c230 | 1071
3834
1984
338
1981
.RS 1980
Nov
Oct
Sep
Nov
Nov | 1127
4288
1996
361
1981
- 1998
1987
1981
5 1985
1 1981
29 1981
5 1985
5 1985 | | (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES' LOWEST HIGHES' ANNUAL INSTAN' | 5679 1990 419 1981 Y STATIST TOTAL MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P TANEOUS P | 2030 10190 1986 453 1982 ICS MEAN EAN EAN Y MINIMUM EAK FLOW EAK STAGE | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981
1997 CALE
715976
1962
26000
460
466 | 4299
11270
1998
1260
1981
NDAR YEAR
Mar 4
Oct 12
Oct 11 | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995
OR 1998 W
1288099
3529
33200
460
466
51000
19.99 | 3271
8908
1989
1515
1991
ATER YEAR
Jan 9
Oct 12
Oct 11
Jan 9
5 Jan 9
bOct 11 | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981
WATER YEA
2707
3664
1092
102000
257
268
179000
a38.84
c230 | 1071
3834
1984
338
1981
.RS 1980
Nov
Oct
Sep
Nov
Nov | 1127
4288
1996
361
1981
- 1998
1987
1981
5 1985
1 1981
29 1981
5 1985
5 1985 | | (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES' LOWEST HIGHES' ANNUAL INSTAN' | 5679 1990 419 1981 Y STATIST TOTAL MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P TANEOUS P | 2030 10190 1986 453 1982 ICS MEAN EAN EAN Y MINIMUM EAK FLOW EAK STAGE | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981
1997 CALE
715976
1962
26000
460
466 | 4299
11270
1998
1260
1981
NDAR YEAR
Mar 4
Oct 12
Oct 11 | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995
FOR 1998 Wi
1288099
3529
33200
460
466
51000
19.99
458
1.70 | 3271
8908
1989
1515
1991
ATER YEAR
Jan 9
Oct 12
Oct 11
Jan 9
5 Jan 9
bOct 11 | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981
WATER YEA
2707
3664
1092
102000
257
268
179000
a38.84
c230 | 1071
3834
1984
338
1981
.RS 1980
Nov
Oct
Sep
Nov
Nov | 1127
4288
1996
361
1981
- 1998
1987
1981
5 1985
1 1981
29 1981
5 1985
5 1985 | | (WY) MIN (WY) SUMMARY ANNUAL ANNUAL HIGHES' LOWEST HIGHES' ANNUAL INSTAN' | 5679 1990 419 1981 Y STATIST TOTAL MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P TANEOUS P | 2030
10190
1986
453
1982
ICS
MEAN
EAN
EAN
Y MINIMUM
EAK FLOW
EAK STAGE | 2345
6450
1997
453
1981
FOR | 3714
10310
1996
396
1981
1997 CALE
715976
1962
26000
460
466 | 4299
11270
1998
1260
1981
NDAR YEAR
Mar 4
Oct 12
Oct 11 | 5444
12790
1993
922
1981 | 4748
16170
1987
1081
1995
FOR 1998 Wi
1288099
3529
33200
460
466
51000
19.94
458
1.77
23.09 | 3271
8908
1989
1515
1991
ATER YEAR
Jan 9
Oct 12
Oct 11
Jan 9
5 Jan 9
bOct 11 | 2215
5251
1982
841
1994 | 1075
2236
1989
651
1981
WATER YEA
2707
3664
1092
102000
257
268
179000
a38.84
c230
1.30
17.73 |
1071
3834
1984
338
1981
.RS 1980
Nov
Oct
Sep
Nov
Nov | 1127
4288
1996
361
1981
- 1998
1987
1981
5 1985
1 1981
29 1981
5 1985
5 1985 | a From floodmarks. b Also Oct. 12-14, 22-24, 1997. c Result of freezeup. d Also Jan. 12, 1981. # 02021500 MAURY RIVER AT ROCKBRIDGE BATHS, VA LOCATION.--Lat 37°54'26", long 79°25'20", Rockbridge County, Hydrologic Unit 02080202, on right bank at Rockbridge Baths, 1,200 ft upstream from bridge on State Highway 39, and 1.0 mi upstream from Hays Creek. DRAINAGE AREA. -- 329 mi². PERIOD OF RECORD.--October 1928 to current year. Monthly discharge only for some periods, published in WSP 1303. Prior to October 1945, published as North River at Rockbridge Baths. REVISED RECORDS.--WSP 972: 1929-40, 1941(M). WSP 1002: 1930(m). WSP 1553: 1931(m). GAGE.--Water-stage recorder. Datum of gage is 1,100.33 ft above sea level (levels by U.S. Army Corps of Engineers). REMARKS.--Records good except for period of no gage-height record, Nov. 12-14, which is fair. Since 1966, some regulation at times by Lake Merriweather on Little Calfpasture River. National Weather Service gage-height telemeter at station. Maximum discharge, 87,700 ft³/s, from rating curve extended above 16,000 ft³/s on basis of slope-area measurement at peak flow. Minimum gage height, 0.79 ft, Sept. 10, 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 4,500 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1715 | *22,900 | *11.52 | Mar. 19 | 1000 | 7,160 | 7.68 | | Feb. 18 | 0230 | 4,560 | 6.44 | Mar. 21 | 0745 | 8,940 | 8.31 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 18 ft³/s, Sept. 29. | | | | • | | Di | AILY MEAN | VALUES | | | | | | |-------|------|------|------|-------|-------|-----------|--------|-------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 32 | 110 | 166 | 214 | 1220 | 922 | 407 | 387 | 136 | 307 | 35 | 23 | | 2 | 28 | 265 | 161 | 203 | 1040 | 844 | 376 | 634 | 123 | 213 | 34 | 22 | | 3 | 27 | 239 | 143 | 210 | 1050 | 723 | 313 | 763 | 110 | 162 | 31 | 21 | | 4 | 27 | 188 | 155 | 298 | 1690 | 613 | 514 | 1080 | 102 | 135 | 30 | 21 | | 5 | 27 | 145 | 154 | 633 | 2970 | 492 | 810 | 947 | 101 | 140 | 30 | 22 | | 6 | 27 | 122 | 142 | 883 | 2320 | 396 | 749 | 1040 | 99 | 114 | 28 | 22 | | 7 | 26 | 584 | 130 | 883 | 2080 | 354 | 657 | 859 | 94 | 95 | 28 | 20 | | 8 | 26 | 1130 | 123 | 13100 | 1660 | 447 | 583 | 1630 | 86 | 122 | 30 | 24 | | 9 | 25 | 966 | 117 | 5540 | 1410 | 1890 | 853 | 2060 | 81 | 132 | 33 | 22 | | 10 | 25 | 556 | 128 | 3260 | 1220 | 2340 | 1640 | 1390 | 87 | 98 | 37 | 22 | | 11 | 24 | 365 | 188 | 2210 | 1170 | 1400 | 1230 | 991 | 84 | 81 | 49 | 23 | | 12 | 25 | e243 | 207 | 1670 | 1440 | 1010 | 946 | 851 | 86 | 69 | 41 | 22 | | 13 | 25 | e195 | 204 | 1420 | 1620 | 803 | 772 | 713 | 90 | 63 | 35 | 22 | | 14 | 25 | e174 | 195 | 1190 | 1330 | 687 | 658 | 590 | 89 | 58 | 32 | 22 | | 15 | 28 | 208 | 178 | 1200 | 1050 | 589 | 579 | 501 | 261 | 55 | 34 | 21 | | 16 | 26 | 189 | 161 | 2060 | 878 | 499 | 504 | 416 | 461 | 52 | 40 | 20 | | 17 | 28 | 170 | 148 | 2020 | 2020 | 432 | 600 | 428 | 898 | 51 | 44 | 21 | | 18 | 27 | 154 | 138 | 1650 | 3710 | 495 | 554 | 468 | 410 | 49 | 41 | 21 | | 19 | 29 | 139 | 128 | 1380 | 2260 | 5150 | 677 | 345 | 352 | 48 | 38 | 21 | | 20 | 28 | 129 | 120 | 1200 | 1710 | 3580 | 2480 | 285 | 660 | 46 | 36 | 21 | | 21 | 27 | 125 | 114 | 797 | 1450 | 7500 | 1700 | 248 | 400 | 43 | 33 | 21 | | 22 | 27 | 158 | 118 | 636 | 1180 | 3590 | 1100 | 218 | 264 | 41 | 32 | 21 | | 23 | 26 | 176 | 129 | 1490 | 1090 | 1990 | 876 | 204 | 204 | 41 | 31 | 20 | | 24 | 28 | 168 | 131 | 2260 | 1240 | 1410 | 785 | 213 | 172 | 51 | 29 | 19 | | 25 | 42 | 159 | 331 | 1800 | 1170 | 1070 | 648 | 210 | 145 | 44 | 67 | 20 | | 26 | 50 | 150 | 412 | 1310 | 1040 | 872 | 556 | 165 | 204 | 39 | 128 | 21 | | 27 | 54 | 141 | 403 | 1050 | 949 | 744 | 519 | 185 | 148 | 39 | 120 | 21 | | 28 | 46 | 130 | 362 | 2040 | 883 | 647 | 450 | 294 | 136 | 38 | 90 | 20 | | 29 | 39 | 122 | 310 | 2550 | | 572 | 356 | 223 | 565 | 37 | 26 | 19 | | 30 | 36 | 119 | 298 | 1990 | | 508 | 338 | 183 | 479 | 35 | 25 | 19 | | 31 | 35 | | 263 | 1610 | | 445 | | 156 | | 36 | 24 | | | TOTAL | 945 | 7719 | 5957 | 58757 | 42850 | 43014 | 23230 | 18677 | 7127 | 2534 | 1311 | 634 | | MEAN | 30.5 | 257 | 192 | 1895 | 1530 | 1388 | 774 | 602 | 238 | 81.7 | 42.3 | 21.1 | | MAX | 54 | 1130 | 412 | 13100 | 3710 | 7500 | 2480 | 2060 | 898 | 307 | 128 | 24 | | MIN | 24 | 110 | 114 | 203 | 878 | 354 | 313 | 156 | 81 | 35 | 24 | 19 | | CFSM | .09 | .78 | .58 | 5.76 | 4.65 | 4.22 | 2.35 | 1.83 | .72 | . 25 | .13 | .06 | | IN. | .11 | .87 | .67 | 6.64 | 4.85 | 4.86 | 2.63 | 2.11 | .81 | . 29 | .15 | .07 | e Estimated. # 02021500 MAURY RIVER AT ROCKBRIDGE BATHS, VA--Continued | STATIST | TICS OF M | ONTHLY MEAN | DATA | FOR WATER | YEARS 1929 | - 1998, | BY WATE | R YEAR (WY) |) | | | | |---------|-----------|-------------|------|-----------|------------|---------|---------|-------------|------|----------|----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 196 | 276 | 409 | 560 | 626 | 852 | 625 | 471 | 274 | 120 | 138 | 135 | | MAX | 1254 | 2689 | 1450 | 1895 | 1530 | 2017 | 2245 | 1463 | 1374 | 807 | 1016 | 1388 | | (WY) | 1980 | 1986 | 1974 | 1998 | 1998 | 1936 | 1987 | 1989 | 1995 | 1972 | 1969 | 1996 | | MIN | 16.5 | 24.1 | 26.6 | 32.3 | 50.9 | 117 | 122 | 81.0 | 34.7 | 14.6 | 14.9 | 16.1 | | (WY) | 1931 | 1931 | 1966 | 1981 | 1934 | 1981 | 1995 | 1930 | 1964 | 1966 | 1964 | 1930 | | SUMMAR | Y STATIST | CICS | FOR | 1997 CAL | ENDAR YEAR | F | OR 1998 | WATER YEAR | | WATER YE | ARS 1929 | - 1998 | | ANNUAL | TOTAL | | | 107322 | | | 212755 | | | | | | | ANNUAL | MEAN | | | 294 | | | 583 | | | 389 | | | | HIGHEST | r annual | MEAN | | | | | | | | 685 | | 1973 | | LOWEST | ANNUAL M | IEAN | | | | | | | | 157 | | 1981 | | HIGHEST | r daily M | IEAN | | 3950 | Mar 4 | | 13100 | Jan 8 | | 41500 | Nov | 5 1985 | | LOWEST | DAILY ME | AN | | 24 | Oct 11 | | 19 | aSep 24 | | 7.1 | Sep | 10 1966 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 25 | Oct 8 | | 20 | Sep 24 | | 8.2 | Sep | 7 1966 | | INSTANT | TANEOUS F | PEAK FLOW | | | | | 22900 | Jan 8 | | 87700 | Nov | 5 1985 | | INSTAN | TANEOUS F | PEAK STAGE | | | | | 11. | 52 Jan 8 | | b19.19 | Nov | 5 1985 | | INSTAN | TANEOUS I | OW FLOW | | | | | 18 | Sep 29 | | 5.8 | Sep | 10 1966 | | ANNUAL | RUNOFF (| CFSM) | | . : | 89 | | 1. | 77 | | 1.18 | | | | ANNUAL | RUNOFF (| INCHES) | | 12. | 13 | | 24. | 06 | | 16.07 | | | | 10 PERG | CENT EXCE | EDS | | 646 | | | 1540 | | | 900 | | | | 50 PERG | CENT EXCE | EDS | | 171 | | | 188 | | | 157 | | | | 90 PERG | CENT EXCE | EDS | | 28 | | | 25 | | | 30 | | | a Also Sept. 29, 30, 1998. b From floodmarks. CFSM IN. .17 .19 .67 .75 .60 4.47 5.16 4.86 5.06 3.65 4.21 2.44 2.73 2.00 2.30 .91 .49 1.02 .15 .17 .31 #### JAMES RIVER BASIN #### 02024000 MAURY RIVER NEAR BUENA VISTA, VA LOCATION.--Lat 37°45'45", long 79°23'30", Rockbridge County, Hydrologic Unit 02080202, on right bank 0.5 mi downstream from South River and 2.8 mi northwest of Buena Vista. DRAINAGE AREA. -- 646 mi². PERIOD OF RECORD.--October 1938 to current year. Monthly discharge only for some periods, published in WSP 1303. Prior to October 1945, published as North River near Buena Vista. REVISED RECORDS. -- WSP 952: 1940-41. WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 846.58 ft above sea level. REMARKS.--No estimated daily discharges. Records good. Since 1966, some regulation at times by Lake Merriweather on Little Calfpasture River. Maximum discharge, $105,000~{\rm ft}^3/{\rm s}$, from rating curve extended above 17,000 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. Minimum discharge, 20 ft³/s, occurred during filling of a small reservoir 2 mi upstream. Unqualified minimum discharge, 37 ft³/s, Sept. 9, 1966. Minimum gage height, 0.98 ft, Jan. 5, 1981. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 18, 1936, reached a stage of about 22 ft, from information by local residents. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $6,200~{\rm ft}^3/{\rm s}$ and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1945 | *22,500 | *15.20 | Mar. 19 | 1345 | 7,790 | 8.56 | | Feb. 17 | 1800 | 8,890 | 9.24 | Mar. 21 | 0900 | 11,300 | 10.62 | Minimum discharge, 80 ft³/s, Sept. 30. DAY OCT FEB MAR JUN JUL SEP NOV DEC JAN APR MAY AUG ------___ ___ TOTAL MEAN MAX MIN .52 .43 .27 JAMES RIVER BASIN # 02024000 MAURY RIVER NEAR BUENA VISTA, VA--Continued | STATIS | TICS OF M | ONTHLY MEAN | DATA F | OR WATER | YEARS 1939 | - 1998, | BY WATER | YEAR (WY) | | | | | |---------|-----------|-------------|--------|-----------|------------|---------|-------------|-----------|------|---------|-----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY
| JUN | JUL | AUG | SEP | | MEAN | 366 | 476 | 704 | 921 | 1082 | 1378 | 1066 | 824 | 554 | 280 | 326 | 291 | | MAX | 1997 | 3400 | 2430 | 2891 | 3140 | 3187 | 3672 | 2373 | 2647 | 1351 | 3060 | 2087 | | (WY) | 1980 | 1986 | 1949 | 1998 | 1998 | 1993 | 1987 | 1989 | 1995 | 1972 | 1969 | 1996 | | MIN | 72.1 | 83.3 | 76.4 | 100 | 273 | 240 | 276 | 224 | 120 | 53.7 | 63.4 | 75.2 | | (WY) | 1942 | 1966 | 1966 | 1981 | 1977 | 1981 | 1995 | 1941 | 1964 | 1966 | 1964 | 1963 | | SUMMAR | Y STATIST | 'ICS | FOR | 1997 CALE | NDAR YEAR | F | OR 1998 WA' | TER YEAR | | WATER Y | EARS 1939 | - 1998 | | ANNUAL | TOTAL | | | 202442 | | | 399332 | | | | | | | ANNUAL | MEAN | | | 555 | | | 1094 | | | 687 | | | | HIGHES' | T ANNUAL | MEAN | | | | | | | | 1181 | | 1973 | | LOWEST | ANNUAL M | IEAN | | | | | | | | 269 | | 1981 | | HIGHES' | T DAILY M | IEAN | | 5830 | Mar 4 | | 14300 | Jan 8 | | 56000 | Aug | 20 1969 | | LOWEST | DAILY ME | AN | | 90 | Oct 14 | | 82 | Sep 30 | | 22 | Oct | 10 1941 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 92 | Oct 8 | | 92 | Sep 24 | | 40 | Sep | 7 1966 | | INSTAN | TANEOUS P | EAK FLOW | | | | | 22500 | Jan 8 | | 105000 | Aug | 20 1969 | | INSTAN | TANEOUS P | EAK STAGE | | | | | 15.20 | Jan 8 | | 31.2 | 3 Aug | 20 1969 | | INSTAN | TANEOUS L | OW FLOW | | | | | 80 | Sep 30 | | 20 | Oct | 10 1941 | | ANNUAL | RUNOFF (| CFSM) | | .8 | 6 | | 1.69 | | | 1.0 | 16 | | | ANNUAL | RUNOFF (| INCHES) | | 11.6 | 6 | | 23.00 | | | 14.4 | 15 | | | 10 PER | CENT EXCE | EDS | | 1290 | | | 2810 | | | 1520 | | | | 50 PER | CENT EXCE | EDS | | 339 | | | 418 | | | 350 | | | | 90 PER | CENT EXCE | EDS | | 107 | | | 101 | | | 107 | | | #### 02025500 JAMES RIVER AT HOLCOMB ROCK, VA LOCATION.--Lat 37°30'04", long 79°15'46", Bedford County, Hydrologic Unit 02080203, on right bank at Holcomb Rock, 0.9 mi downstream from Pedlar River, and at mile 268.6. DRAINAGE AREA. -- 3,259 mi². PERIOD OF RECORD.--January 1900 to September 1915 (gage heights only), October 1926 to current year. Monthly discharge only for some periods, published in WSP 1303. Published as "at Salt Creek" December 1926 to June 1931 and as "at Holcombs Rock" June 1931 to September 1990. REVISED RECORDS.--WSP 972: 1913(M), 1932-33, 1935(M), 1936. WSP 1303: 1928(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 548.53 ft above sea level. January 1900 to September 1915, nonrecording gage in powerhouse of Owens Illinois Glass Company 1,000 ft upstream at different datum. December 1926 to June 1931, water-stage recorder at site 2 mi downstream at different datum. REMARKS.--Records good, except for periods of doubtful gage-height record, Jan. 8, 9, 24, Feb. 4-6, Mar. 21, 22, and Apr. 17, 18, which are fair. Some diurnal fluctuation caused by powerplants upstream from station. Flow regulated since December 1979 by Lake Moomaw (station 02011795) 117.4 mi upstream; since October 1984 by Back Creek Lake 145.4 mi upstream; and since January 1985 by Little Back Creek Lake 148.5 mi upstream; amount unknown. National Weather Service gage-height telemeter at station. Maximum discharge, 207,000 ft³/s, from rating curve extended above 73,000 ft^3/s on basis of records for other stations in James River Basin. Minimum gage height, 2.80 ft, Oct. 29, 1987. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in March 1913 reached a stage of 31.3 ft, from floodmarks, discharge, 118,000 ft³/s, from rating curve extended as explained above. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 25,000 ft³/s and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|--------------------|-----------------------------------|---------------------|--------------------|-----------------|-----------------------------------|---------------------| | Jan. 9
Feb. 4 | Unknown
Unknown | *Unknown
Unknown | *Unknown
Unknown | Mar. 19
Mar. 21 | 2245
Unknown | 26,700
Unknown | 14.87
Unknown | | Feb. 18 | 1345 | 41,600 | 18.55 | Apr. 20 | 1945 | 35,500 | 17.14 | Minimum daily discharge, 555 ft³/s, Sept. 3. | | | DISC | HARGE, I | .N CODIC FE. | EI PEK S | DAILY MEA | | CIOBER 199 | / 10 SE. | PIEMBER 199 | 0 | | |----------|------------|--------------|--------------|---------------|----------------|---------------|--------------|--------------|--------------|--------------|--------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 921 | 1180 | 1130 | 1530 | 11300 | 8100 | 4650 | 4410 | 2740 | 2030 | 1010 | 899 | | 2 | 881 | 1410 | 1430 | 1420 | 9270 | 7900 | 4490 | 5250 | 2450 | 1740 | 990 | 827 | | 3 | 847 | 1760 | 1480 | 1370 | 8210 | 7120 | 4480 | 6370 | 2160 | 1590 | 834 | 555 | | 4 | 805 | 1680 | 1330 | 1460 | e24000 | 6360 | 5570 | 7020 | 2070 | 1490 | 918 | 848 | | 5 | 791 | 1440 | 1270 | 1820 | e37500 | 5700 | 8030 | 8270 | 1930 | 1530 | 912 | 787 | | 6 | 774 | 1170 | 1310 | 2760 | e25000 | 5090 | 8910 | 9830 | 1920 | 1500 | 897 | 806 | | 7 | 778 | 1630 | 1090 | 3980 | 22100 | 4320 | 7550 | 8770 | 1880 | 1370 | 865 | 790 | | 8 | 766 | 2170 | 1120 | e27500 | 17000 | 4930 | 6430 | 9830 | 1700 | 1350 | 953 | 872 | | 9 | 732 | 3300 | 1090 | e48500 | 14100 | 10000 | 6470 | 15100 | 1680 | 1460 | 1080 | 970 | | 10 | 638 | 2870 | 1090 | 16900 | 11900 | 17500 | 10100 | 12600 | 1720 | 1440 | 1090 | 878 | | 11 | 715 | 2030 | 1090 | 10100 | 10600 | 13900 | 11100 | 9880 | 1690 | 1310 | 1050 | 705 | | 12 | 714
762 | 1610
1420 | 1210
1280 | 7090
5890 | 13000
14000 | 11100
9170 | 8760
7400 | 9680
7950 | 1700
1780 | 1250
1180 | 1150
1070 | 857
769 | | 13
14 | 762 | 1340 | 1280 | 4900 | 13000 | 9170
7170 | 6640 | 7950
6670 | 1760 | 1180 | 1160 | 769
793 | | 15 | 733 | 1340 | 1270 | 4860 | 10800 | 6350 | 5900 | 5580 | 1890 | 1150 | 1020 | 793
792 | | | | 1300 | | | | 0330 | | 5560 | 1090 | 1150 | 1020 | 192 | | 16 | 717 | 1270 | 1180 | 7820 | 9460 | 5660 | 5620 | 4960 | 2350 | 1130 | 1100 | 790 | | 17 | 725 | 1180 | 1170 | 9450 | 19100 | 4720 | e10000 | 4780 | 3330 | 1160 | 1510 | 785 | | 18 | 746 | 1200 | 1100 | 7940 | 38300 | 4470 | e15000 | 4270 | 2870 | 1090 | 1560 | 793 | | 19 | 738 | 1130 | 1060 | 6710 | 26600 | 13500 | 11500 | 3930 | 2270 | 1090 | 1390 | 792 | | 20 | 734 | 1140 | 1020 | 5950 | 20600 | 23900 | 28000 | 3560 | 2280 | 1080 | 1160 | 797 | | 21 | 734 | 1070 | 1020 | 5070 | 17900 | e46000 | 24500 | 3240 | 2310 | 1060 | 1120 | 795 | | 22 | 734 | 1210 | 1060 | 4190 | 15300 | e37300 | 16300 | 2970 | 2110 | 1050 | 1030 | 801 | | 23 | 724 | 1270 | 1090 | 7060 | 12800 | 21800 | 12000 | 2770 | 1870 | 1070 | 1000 | 786 | | 24 | 739 | 1290 | 1160 | e12500 | 13000
12100 | 17600 | 9500 | 2820
3030 | 1710
1620 | 1070 | 959 | 774 | | 25 | 778 | 1280 | 1310 | 12600 | 12100 | 15000 | 8120 | 3030 | 1620 | 1080 | 971 | 775 | | 26
27 | 860 | 1220 | 1810
2050 | 10000
8340 | 10400
9360 | 12400
9500 | 7110
6210 | 3190
3050 | 1520
1530 | 1020
1060 | 982
1020 | 774
774 | | 28 | 963
953 | 1140
1140 | 2010 | 15300 | 8550 | 7480 | 5360 | 5600 | 1510 | 1040 | 999 | 768 | | 28
29 | 902 | 1090 | 1930 | 20400 | 8550 | 6650 | 4810 | 5340 | 1770 | 1020 | 999 | 780 | | 30 | 888 | 1070 | 1810 | 15800 | | 6070 | 4380 | 3980 | 2290 | 992 | 941 | 764 | | 31 | 837 | | 1690 | 14100 | | 5460 | | 3250 | | 1030 | 913 | | | TOTAL | 24358 | 44010 | 40880 | 303310 | 455250 | 362220 | 274890 | 187950 | 60410 | 38602 | 32635 | 23896 | | MEAN | 786 | 1467 | 1319 | 9784 | 16260 | 11680 | 9163 | 6063 | 2014 | 1245 | 1053 | 797 | | MAX | 963 | 3300 | 2050 | 48500 | 38300 | 46000 | 28000 | 15100 | 3330 | 2030 | 1560 | 970 | | MIN | 638 | 1070 | 1020 | 1370 | 8210 | 4320 | 4380 | 2770 | 1510 | 992 | 834 | 555 | | (†) | -3731 | +2672 | +1361 | +20822 | -1160 | -151 | -101 | +504 | +101 | -5092 | -6201 | -5949 | | MEAN‡ | 665 | 1556 | 1363 | 10456 | 16218 | 11680 | 9160 | 6079 | 2017 | 1081 | 853 | 598 | | CFSM‡ | .20 | .48 | | 3.21 | 4.98 | 3.58 | 2.81 | | | .33 | .26 | .18 | | IN.‡ | .24 | .53 | .42 | 3.70 | 5.18 | 4.13 | 3.14 | 2.15 | .62
.69 | .38 | .30 | .20 | | CAL YR | 1997 | TOTAL 101 | 1886 | MEAN 2772 | | | MIN 620 | | 2719 | CFSM‡ .8 | | ‡ 11.33 | | WTR YR | 1998 | TOTAL 184 | 8411 | MEAN 5064 | MAX | 48500 | MIN 555 | MEAN‡ | 5073 | CFSM‡ 1.5 | 6 IN. | ‡ 21.14 | [†] Total change in contents, equivalent in cubic feet per second, per month, in Lake Moomaw; provided by U.S. Army Corps of Engineers. ‡ Adjusted for monthly change in contents. # 02025500 JAMES RIVER AT HOLCOMB ROCK, VA--Continued | NEAR | STATISTICS OF MONTHLY MEAN | N DATA FOR WATER YEA | ARS 1927 - 1979, | BY WATER YEAR (WY) | [UNREGULATED] | |
---|--|---|--|--|--|---| | ANNUAL MEAN 3663 HIGHEST ANNUAL MEAN 6241 1973 LOWEST ANNUAL MEAN 1947 1956 HIGHEST ANNUAL MEAN 118000 Jun 22 1972 LOWEST DAILY MEAN 118000 Jun 22 1972 LOWEST DAILY MEAN 18000 Jun 22 1972 LOWEST DAILY MEAN 18000 Aug 20 1969 INSTANTANEOUS PEAK FLOW 150000 Aug 20 1969 INSTANTANEOUS PEAK STAGE 335.50 Aug 20 1969 INSTANTANEOUS DEAK STAGE 35.50 Aug 20 1969 INSTANTANEOUS LOW FLOW 71 Oct 24 1963 ANNUAL RUNOFF (CFSM) 1.12 ANNUAL RUNOFF (INCHES) 15.26 10 PERCENT EXCEEDS 7910 50 PERCENT EXCEEDS 2100 90 PERCENT EXCEEDS 655 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1980 - 1998, BY WATER YEAR (WY) [REGULATED, UNADJUSTED] TO OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP MEAN 1980 3090 3426 5141 5934 7528 6752 4525 3258 1591 1526 1668 MAX 7966 17270 9246 13540 16260 16910 21670 12380 9990 4562 5640 7233 (WY) 1980 1986 1997 1996 1998 1993 1987 1989 1995 1995 1984 1996 MIN 690 785 890 730 2139 1472 1616 2205 1234 1009 595 674 (WY) 1992 1992 1981 1981 1981 1981 1981 1995 1991 1988 1986 1981 1983 SUMMARY STATISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEAR 980 - 1998 ANNUAL TOTAL 1011886 1848411 ANNUAL MEAN 2772 5064 3855 | OCT NOV
MEAN 2031 2352
MAX 10050 8975
(WY) 1938 1973
MIN 432 511 | DEC JAN
3690 4904
12750 14490 1
1949 1937
580 631 | FEB MAR
5803 7376
11260 15510
1939 1936
690 2741 | APR MAY
5785 4270
11840 10020
1935 1942
1798 1188 | JUN JUL
2701 1606
11320 6610
1972 1972
910 415 | AUG SEP
1953 1572
9834 7414
1940 1979
458 421 | | ANNUAL MEAN 3663 HIGHEST ANNUAL MEAN 6241 1973 LOWEST ANNUAL MEAN 1947 1956 HIGHEST DAILLY MEAN 118000 Jun 22 1972 LOWEST DAILLY MEAN 118000 Jun 22 1972 LOWEST DAILLY MEAN 118000 Jun 22 1972 LOWEST DAILLY MEAN 1233 Jul 28 1930 ANNUALSEVEN-DAY MINIMUM 306 Jul 23 1966 INSTANTANEOUS PEAK FLOW 150000 Aug 20 1969 INSTANTANEOUS PEAK STAGE 35.50 Aug 20 1969 INSTANTANEOUS LOW FLOW 71 Oct 24 1963 ANNUAL RUNOFF (CFSM) 1.12 ANNUAL RUNOFF (CFSM) 15.26 10 PERCENT EXCEEDS 7910 50 PERCENT EXCEEDS 7910 90 PERCENT EXCEEDS 655 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1980 - 1998, BY WATER YEAR (WY) [REGULATED, UNADJUSTED] MEAN 1980 3090 3426 5141 5934 7528 6752 4525 3258 1591 1526 1668 MAX 7966 17270 9246 13540 16260 16910 21670 12380 9990 4562 5640 7233 (WY) 1980 1986 1997 1996 1998 1993 1987 1989 1995 1995 1994 1996 MIN 690 785 890 730 2139 1472 1616 2205 1234 1009 595 674 (WY) 1992 1992 1981 1981 1981 1981 1981 1995 1991 1988 1986 1981 1983 SUMMARY STATISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEAR WATER YEARS 1980 - 1998 ANNUAL TOTAL 1011886 1848411 ANNUAL TOTAL 1011886 1848411 ANNUAL TOTAL 2772 5064 3855 | | | | 1942 1930 | 1964 1966 | 1930 1930 | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1980 - 1998, BY WATER YEAR (WY) [REGULATED, UNADJUSTED] OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP MAX 1980 1980 1980 1940 1526 1668 1691 1526 1668 1691 17270 9246 13540 16260 16910 21670 12380 9990 4562 5640 7233 (WY) 1980 1986 1997 1996 1998 1993 1987 1989 1995 1995 1995 1984 1996 MIN 690 785 890 730 2139 1472 1616 2205 1234 1009 595 674 (WY) 1992 1992 1981 1981 1981 1981 1981 1995 1991 1988 1986 1981 1983 SUMMARY STATISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEARS 1980 - 1998 ANNUAL TOTAL ANNUAL MEAN 2772 5064 3855 | SUMMARY STATISTICS | WATER YEARS | S 1927 - 1979 | | | | | OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP MEAN 1980 3090 3426 5141 5934 7528 6752 4525 3258 1591 1526 1668 MAX 7966 17270 9246 13540 16260 16910 21670 12380 9990 4562 5640 7233 (WY) 1980 1986 1997 1996 1998 1993 1987 1989 1995 1995 1984 1996 MIN 690 785 890 730 2139 1472 1616 2205 1234 1009 595 674 (WY) 1992 1992 1981 1981 1981 1981 1981 1995 1991 1988 1986 1981 1983 | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 3663
6241
1947
118000
223
306
150000
35.50
71
1.12
15.26
7910
2100
655 | 1973
1956
Jun 22 1972
Jul 28 1930
Jul 23 1966
Aug 20 1969
Aug 20 1969
Oct 24 1963 | | | | | MAX 7966 17270 9246 13540 16260 16910 21670 12380 9990 4562 5640 7233 (WY) 1980 1986 1997 1996 1998 1993 1987 1989 1995 1995 1984 1996 MIN 690 785 890 730 2139 1472 1616 2205 1234 1009 595 674 (WY) 1992 1992 1981 1981 1981 1981 1995 1991 1988 1986 1981 1983 SUMMARY STATISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEARS 1980 - 1998 ANNUAL TOTAL 1011886 1848411 ANNUAL MEAN 2772 5064 3855 | STATISTICS OF MONTHLY MEAN | N DATA FOR WATER YEA | ARS 1980 - 1998, | BY WATER YEAR (WY) | [REGULATED, UNAD | JUSTED] | | ANNUAL TOTAL 1011886 1848411
ANNUAL MEAN 2772 5064 3855 | OCT NOV
MEAN 1980 3090
MAX 7966 17270
(WY) 1980 1986
MIN 690 785
(WY) 1992 1992 | DEC JAN
3426 5141
9246 13540 1
1997 1996
890 730
1981 1981 | FEB MAR
5934 7528
16260 16910
1998 1993
2139 1472
1981 1981 | APR MAY
6752 4525
21670 12380
1987 1989
1616 2205
1995 1991 | JUN JUL
3258 1591
9990 4562
1995 1995
1234 1009
1988 1986 | 5640 7233
1984 1996
595 674 | | ANNUAL TOTAL 1011886 1848411 ANNUAL MEAN 2772 5064 3855 HIGHEST ANNUAL MEAN 5064 1998 LOWEST ANNUAL MEAN 1613 1981 HIGHEST DAILY MEAN 28100 Mar 4 e48500 Jan 9 180000 Nov 5 1985 LOWEST DAILY MEAN 620 Sep 7 555 Sep 3 244 Aug 28 1981 ANNUAL SEVEN-DAY MINIMUM 715 Oct 10 715 Oct 10 401 Aug 26 1981 INSTANTANEOUS PEAK FLOW (a) (b) 207000 Nov 5 1985 | SUMMARY STATISTICS | FOR 1997 CALENDA | AR YEAR F | OR 1998 WATER YEAR | WATER YE | ARS 1980 - 1998 | | INSTANTANEOUS PEAK STAGE (a) (b) c42.15 Nov 5 1985 INSTANTANEOUS LOW FLOW d100 Oct 10 20 Oct 29 1987 ANNUAL RUNOFF (CFSM) .85 1.55 1.18 ANNUAL RUNOFF (INCHES) 11.55 21.10 16.07 10 PERCENT EXCREDS 5770 13000 8400 | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS | 1011886
2772
28100
620
715
.85
11.55 | Mar 4
Sep 7
Oct 10 | 1848411
5064
e48500 Jan 9
555 Sep 3
715 Oct 10
(a) (b)
d100 Oct 10
1.55
21.10
13000 | | 1998
1981
Nov 5 1985
Aug 28 1981
Aug 26 1981
Nov 5 1985
Nov 5 1985
Oct 29 1987 | | 50 PERCENT EXCEEDS 1680 1700 1980
90 PERCENT EXCEEDS 815 792 828 | 50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | 1680
815 | | 1700
792 | 1980
828 | | a Not determined. b Probably occurred Jan. 9, 1998. c From high-water mark in gage house. d Result of regulation. e Estimated. #### 02026000 JAMES RIVER AT BENT CREEK, VA LOCATION.--Lat 37°32'10", long 78°49'30", Nelson County, Hydrologic Unit 02080203, on left bank at town of Bent Creek, 150 ft downstream from Bent Creek, 525 ft upstream from bridge on U.S. Highway 60, 1.3 mi southeast of Gladstone, and at mile 227.8. DRAINAGE AREA. -- 3,683 mi². PERIOD OF RECORD.--October 1924 to current year. Monthly discharge only for some periods,
published in WSP 1303. Prior to 1926, published as "at Bent Creek, near Gladstone." REVISED RECORDS.--WSP 742: 1931(m). WSP 972: 1935-36. WSP 1066: 1940. WSP 1203: 1942. WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 381.39 ft above sea level. Prior to Sept. 12, 1930, nonrecording gage at same site and datum. REMARKS.--No estimated daily discharges. Records good. Large diurnal fluctuation caused by powerplants upstream from station. Flow regulated since December 1979 by Lake Moomaw (station 02011795) 158.3 mi upstream; since October 1984 by Back Creek Lake 186.3 mi upstream; and since January 1985 by Little Back Creek Lake 189.4 mi upstream, amount unknown. National Weather Service gage-height telemeter at station. Maximum discharge, 226,000 ft³/s, from rating curve extended above 177,000 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 2.21 ft, Oct. 13, 14, 1930. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 26,500 ft³/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 9 | 0700 | *71,700 | *17.02 | Mar. 21 | 2315 | 55,400 | 14.93 | | Feb. 5 | 0200 | 49,300 | 14.09 | Apr. 21 | 0300 | 35,200 | 11.88 | | Feb. 18 | 2115 | 41.900 | 12 98 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 711 ft³/s, Oct. 13, 14-15, Dec. 7. DAILY MEAN VALUES DAY OCT SEP NOV DEC JAN FEB APR MAY JUN JUL AUG 2.4 2570 ---TOTAL MEAN MAX MIN -5092 -3731 +2672 +1361 +20822 -1160 -151 -101 +504 +101 -5949 MEAN± .56 .48 2.72 CFSM‡ . 25 3.20 4.66 3.40 1.86 .80 .34 .21 IN.‡ .28 .62 . 55 3.69 4.85 3.92 3.03 2.15 .89 .51 .39 .23 IN.‡ IN.‡ CAL YR 1997 TOTAL 1224103 MIN MEAN‡ CFSM‡ 12.17 TOTAL 2088318 CFSM‡ 1.56 WTR YR 1998 MEAN MIN MEAN‡ MAX 21.12 [†] Total change in contents, equivalent in cubic feet per second, per month, in Lake Moomaw; provided by U.S. Army Corps of Engineers. [#] Adjusted for monthly change in contents. # 02026000 JAMES RIVER AT BENT CREEK, VA--Continued | | | 0.2 | | 01111 | | – | | , , , , , , , , , , , , , , , , , , | 00110 | | | | |----------|-----------|----------------|---------|---------------------|--|---------|------------|---------------------------------------|--------|--------------|---------------------|---------| | STATIST | ICS OF M | ONTHLY MEA | AN DATA | FOR WATER | YEARS 1925 | - 1979, | BY WATE | R YEAR (WY) | [UNRE | GULATED] | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 2388 | 2739
9718 | 4200 | 5569 | 6661 | 8137 | 6592 | 4811 | 3149 | 1933 | 2325 | 1926 | | MAX | 11180 | 9718 | 13990 | 15920 | 12630 | 17410 | 13490 | 10790 | 13360 | 7286 | 11930 | 7642 | | (WY) | 1938 | 1973 | 1949 | 1937 | 1939 | 1936 | 1958 | 1942 | 1972 | 1972 | 1940
475
1966 | 1979 | | MIN | 424 | 581 | 710 | 782 | 889 | 3227 | 1893 | 1509 | 1045 | 419 | 475 | 450 | | (WY) | 1931 | 1931 | 1966 | 1937
782
1956 | 1934 | 1940 | 1942 | 4811
10790
1942
1509
1930 | 1964 | 1966 | 1966 | 1930 | | SUMMARY | STATIST | ICS | | WATER YE | ARS 1925 - | 1979 | | | | | | | | ANNUAL N | | | | 4192 | | | | | | | | | | | ANNUAL | | | 7514 | | 1973 | | | | | | | | LOWEST A | ANNUAL M | EAN | | 2228 | Jun 22
Oct 13
Sep 6
Jun 21
Jun 21
bOct 13 | 1956 | | | | | | | | HIGHEST | DAILY M | EAN | | 130000 | Jun 22 | 1972 | | | | | | | | TOMESI I | CEMENT DY | MIN MINITMIIM | | 256 | COD 6 | 1950 | | | | | | | | TNUTANT | VIEUTIC D | EVK ETUM | | 176000 | Jun 21 | 1972 | | | | | | | | INSTANT | ANEOUS P | EAK STAGE | | a27 13 | Jun 21 | 1972 | | | | | | | | INSTANTA | ANEOUS L | OW FLOW | | 222 | b0gt 13 | 1930 | | | | | | | | ANNUAL I | RUNOFF (| CFSM) | | 1.14 | | | | | | | | | | ANNUAL I | RUNOFF (| INCHES) | | 15.46 | | | | | | | | | | 10 PERCI | ENT EXCE | INCHES)
EDS | | 8910 | | | | | | | | | | 50 PERCI | ENT EXCE | EDS | | 2500 | | | | | | | | | | 90 PERCI | ENT EXCE | EDS | | 831 | STATIST | ICS OF M | ONTHLY MEA | AN DATA | FOR WATER | YEARS 1980 | - 1998. | BY WATE | R YEAR (WY) | [REGU | LATED, UNADJ | USTED 1 | | | | | | | | | | | | - | | _ | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 2398 | | 4107 | | 6783 | 8494 | 7650 | 5326 | 3861 | 2011 | 1896 | 2178 | | MAX | | | 10380 | | 17200 | 18860 | | | 10710 | 4973 | 6027 | 9873 | | (WY) | 1980 | 1986 | 1997 | 1991 | 1998
2521 | 1993 | 1987 | 1989
2788 | 1995 | 1995 | 1984
725 | 1996 | | MIN | 743 | | | | | | | | | | | 841 | | (WY) | 1987 | 1992 | 1981 | 1981 | 1981 | 1981 | 1995 | 1982 | 1986 | 1986 | 1981 | 1980 | | SUMMARY | STATIST | ICS | FOI | R 1997 CAL | ENDAR YEAR | F | FOR 1998 1 | WATER YEAR | | WATER YEA | RS 1980 | - 1998 | | | | | | | | | | | | | | | | ANNUAL : | | | | 1224103 | | | 2088318 | | | | | | | ANNUAL I | | | | 3354 | | | 5721 | | | 4475 | | | | HIGHEST | ANNUAL | MEAN | | | | | | | | 5735 | | 1980 | | LOWEST A | ANNUAL M | EAN | | | | | | | | 1791 | | 1981 | | HIGHEST | DAILY M | EAN | | 24700 | Mar 5 | | 61600 | Jan 9 | | 142000 | Nov | 5 1985 | | LOWEST I | DAILY ME | AN | | 754 | Oct 10 | | 754 | Oct 10 | | 467 | Aug | 30 1981 | | ANNUAL S | SEVEN-DA | Y MINIMUM | | 904 | Oct 10
Oct 10 | | 904 | Oct 10 | | 523 | Oct | 2 1981 | | | | EAK FLOW | | | | | | | | | | 5 1985 | | | | EAK STAGE | | | | | 17 | Jan 9
02 Jan 9 | | 30.76 | | 5 1985 | | | ANEOUS L | | | | | | 711 | cOct 13 | | 382 | | 30 1981 | | | RUNOFF (| | | | 21 | | 1. | | | 1.22 | 1149 | JJ 1701 | | | | | | 10 | 2.5 | | 21. | | | 16.51 | | | | AMMUAL I | CONOFF (| INCHES)
EDS | | 12. | 30 | | | 0.5 | | | | | | | | | | 6660 | | | 13900 | | | 9590 | | | | | ENT EXCE | | | 2380 | | | 2480 | | | 2590 | | | | 90 PERCI | ENT EXCE | EDS | | 1110 | 91
36 | | 1000 | | | 974 | | | | | | | | | | | | | | | | | a From high-water mark. b Also Oct. 14, 1930. c Also Oct. 14-15, Dec. 7, 1997. #### 02029000 JAMES RIVER AT SCOTTSVILLE, VA LOCATION.--Lat 37°47'50", long 78°29'30", Albemarle County, Hydrologic Unit 02080203, on left bank 900 ft downstream from bridge on State Highway 20 at Scottsville, 6.8 mi upstream from Hardware River, and at mile 188.6. DRAINAGE AREA. -- 4,584 mi². PERIOD OF RECORD.--October 1924 to current year. Monthly discharge only for some periods, published in WSP 1303. REVISED RECORDS.--WSP 727: 1931(m). WSP 972: 1936(M), 1940(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 253.18 ft above sea level. Prior to Nov. 28, 1928, nonrecording gage at same site and datum. REMARKS.--Records good except for period of no gage-height record, Feb. 9-12. Large diurnal fluctuation caused by powerplants upstream from station. Flow regulated since December 1979 by Lake Moomaw (station 02011795) 197.5 mi upstream; since October 1984 by Back Creek Lake 225.5 mi upstream; and since January 1985 by Little Back Creek Lake 228.6 mi upstream, amount unknown. National Weather Service gage-height telemeter at station. Maximum discharge, 301,000 ft³/s, from rating curve extended above 120,000 ft³/s on basis of slope-conveyance study. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in October 1870 reached a stage of 30.7 ft, discharge, about 215,000 ${\rm ft}^3/{\rm s}$, and flood in November 1877 reached a stage of 27.9 ft, discharge, about 160,000 ${\rm ft}^3/{\rm s}$, from information by local resident. Flood in March 1913 reached a stage of 25.16 ft, from floodmarks, discharge, 121,000 ${\rm ft}^3/{\rm s}$. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $35,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 9 | 1700 | *78,800 | *21.13 | Feb. 18 | 0630 | 53,900 | 17.85 | | Jan. 28 | 2030 | 52,400 | 17.60 | Mar. 22 | 0645 | 63,200 | 19.79 | | Feb. 5 | 1000 | 59,300 | 18.64 | Apr. 21 | 0945 | 41,400 | 15.70 | Minimum discharge, 812 ft³/s, Oct. 11; minimum gage height, 2.50 Sept. 17, 29. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAY | OCT | NO | V DEC | JAI | N FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|---|--|--|--|---|---|---|---|---|--|---|--| | 1
2
3
4
5 | 1410
1330
1420
1350
1270 | 170
307
363
325
281 | 0 1980
0 2140
0 2270 | | 0 13900
0 12000
0 21200 | 11000
10900
10600
9290
8470 |
7650
7140
6340
10600
15100 | 6740
7770
8340
8880
10500 | 4930
4300
3870
3710
3460 | 3540
3080
2630
2520
2360 | 1520
1520
1400
1310
1160 | 1350
1260
1410
1200
943 | | 6
7
8
9
10 | 1270
1220
1030
1190
1130 | 244
507
588
477
547 | 0 1580
0 1390
0 1790 | | 0 31900
0 26000
0 e22000 | 7640
6970
7700
17500
22200 | 12600
12000
10100
9500
11300 | 11600
12400
16900
19600
20200 | 3400
3310
3220
2930
3140 | 2480
2330
2330
2310
2460 | 1260
1260
1220
2590
2690 | 1190
1160
1220
1200
1290 | | 11
12
13
14
15 | 874
999
1060
1040
1110 | 467
354
290
269
267 | 0 1800
0 2010
0 1920 | 17900
12200
9100
7760
6950 | 0 e14500
0 18500
0 18400 | 22500
17100
13900
11400
9410 | 15300
13600
11400
9850
9020 | 15500
13000
12500
10200
8960 | 3290
3080
3120
3040
3320 | 2390
2140
2300
2160
1830 | 1810
1750
1730
1740
1830 | 1400
1260
1020
1190
1080 | | 16
17
18
19
20 | 1070
1110
1510
1400
1250 | 239
228
212
200
200 | 0 1840
0 1860
0 1740 | 12600
12900
12300
10100
8860 | 0 21700
0 50900
0 44000 | 8630
7820
7080
9090
25300 | 8160
16000
22000
18500
25800 | 7730
9210
7800
6460
6000 | 3890
4110
4610
4590
4300 | 1790
1970
2140
1840
1680 | 1950
2310
2950
2540
2340 | 1180
939
1420
1030
1230 | | 21
22
23
24
25 | 1200
1200
1200
1150
1190 | 196
211
245
228
215 | 0 1630
0 1690
0 1910 | | 0 22100
0 19300
0 18500 | 51600
60000
34200
24600
20500 | 37400
26100
19300
14800
12500 | 5520
5020
4740
4820
5130 | 3660
3630
3610
3010
3020 | 1440
1120
1630
1850
1910 | 2020
1730
1730
1600
1540 | 1260
1180
1080
1290
1080 | | 26
27
28
29
30
31 | 1470
1790
1950
1760
1490
1340 | 221
211
187
193
177 | 0 2990
0 3620
0 3550
0 3520 | | 13300
0 12300
0
0 | 17600
14100
11200
9740
8900
8270 | 10700
9710
8540
7590
7080 | 5020
5190
5640
8060
6710
5470 | 2590
2580
2460
2550
2660 | 1670
1670
1680
1910
1490
1580 | 1420
1520
1460
1610
1420
1600 | 965
1210
1080
952
1070 | | TOTAL
MEAN
MAX
MIN
(†)
MEAN‡
CFSM‡
IN.‡ | 39783
1283
1950
874
-3731
1163
.25
.29 | 8619
287
588
170
+267
296
.6 | 3 2207
0 3620
0 1390
2 +1361
2 2251
5 .49 | 68100
2440
+20822
15561
3.40 | 0 22960
0 54100
0 12000
2 -1160
7 22219
0 4.85 | 505210
16300
60000
6970
-151
16292
3.55
4.10 | 405680
13520
37400
6340
-101
13519
2.95
3.29 | 281610
9084
20200
4740
+504
9100
1.99
2.29 | 103390
3446
4930
2460
+101
3450
.75 | 64230
2072
3540
1120
-5092
1908
.42
.48 | 54530
1759
2950
1160
-6201
1559
.34 | 35139
1171
1420
939
-5949
973
.21
.24 | | CAL YR
WTR YR | | | 1550825
2748832 | | 4249 MAX
7531 MAX | 33400
68100 | | 874 MEAN: | | CFSM‡
CFSM‡ 1 | .92 IN.‡ | 12.43
22.31 | [†] Total change in contents, equivalent in cubic feet per second, per month, in Lake Moomaw; provided by U.S. Army Corps of Engineers. Adjusted for monthly change in contents. e Estimated. # 02029000 JAMES RIVER AT SCOTTSVILLE, VA--Continued | | | | | | | | | • | | | | | |----------|-----------|---------------------|---------|---|------------------|-------------------|--------------|-----------|-------|-------------|----------|---------| | STATIS | TICS OF M | ONTHLY MEA | AN DATA | FOR WATER | YEARS 192 | 5 - 1979 | , BY WATER | YEAR (WY) | [UNRE | GULATED] | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 3139 | 3440 | 5208 | 6854 | 8040 | 9495 | 7988 | | 4024 | 2453 | 2992 | 2521 | | MAX | 14550 | 12920 | 18620 | 19350 | | 20320 | 16600 | 12480 | 18960 | 9225 | 15330 | 11690 | | (WY) | 1938 | 1973 | 1949 | 1937 | | | 1935 | 1942 | 1972 | 1972 | 1940 | 1979 | | MIN | 499 | 1973
792
1931 | 844 | 1002 | 1335 | 3942 | 2571
1942 | 2007 | 1202 | 527
1966 | 594 | 502 | | (WY) | 1931 | 1931 | 1966 | 1956 | 1934 | 1925 | 1942 | 1930 | 1964 | 1966 | 1930 | 1930 | | SUMMAR | Y STATIST | ICS | | WATER Y | EARS 1925 | - 1979 | | | | | | | | ANNUAL | MEAN | | | 5149 | | | | | | | | | | | T ANNUAL | | | 9317 | | 1973 | | | | | | | | LOWEST | ANNUAL M | EAN | | 2477 | | 1956 | | | | | | | | HIGHES | T DAILY M | EAN | | 208000 | Jun 1 | 22 1972 | | | | | | | | LOWEST | DAILY ME | AN | | 300 | Sep . | 13 1966
7 1966 | | | | | | | | TNOTAN | AU-NEVER | I MINIMOM | | 201000 | Sep | 22 1972 | | | | | | | | INSTAN | TANEOUS P | EAK FLOW | | a34 N | 2 Jin 1 | 22 1972 | | | | | | | | INSTAN | TANEOUS L | OW FLOW | | b302 | Oct. | 1 1930 | | | | | | | | ANNUAL | RUNOFF (| CFSM) | | 1.1 | 2 | | | | | | | | | ANNUAL | RUNOFF (| INCHES) | | 2477
208000
300
321
301000
a34.0
b302
1.1
15.2
10600 | 6 | | | | | | | | | 10 PER | CENT EXCE | EDS | | 10600 | | | | | | | | | | JU PER | CENI EVCE | FDS | | 3190 | | | | | | | | | | 90 PER | CENT EXCE | EDS | | 1000 | STATIS | TICS OF M | ONTHLY MEA | AN DATA | FOR WATER | YEARS 198 | 0 - 1998 | , BY WATER | YEAR (WY) | [REGU | LATED, UNAD | JUSTED] | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 3043 | 4548 | 5224 | | | | | | 4868 | 2602 | 2434 | 2795 | | MAX | | | 13450 | 18230 | | | 28930 | | | | 7934 | 13180 | | (WY) | 1980 | 1986 | 1997 | | | | | | | | 1984 | 1996 | | MIN | 963 | 1251 | 1318 | 1996
1165 | 3198 | 1961 | 1987
2493 | 3610 | 1799 | 1262 | 934 | 844 | | (WY) | | 1992 | 1981 | 1981 | | 1981 | | 1982 | | 1986 | 1987 | 1983 | | (11 ±) | 1007 | 1002 | 1701 | 1701 | 1701 | 1701 | 1000 | 1702 | 1700 | 1000 | 1707 | 1703 | | SUMMAR | Y STATIST | ICS | FOR | 1997 CALE | NDAR YEAR | 1 | FOR 1998 W | ATER YEAR | | WATER YE. | ARS 1980 | - 1998 | | ANNUAL | T∩TAI. | | | 1550825 | | | 2748832 | | | | | | | ANNUAL | | | | 4249 | | | 7531 | | | 5701 | | | | | T ANNUAL | ME AN | | 7279 | | | 7331 | | | 7532 | | 1998 | | | ANNUAL M | | | | | | | | | 2217 | | 1981 | | | | | | 22400 | | | 60100 | T 0 | | 199000 | 37. | | | | T DAILY M | | | 33400 | Mar 5 | | 68100 | | | | | 6 1985 | | | DAILY ME | | | 874
1040 | Oct 11
Oct 11 | | 874 | Oct 11 | | 571 | | 10 1983 | | | | Y MINIMUM | | 1040 | OCT II | | 1040 | Oct 11 | | 602 | | 3 1981 | | | TANEOUS P | | | | | | 78800 | Jan 9 | | 243000 | | 6 1985 | | | | EAK STAGE | | | | | | 3 Jan 9 | | 31.77 | | 6 1985 | | | TANEOUS L | | | | | | 812 | | | 548 | | 10 1981 | | | RUNOFF (| | | .9 | 3 | | 1.6 | | | 1.24 | | | | | RUNOFF (| | | 12.5 | 9 | | 22.3 | 1 | | 16.90 | | | | 10 PER | CENT EXCE | EDS | | 8320 | | | 18500 | | | 12300 | | | | 50 PER | CENT EXCE | EDS | | 2990 | | | 3040 | | | 3320 | | | | 90 PER | CENT EXCE | EDS | | 1290 | 9 | | 1220 | | | 1190 | | | | | | | | | | | | | | | | | a From floodmarks. b Probably lower during period of doubtful record in September 1966. DAY #### JAMES RIVER BASIN # 02030000 HARDWARE RIVER BELOW BRIERY CREEK, NEAR SCOTTSVILLE, VA LOCATION.--Lat 37°48'45", long 78°27'20", Fluvanna County, Hydrologic Unit 02080203, on left bank 75 ft upstream from bridge on State Highway 637, 0.8 mi downstream from Briery Creek, 2.4 mi northeast of Scottsville, and 10.8 mi upstream from mouth. DRAINAGE AREA. -- 116 mi². PERIOD OF RECORD.--October 1938 to September 1995, October 1996 to September 1997. Monthly discharge only for some periods, published in WSP 1303. Published as "below Briery Run" prior to October 1990. REVISED RECORDS.--WSP 952: 1941(M). WSP 1002: 1940, 1943. WSP 1032: 1940, 1944. GAGE.--Water-stage recorder. Datum of gage is 294.96 ft above sea level. REMARKS.--No estimated daily discharges. Records good. Maximum discharge, 52,000 ft³/s, from rating curve extended above 18,000 ft³/s on basis of slope-area measurements at gage heights 23.8 ft and 31.0 ft. Minimum gage height, 0.81 ft, Sept. 8, 1966. Several measurements of water temperature were made during the year. EXTREMES FOR CURRENT YEAR. -- Peak discharges equal to or greater than base discharge of 1,500 ft³/s and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 AUG SEP | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-------------------|--------------|-----------------------------------|---------------------|------------------|--------------|-----------------------------------|---------------------| | Nov. 7 | 1715 | 1,720 | 9.20 | Feb. 17 | 2330 | 4,820 | 14.40 | | Jan. 8
Jan. 28 | 1945
2030 | 1,570
*4,840 | 8.75
*14.43 | Mar. 21
Mav 8 | 0645
0800 | 4,060
2,110 | 13.49
10.13 | | Feb. 4 | 2330 | 3,290 | 12.50 | nay o | 0000 | 2,110 | 10.15 | Minimum discharge, 7.4 ft³/s, Sept. 29, 30. DAILY MEAN VALUES OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 50 101 90 94 320 289 256 217 136 94 | 1
2 | 50
46 | 101
173 | 90
78 | 94
96 | 320
277 | 289
296 | 256
264 | 217
286 | 136
128 | 94
91 | 49
43 | 27
26 | |--------|----------|------------|----------|----------|------------|------------|------------|------------|------------|----------|----------|----------| | 3 | 40 | 173 | 78
75 | 101 | 258 | 314 | 231 | 248 | 128 | 105 | 43 | 25 | | 4 | 37 | 74 | 103 | 112 | 1640 |
271 | 435 | 214 | 121 | 92 | 42 | 25 | | 5 | 37 | 62 | 93 | 112 | 2100 | 257 | 362 | 457 | 121 | 92 | 37 | 23 | | 5 | 35 | 0.2 | 93 | 112 | 2100 | 257 | 302 | 457 | 124 | 96 | 3 / | 23 | | 6 | 34 | 63 | 82 | 107 | 1060 | 244 | 266 | 272 | 124 | 88 | 35 | 22 | | 7 | 35 | 1120 | 77 | 148 | 857 | 238 | 240 | 331 | 117 | 84 | 35 | 22 | | 8 | 34 | 979 | 73 | 965 | 580 | 678 | 230 | 1710 | 114 | 86 | 37 | 25 | | 9 | 33 | 372 | 72 | 571 | 452 | 1160 | 402 | 656 | 114 | 85 | 234 | 24 | | 10 | 34 | 199 | 81 | 277 | 372 | 611 | 480 | 399 | 134 | 114 | 129 | 18 | | 11 | 33 | 149 | 97 | 200 | 330 | 411 | 331 | 318 | 128 | 79 | 84 | 18 | | 12 | 31 | 125 | 84 | 170 | 611 | 331 | 275 | 311 | 127 | 69 | 83 | 16 | | 13 | 31 | 112 | 78 | 163 | 383 | 296 | 251 | 293 | 122 | 65 | 68 | 15 | | 14 | 32 | 208 | 75 | 147 | 314 | 281 | 241 | 248 | 115 | 63 | 60 | 14 | | 15 | 37 | 163 | 71 | 345 | 276 | 261 | 235 | 225 | 165 | 62 | 57 | 13 | | 16 | 36 | 129 | 70 | 687 | 256 | 247 | 222 | 212 | 165 | 61 | 64 | 12 | | 17 | 40 | 111 | 69 | 332 | 1830 | 239 | 635 | 205 | 254 | 97 | 76 | 12 | | 18 | 79 | 102 | 67 | 240 | 2280 | 283 | 410 | 195 | 134 | 82 | 85 | 20 | | 19 | 58 | 95 | 65 | 202 | 655 | 803 | 361 | 186 | 130 | 65 | 67 | 20 | | 20 | 47 | 90 | 64 | 187 | 509 | 668 | 685 | 175 | 143 | 61 | 54 | 21 | | | | | | | | | | | | | | | | 21 | 40 | 91 | 64 | 166 | 427 | 2540 | 388 | 172 | 117 | 59 | 48 | 18 | | 22 | 38 | 178 | 69 | 156 | 364 | 698 | 316 | 162 | 110 | 55 | 45 | 17 | | 23 | 36 | 132 | 94 | 801 | 498 | 479 | 280 | 163 | 109 | 53 | 43 | 14 | | 24 | 36 | 110 | 83 | 600 | 572 | 394 | 275 | 169 | 143 | 84 | 40 | 11 | | 25 | 60 | 98 | 197 | 414 | 407 | 343 | 244 | 167 | 112 | 60 | 37 | 10 | | 26 | 75 | 92 | 136 | 281 | 345 | 317 | 226 | 154 | 105 | 56 | 35 | 12 | | 27 | 140 | 87 | 119 | 325 | 318 | 299 | 216 | 173 | 99 | 55 | 33 | 12 | | 28 | 77 | 82 | 143 | 3140 | 303 | 282 | 208 | 197 | 98 | 61 | 38 | 11 | | 29 | 60 | 79 | 132 | 1780 | | 268 | 199 | 160 | 106 | 54 | 37 | 8.0 | | 30 | 57 | 79 | 125 | 580 | | 259 | 195 | 148 | 101 | 49 | 33 | 8.0 | | 31 | 53 | | 110 | 402 | | 247 | | 141 | | 48 | 30 | | | TOTAL | 1474 | 5576 | 2836 | 13901 | 18594 | 14304 | 9359 | 8964 | 3821 | 2273 | 1800 | 519.0 | | MEAN | 47.5 | 186 | 91.5 | 448 | 664 | 461 | 312 | 289 | 127 | 73.3 | 58.1 | 17.3 | | MAX | 140 | 1120 | 197 | 3140 | 2280 | 2540 | 685 | 1710 | 254 | 114 | 234 | 27 | | MIN | 31 | 62 | 64 | 94 | 256 | 238 | 195 | 141 | 98 | 48 | 30 | 8.0 | | CFSM | .41 | 1.60 | .79 | 3.87 | 5.72 | 3.98 | 2.69 | 2.49 | 1.10 | .63 | .50 | .15 | | IN. | .47 | 1.79 | .91 | 4.46 | 5.96 | 4.59 | 3.00 | 2.87 | 1.23 | .73 | .58 | .17 | Sep 1 1966 Aug 20 1969 Aug 20 1969 JAMES RIVER BASIN # 02030000 HARDWARE RIVER BELOW BRIERY CREEK, NEAR SCOTTSVILLE, VA--Continued | STATISTICS | OF MONTHLY | MEAN DATA | FOR | WATER | YEARS | 1939 | _ 19 | 95 1997 | _ | 1998 | RY | MATER | VEAR | (WV) | |------------|------------|-----------|-----|-------|-------|------|------|---------|---|------|----|-------|------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|------------|------|-------|------------|-----------|------|------------|-----------|------|----------|-----------|---------| | MEAN | 91.1 | 101 | 133 | 156 | 190 | 219 | 186 | 139 | 109 | 78.0 | 99.1 | 82.1 | | MAX | 370 | 514 | 514 | 448 | 664 | 613 | 604 | 398 | 560 | 273 | 1155 | 750 | | (WY) | 1977 | 1986 | 1949 | 1998 | 1998 | 1993 | 1983 | 1989 | 1972 | 1975 | 1969 | 1944 | | MIN | 11.4 | 17.5 | 20.5 | 25.0 | 50.3 | 35.1 | 39.5 | 36.0 | 24.2 | 9.45 | 4.71 | 7.93 | | (WY) | 1942 | 1942 | 1966 | 1966 | 1954 | 1981 | 1981 | 1981 | 1956 | 1966 | 1966 | 1954 | | SUMMAR | Y STATIST | ICS | FOR : | 1997 CALEI | NDAR YEAR | F | OR 1998 W. | ATER YEAR | | WATER YE | EARS 1939 | - 1998 | | ANNUAL | TOTAL | | | 42500 | | | 83421.0 | | | | | | | ANNUAL | MEAN | | | 116 | | | 229 | | | 132 | | | | HIGHES | T ANNUAL I | MEAN | | | | | | | | 249 | | 1973 | | LOWEST | ANNUAL MI | EAN | | | | | | | | 39.0 | | 1981 | | HIGHES | T DAILY M | EAN | | 1120 | Nov 7 | | 3140 | Jan 28 | | 28400 | Aug | 20 1969 | | LOWEST | DATLY ME | ΔN | | 11 | Sen 6 | | 8 0 | agan 20 | | 1.0 |) Sen | 5 1966 | LOWEST DAILY MEAN Sep aSep 29 Sep 3 Sep 24 ANNUAL SEVEN-DAY MINIMUM 13 10 .16 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE 52000 4840 Jan 28 14.43 Jan 28 b31.00 INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 7.4 aSep 29 cSep 5 1966 .10 1.00 13.63 1.97 26.75 1.14 15.43 10 PERCENT EXCEEDS 197 454 241 50 PERCENT EXCEEDS 87 121 82 31 90 PERCENT EXCEEDS 26 33 a Also Sept. 30, 1998. b From floodmarks. c Also Sept. 6-8, 1966. # 02034000 RIVANNA RIVER AT PALMYRA, VA LOCATION.--Lat 37°51'28", long 78°15'58", Fluvanna County, Hydrologic Unit 02080204, on left bank 10 ft upstream from bridge on U.S. Highway 15 at Palmyra, 0.5 mi upstream from Cunningham Creek, and 15 mi upstream from mouth. DRAINAGE AREA. -- 664 mi². PERIOD OF RECORD.--October 1933 to current year. Monthly discharge only for some periods, published in WSP 1303. REVISED RECORDS.--WSP 802: 1936(M). WSP 852: 1937. WSP 892: 1934-35. WSP 1303: 1945-46(M). WSP 1503: 1956. WSP 2104: Drainage area. WDR VA-72-1: 1969(M). GAGE.--Water-stage recorder. Datum of gage is 210.39 ft above sea level. Prior to Oct. 24, 1942, water-stage recorder at site 200 ft downstream at same datum. Oct. 24, 1942, to Dec. 18, 1947, nonrecording gage 10 ft downstream at same datum. REMARKS.--No extimated daily discharges. Records good. Some diurnal fluctuation at times mostly at low and medium flow by South Fork Rivanna River Reservoir. Combined diversion of water supply and discharge from waste-water treatment plant upstream at Charlottesville results in an average gain of about 1.3 ft³/s upstream from the gage. National Weather Service gage-height telemeter at station. Maximum discharge, 86,000 ft³/s, from rating curve extended above 76,000 ft³/s on basis of contracted-opening measurement of peak flow and velocity-area study. Minimum gage height, 2.13 ft, Sept. 9-11, 1966. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 6,000 ${\rm ft}^3/{\rm s}$ and maximum (*): Discharge Gage height Date Time $(\mathrm{ft}^3/\mathrm{s})$ (ft) Date Time $(\mathrm{ft}^3/\mathrm{s})$ (ft) Minimum discharge, # 02034000 RIVANNA RIVER AT PALMYRA, VA--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1934 - 1998, BY WATER YEAR (WY) OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP a Also Sept. 10, 11, 1966. # 02035000 JAMES RIVER AT CARTERSVILLE, VA LOCATION.--Lat 37°40'15", long 78°05'10", Goochland County, Hydrologic Unit 02080205, on left bank 200 ft downstream from bridge on State Highway 45 at Cartersville, 1.8 mi downstream from Willis River, and at mile 156.4. DRAINAGE AREA.--6,257 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1898 to current year. Monthly discharge only for some periods, published in WSP 1303. REVISED RECORDS.--WSP 972: 1936(M). WSP 1203: 1901-2(M), 1923-25(M), 1928(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 163.90 ft above sea level. Prior to June 4, 1927, nonrecording gage at same site and datum. REMARKS.--Records good except those for periods of doubtful gage-height record, Jan. 30-31, Feb. 25 to Mar. 1, July 15-17, 20-22, 25-27, Aug. 28, and Sept. 1-2, which are fair. Moderate diurnal fluctuation caused by powerplants upstream from station. National Weather Service gage-height telemeter at station. Maximum discharge, 362,000 ft³/s, from rating curve extended above 160,000 ft³/s on basis of slope-conveyance study. Minimum gage height, 0.02 ft, Sept. 13, 14, 1966. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 40,000 ft³/s and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 10 | 0415 | 76,900 | 21.05 | Mar. 22 | 0145 | 81,000 | 21.71 | | Jan. 29 | 0700 | 82,000 | 21.87 | Apr. 21 | 1530 | 48,000 | 15.68 | | Feb. 5 | 2345 | 80,800 | 21.69 | May 9 | 1200 | 41,200 | 14.22 | | Feb. 18 | 1930 | *82,200 | *21.91 | | | | | Minimum discharge, 879 ft³/s, Oct. 13-14; minimum gage height, 0.72 ft, Sept. 30. | | | DISC | HARGE, IN | CUBIC FE | | COND, WATI
AILY MEAN | | CTOBER 199 | 97 TO SEPT | EMBER 199 | 8 | | |-------|-------|--------|-----------|----------|--------|-------------------------|--------|------------|------------|-----------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2640 | 1770 | 2990 | 4980 | 25600 | e15900 | 10500 | 9280 | 6730 | 4000 | 1980 | e1850 | | 2 | 1420 | 2870 | 3270 | 4460 | 20500 | 15200 | 10200 | 11300 | 6180 | 4370 | 1930 | e1600 | | 3 | 1440 | 5480 | 3380 | 4150 | 17400 | 15700 | 9140 | 12400 | 5530 | 3850 | 1860 | 1510 | | 4 | 1390 | 4620 | 3690 | 4100 | 23800 | 13900 | 10800 | 12200 | 5230 | 3660 | 1810 | 1600 | | 5 | 1360 | 4040 | 4210 | 4150 | 70800 | 12500 | 24100 | 15800 | 4860 | 3400 | 1660 | 1390 | | 6 | 1230 | 3540 | 4160 | 4290 | 71500 | 11200 | 17300 | 17600 | 4860 | 3180 | 1500 | 1080 | | 7 | 1270 | 8190 | 4670 | 5350 | 51800 | 10100 | 16900 | 17200 | 4760 | 3270 | 1660 | 1310 | | 8 | 1190 | 23500 | 2510 | 13300 | 41000 | 10700 | 14300 | 29300 | 4530 | 3170 | 1560 | 1350 | | 9 | 1090 | 14600 | 2620 | 59000 | 31800 | 25900 | 12900 | 40000 | 4450 | 3220 | 1820 | 1420 | | 10 | 1130 | 9630 | 3100 | 64500 | 26300 | 33100 | 15800 | 30500 | 4350 | 3500 | 5120 | 1470 | | 11 | 1090 | 8270 | 3360 | 26200 | 22500 | 31500 | 17900 | 23400
 4760 | 3740 | 3500 | 1490 | | 12 | 950 | 6290 | 3570 | 17100 | 23500 | 24300 | 18300 | 19000 | 4750 | 3180 | 2540 | 1560 | | 13 | 980 | 5150 | 3160 | 13300 | 27200 | 19300 | 15000 | 18400 | 4740 | 2930 | 2280 | 1360 | | 14 | 1040 | 4810 | 3290 | 11200 | 25900 | 16300 | 13200 | 15500 | 4520 | 3090 | 2310 | 1100 | | 15 | 1130 | 5270 | 3170 | 10000 | 23900 | 13500 | 12100 | 13400 | 4880 | e2550 | 2270 | 1260 | | 16 | 1160 | 4720 | 3250 | 20000 | 20500 | 11700 | 11100 | 11500 | 6580 | e2350 | 2400 | 1160 | | 17 | 1200 | 4060 | 3080 | 19200 | 23600 | 10800 | 18600 | 11300 | 6580 | e2400 | 2840 | 1210 | | 18 | 2660 | 3660 | 2860 | 17600 | 74200 | 10400 | 32100 | 12300 | 6610 | 2750 | 3480 | 1270 | | 19 | 2970 | 3520 | 2980 | 14800 | 71400 | 19900 | 25500 | 9600 | 6700 | 2760 | 3720 | 1860 | | 20 | 2040 | 3300 | 2790 | 12800 | 45400 | 29000 | 29900 | 8750 | 6410 | e2350 | 3560 | 1430 | | 21 | 1630 | 3310 | 2730 | 11200 | 35800 | 68400 | 45100 | 8040 | 5680 | e2000 | 2820 | 1420 | | 22 | 1430 | 3810 | 2590 | 9910 | 30300 | 78500 | 35400 | 7460 | 5260 | e1700 | 2630 | 1480 | | 23 | 1380 | 4630 | 2870 | 14300 | 27500 | 56800 | 25600 | 6850 | 5230 | 1630 | 2160 | 1380 | | 24 | 1330 | 4320 | 3220 | 29500 | 31600 | 34100 | 20200 | 6810 | 6240 | 2170 | 2280 | 1270 | | 25 | 1330 | 3850 | 4310 | 27100 | e25000 | 27100 | 16500 | 7150 | 5270 | e2450 | 1940 | 1440 | | 26 | 1560 | 3620 | 5810 | 23300 | e21000 | 22600 | 14600 | 7140 | 4460 | e2350 | 1980 | 1200 | | 27 | 2750 | 3490 | 5040 | 19000 | e18300 | 19100 | 12800 | 7140 | 3760 | e2100 | 1730 | 1080 | | 28 | 3320 | 3410 | 5870 | 48300 | e16900 | 15800 | 11800 | 8200 | 3550 | 2190 | e1900 | 1310 | | | | | | 77300 | | | | | | 2190 | | 1200 | | 29 | 2490 | 2980 | 6150 | | | 13100 | 10600 | 9030 | 3610 | | 1850 | | | 30 | 2190 | 3160 | 5840 | e46500 | | 12400 | 9730 | 10300 | 3730 | 2370 | 1940 | 1090 | | 31 | 1810 | | 5680 | e31000 | | 11100 | | 8120 | | 1930 | 1700 | | | TOTAL | 50600 | 163870 | 116220 | 667890 | 945000 | 709900 | 537970 | 424970 | 154800 | 86880 | 72730 | 41150 | | MEAN | 1632 | 5462 | 3749 | 21540 | 33750 | 22900 | 17930 | 13710 | 5160 | 2803 | 2346 | 1372 | | MAX | 3320 | 23500 | 6150 | 77300 | 74200 | 78500 | 45100 | 40000 | 6730 | 4370 | 5120 | 1860 | | MIN | 950 | 1770 | 2510 | 4100 | 16900 | 10100 | 9140 | 6810 | 3550 | 1630 | 1500 | 1080 | | CFSM | .26 | .87 | .60 | 3.44 | 5.39 | 3.66 | 2.87 | 2.19 | .82 | .45 | .37 | .22 | | IN. | .30 | .97 | .69 | 3.97 | 5.62 | 4.22 | 3.20 | 2.53 | .92 | .52 | .43 | .24 | e Estimated. # 02035000 JAMES RIVER AT CARTERSVILLE, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1899 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|-----|---| • | | • | | | | |---------|-----------|-----------|-------|----------|------------|-------|----------|----------|-------|--------|-----------|----------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 4248 | 4795 | 7038 | 9664 | 10980 | 13200 | 11140 | 7999 | 6097 | 3821 | 4034 | 3517 | | MAX | 20830 | 28210 | 25990 | 26480 | 33750 | 31810 | 33500 | 23530 | 30330 | 15070 | 20490 | 18150 | | (WY) | 1907 | 1986 | 1949 | 1936 | 1998 | 1993 | 1987 | | | 1919 | 1969 | 1996 | | MIN | 528 | 924 | 1054 | 1353 | 2055 | 2646 | 3286 | 2710 | 1620 | 605 | 652 | 561 | | (WY) | 1931 | 1931 | 1966 | 1956 | 1934 | 1981 | 1995 | 1930 | 1964 | 1966 | 1930 | 1930 | | | | | | | | | | | | | | | | SUMMARY | Y STATIST | 'ICS | FOR | 1997 CAL | ENDAR YEAR | | FOR 1998 | WATER YE | AR | WATER | YEARS 189 | 9 - 1998 | | ANNUAL | TOTAL | | | 2239090 | | | 3971980 | | | | | | | ANNUAL | MEAN | | | 6134 | | | 10880 | | | 7191 | | | | HIGHEST | r annual | MEAN | | | | | | | | 12410 | | 1973 | | LOWEST | ANNUAL M | IEAN | | | | | | | | 2981 | | 1981 | | HIGHEST | r daily m | IEAN | | 40400 | Mar 5 | | 78500 | Mar | 22 | 280000 | Jun | 22 1972 | | LOWEST | DAILY ME | AN | | 950 | Oct 12 | | 950 | | | 330 | - | 14 1966 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 1060 | Oct 9 | | 1060 | Oct | 9 | 386 | Sep | 8 1966 | | INSTANT | raneous p | EAK FLOW | | | | | 82200 | | | 362000 | | 22 1972 | | | | EAK STAGE | | | | | | .91 Feb | | a37. | | 22 1972 | | INSTANT | TANEOUS L | OW FLOW | | | | | b879 | | 13 | 316 | cSep | 13 1966 | | | RUNOFF (| | | | | | 1 | | | 1. | | | | | RUNOFF (| | | 13. | 31 | | | .61 | | 15. | 61 | | | | CENT EXCE | | | 12300 | | | 26600 | | | 15100 | | | | | CENT EXCE | | | 4560 | | | 4750 | | | 4490 | | | | 90 PERC | CENT EXCE | EDS | | 1440 | | | 1420 | | | 1450 | | | | | | | | | | | | | | | | | a From floodmarks. b May have been affected by regulation from Lake Moomaw, 230 mi upstream. c Also Sept. 14, 1966. # 02035000 JAMES RIVER AT CARTERSVILLE, VA--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1930, 1948, 1967 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1968 to January 1976, October 1980 to May 1981, October 1991 to September 1994. WATER TEMPERATURE: April 1968 to January 1976, October 1980 to May 1981, October 1991 to September 1994. SUSPENDED-SEDIMENT DISCHARGE: October 1980 to May 1981. COOPERATION.--Chemical data as noted were provided by the Virginia Division of Consolidated Laboratory Services (VDCLS) and reviewed by the U.S. Geological Survey. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |----------|------|---|--|---|---|---|---|---|---|--| | OCT 1997 | | | | | | | | | | | | 17 | 1000 | 1230 | 311 | 7.4 | 10.0 | 17.0 | 767 | VDCLS | 3.7 | 7.2 | | NOV | | | | | | | | | | | | 08 | 1345 | 24100 | 94 | 6.5 | 11.0 | 10.0 | 741 | VDCLS | 97 | 10.7 | | 10 | 0845 | 9380 | 137 | 6.9 | 8.5 | 10.5 | 760 | VDCLS | 34 | 10.4 | | DEC | 0015 | ,,,,, | 137 | 0.5 | 0.5 | 10.5 | , 00 | 12020 | 31 | 10.1 | | 23 | 0900 | 2930 | 227 | 6.6 | 5.0 | 5.0 | 762 | VDCLS | 4.0 | 12.6 | | JAN 1998 | 0900 | 2930 | 221 | 0.0 | 5.0 | 5.0 | 702 | VDCLS | 4.0 | 12.0 | | | 1100 | 61100 | 1.71 | | 1.5 0 | 11.0 | | | 222 | 0 5 | | 09 | 1100 | 61100 | 174 | 6.3 | 16.0 | 11.0 | 755 | VDCLS | 330 | 9.5 | | 10 | 0930 | 74400 | 109 | 6.8 | 6.5 | 10.0 | 768 | VDCLS | 480 | 9.9 | | *10 | 0945 | 74100 | 109 | 6.8 | 6.5 | 10.0 | 768 | VDCLS | 420 | 9.9 | | 11 | 0925 | 27000 | 92 | 6.4 | 6.5 | 10.0 | 766 | VDCLS | 290 | 10.9 | | 13 | 1230 | 13100 | 108 | 6.5 | 12.0 | 8.0 | 762 | VDCLS | 52 | 11.3 | | 16 | 0915 | 20400 | 98 | 6.5 | 8.0 | 5.0 | 754 | VDCLS | 110 | 11.7 | | 24 | 0930 | 32000 | 92 | 7.0 | 6.0 | 6.0 | 759 | VDCLS | 93 | 12.4 | | *24 | 0945 | 31900 | 92 | 7.0 | 6.0 | 6.0 | 759 | USGS | | 12.4 | | 26 | 1045 | 23600 | 140 | 6.9 | 6.0 | 5.5 | 772 | VDCLS | 43 | 12.6 | | 29 | 1015 | 81300 | 62 | 7.0 | 10.5 | 5.0 | 761 | VDCLS | 190 | 12.4 | | 30 | 0930 | 47000 | 98 | 6.8 | 9.5 | 4.5 | 759 | VDCLS | 72 | 12.2 | | FEB | 0,50 | 47000 | 20 | 0.0 | 5.5 | 4.5 | 733 | VDCID | 72 | 12.2 | | | 1000 | 60000 | 78 | <i>c</i> 0 | | 4 5 | 750 | TIDGE C | 100 | 10 2 | | 05 | 1000 | 69800 | | 6.9 | 5.5 | 4.5 | 752 | VDCLS | 120 | 12.3 | | 06 | 1030 | 74900 | 104 | 7.0 | 6.5 | 5.0 | 762 | VDCLS | 160 | 12.5 | | 12 | 0830 | 22100 | 103 | 7.2 | 8.5 | 6.4 | 752 | USGS | 13 | 12.3 | | 18 | 0945 | 74400 | 71 | 6.8 | 15.0 | 7.0 | 752 | VDCLS | 200 | 11.7 | | *18 | 1000 | 74700 | 71 | 6.8 | 15.0 | 7.0 | 752 | USGS | | 11.7 | | MAR | | | | | | | | | | | | 03 | 1230 | 15700 | 128 | 6.8 | 11.0 | 9.0 | 755 | VDCLS | 10 | 11.1 | | 22 | 1000 | 79600 | 99 | 6.6 | 10.0 | 8.5 | 755 | VDCLS | 240 | 13.8 | | APR | | | | | | | | | | | | 03 | 0930 | 9150 | 130 | 7.3 | 19.0 | 17.5 | 762 | VDCLS | 11 | 9.2 | | 18 | 1300 | 31100 | 91 | 7.0 | 17.5 | 16.2 | 750 | VDCLS | 160 | 8.8 | | *18 | 1315 | 30900 | 91 | 7.0 | 17.5 | 16.2 | 750 | VDCLS | 110 | 8.8 | | 21 | 0915 | 45600 | 102 | 7.7 | 15.0 | 13.6 | 750 | VDCLS | 80 | 9.9 | | MAY | 0913 | 43000 | 102 | /./ | 13.0 | 13.0 | 730 | VDCLIS | 80 | 9.9 | | | 0015 | 12700 | 140 | 7 0 | 17 0 | 17.0 | 750 | TIDGE C | 1.5 | 0 0 | | 05 | 0915 | 13700 | 148 | 7.2 | 17.0 | 17.0 | 759 | VDCLS | 15 | 8.9 | | 06 | 0915 | 17200 | 142 | 6.9 | 19.0 | 18.0 | 762 | VDCLS | 29 | 9.2 | | 28 | 1015 | 8190 | 155 | 7.8 | 24.0 | 21.0 | 766 | VDCLS | 5.6 | 7.8 | | *28 | 1020 | 8210 | 155 | 7.8 | 24.0 | 21.0 | 766 | VDCLS | 4.9 | 7.8 | | JUN | | | | | | | | | | | | 09 | 1000 | 4730 | 170 | 7.1 | 23.0 | 21.0 | 769 | VDCLS | 1.3 | 8.7 | | *09 | 1015 | 4730 | 170 | 7.1 | 23.0 | 21.0 | 769 | USGS | | 8.7 | | 16 | 0930 | 6720 | 152 | 7.5 | 26.5 | 24.0 | 755 | VDCLS | 22 | 7.9 | | JUL | | | | | | | | | | | | 07 | 1000 | 3400 | 238 | 6.3 | 28.0 | 28.0 | 766 | VDCLS | 2.4 | 7.7 | | *07 | 1015 | 3400 | 238 | 6.3 | 28.0 | 28.0 | 766 | VDCLS | 3.1 | 7.7 | | AUG | 1013 | 2400 | 230 | 0.5 | 20.0 | 20.0 | , 00 | A D C T D | J.1 | , . , | | 04 | 0020 | 1000 | 254 | 6.5 | 24.0 | 26.0 | 755 | TIDGI C | | 7.2 | | | 0930 | 1960 | 254 | 0.5 | 24.0 | 26.0 | 755 | VDCLS | 1.1 | 1.2 | | SEP | 1100 | 1.400 |
0.50 | 0 0 | 00 5 | 0.5.0 | | | 4.6 | | | 08 | 1100 | 1490 | 263 | 8.0 | 20.5 | 26.0 | 741 | VDCLS | 4.0 | 6.5 | ^{*} Replicate sample. JAMES RIVER BASIN # 02035000 JAMES RIVER AT CARTERSVILLE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | OXYGEN,
DIS- | SILICA, | RESIDUE
TOTAL | | RESIDUE | NITRO- | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | |------------|-----------------|----------------|-------------------|--------------|----------------|-------------|-----------------|-----------------|-----------------|-----------------| | | SOLVED
(PER- | DIS-
SOLVED | AT 105
DEG. C, | FIXED
NON | VOLA-
TILE, | GEN
DIS- | NITRATE
DIS- | NITRITE
DIS- | NO2+NO3
DIS- | AMMONIA
DIS- | | | CENT | (MG/L | SUS- | FILTER- | SUS- | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | | DATE | SATUR- | AS | PENDED | ABLE | PENDED | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | | | ATION) | SIO2) | (MG/L) | (MG/L) | (MG/L) | AS N) | | | (00301) | (00955) | (00530) | (00540) | (00535) | (00602) | (00618) | (00613) | (00631) | (00608) | | | | | ** | ** | ** | * * | | ** | ** | ** | | OCT 1997 | 7.4 | 2.0 | . 3 | <3 | . 3 | 020 | 0.45 | . 000 | 0.45 | . 004 | | 17
NOV | 74 | 3.2 | <3 | - | <3 | .232 | .045 | <.002 | .045 | <.004 | | 08 | 97 | 7.9 | 93 | 80 | 13 | .505 | .207 | .002 | . 209 | .014 | | 10 | 93 | 8.7 | 29 | 24 | 5 | .493 | .247 | .002 | .247 | .020 | | DEC 23 | 99 | 4.2 | <3 | <3 | <3 | .272 | .110 | <.002 | .110 | <.004 | | JAN 1998 | 99 | 4.2 | < 3 | < 3 | < 3 | .2/2 | .110 | <.002 | .110 | <.004 | | 09 | 87 | 5.8 | 472 | 380 | 92 | .464 | .245 | .004 | .249 | .036 | | 10 | 87 | 6.1 | 372 | 326 | 46 | .577 | .301 | .004 | .305 | .036 | | *10 | 87 | 5.8 | 356 | 314 | 42 | .546 | .295 | .004 | . 299 | .036 | | 11 | 96 | 7.1 | 212 | 182 | 30 | .624 | .372 | .003 | .375 | .015 | | 13 | 95 | 8.3 | 35 | 30 | 5 | .604 | .508 | .002 | .510 | .020 | | 16 | 93 | 9.1 | 103 | 87 | 16 | .574 | .365 | .003 | .368 | .029 | | 24 | 100 | 8.3 | 109 | 92 | 17 | .538 | .293 | .002 | . 295 | .025 | | *24 | 100 | 7.7 | 102 | 80 | 22 | .46 | | | .28 | .018 | | 26 | 99 | 8.1 | 43 | 37 | 6 | .455 | .358 | .002 | .360 | .017 | | 29 | 97 | 6.1 | 190 | 164 | 26 | .483 | .220 | .002 | .222 | .040 | | 30 | 95 | 7.3 | 98 | 85 | 13 | .423 | .292 | .002 | .294 | .016 | | FEB | | | | | | | | | | | | 05 | 96 | 6.7 | 202 | 175 | 27 | .533 | .270 | .002 | .272 | .028 | | 06 | 98 | 6.4 | 154 | 135 | 19 | .529 | .266 | .002 | .268 | .020 | | 12 | 101 | 8.5 | 24 | 21 | 3
30 | .491 | .397 | <.002 | .397 | .011 | | 18 | 98
98 | 6.4 | 219
198 | 189
168 | 30 | .476
.38 | .228 | .002 | .230 | .024
.015 | | *18
MAR | 98 | 5.8 | 198 | 108 | 30 | . 38 | | | .21 | .015 | | 03 | 97 | 8.6 | 16 | 14 | <3 | .487 | .332 | .002 | .334 | .011 | | 22 | 119 | 6.1 | 274 | 244 | 30 | .431 | .215 | .003 | .218 | .022 | | APR | | 0.1 | 2,1 | | 30 | | .223 | .003 | .210 | .022 | | 03 | 96 | 8.2 | 10 | 7 | <3 | .349 | .228 | .002 | .230 | | | 18 | 91 | 6.2 | 257 | 216 | 41 | .378 | .120 | .002 | .122 | .017 | | *18 | 91 | 1.2 | 116 | 98 | 18 | .415 | .120 | .002 | .122 | .018 | | 21 | 97 | 7.8 | | | | .373 | .200 | .003 | .203 | .032 | | MAY | | | | | | | | | | | | 05 | 92 | 8.0 | 24 | 20 | 4 | .301 | .214 | .002 | .216 | .012 | | 06 | 97 | 7.5 | 70 | 59 | 11 | .448 | .210 | .003 | .213 | .012 | | 28 | 87 | 7.1 | 11 | 8 | 3 | .291 | .151 | .003 | .154 | <.004 | | *28 | 87 | 7.2 | 11 | 9 | <3 | .328 | .152 | .003 | .155 | | | JUN | 97 | 0 0 | 2 | <3 | . 3 | 0.5.1 | .071 | . 000 | 071 | | | 09
*09 | 97 | 8.0
7.4 | 3
2 | <3 | <3
5 | .251
.20 | .071 | <.002 | .071
.052 | <.002 | | 16 | 95 | 9.3 | 31 | 25 | 6 | .481 | .248 | .003 | .251 | .016 | | JUL | 20 | 9.3 | 21 | 25 | O | .401 | .240 | .003 | . 431 | .010 | | 07 | 97 | 8.6 | 3 | <3 | <3 | .334 | .169 | .002 | .171 | .006 | | *07 | 97 | 8.6 | 3 | <3 | <3 | .406 | .167 | .002 | .169 | .008 | | AUG | <i></i> | 0.0 | 5 | -5 | - 5 | . 100 | | | | | | 04 | 90 | 7.5 | <3 | <3 | <3 | .265 | .116 | < .002 | .116 | .005 | | SEP | | | - | - | - | | | | | | | 08 | 83 | 4.1 | <3 | <3 | <3 | .243 | .027 | <.002 | .027 | <.004 | ^{*} Replicate sample. ** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies. < Actual value is known to be less than the value shown. 02035000 JAMES RIVER AT CARTERSVILLE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITROGN
TOTAL
SEDIMNT
SUSP
TOTAL
AS N
(MG/L)
(00601) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS
TOTAL
SEDIMNT
SUSP
TOTAL
AS P
(MG/L)
(00667) | CARBON,
INORG +
ORGANIC
SUSP.
TOTAL
(MG/L
AS C)
(00694) | |----------------|---|--|---|---|--|--|--|--| | OGT 1005 | | | | | ** | | | | | OCT 1997
17 | | | .024 | .05 | .045 | .038 | .002 | .19 | | NOV | | | .024 | .03 | .045 | .030 | .002 | .17 | | 08 | | | .419 | | .033 | .018 | .081 | 4.35 | | 10 | | | .108 | | .036 | .031 | .022 | 1.06 | | DEC | | | | | | | | | | 23 | | | .021 | | .029 | .023 | .010 | .25 | | JAN 1998
09 | | | 1.846 | | .020 | .015 | .698 | 17.95 | | 10 | | | 1.110 | | .025 | .020 | .239 | 10.52 | | *10 | | | 1.528 | | .031 | .020 | .330 | 14.90 | | 11 | | | .686 | | .020 | .016 | .226 | 6.23 | | 13 | | | .152 | | .060 | .018 | .056 | 1.41 | | 16 | | | .418 | | .026 | .018 | .105 | 4.38 | | 24 | | | .358 | | .025 | .022 | .108 | 3.76 | | *24 | . 4 | . 2 | | .13 | .01 | .018 | | | | 26 | | | .157
.561 | | .037 | .031 | .050 | 1.52 | | 29
30 | | | .247 | | .037 | .013 | .199
.098 | 5.83
2.83 | | FEB | | | .24/ | | .022 | .014 | .090 | 2.03 | | 05 | | | .386 | | <.010 | .006 | .206 | 4.51 | | 06 | | | .384 | | .010 | .013 | .128 | 3.92 | | 12 | | | .070 | | .020 | .017 | .027 | .76 | | 18 | | | .505 | | .020 | .014 | .240 | 5.50 | | *18 | .7 | . 2 | | .33 | .02 | .007 | | | | MAR | | | 056 | | 010 | 0.1.0 | 000 | | | 03
22 | | | .056
.862 | | .018 | .013 | .022 | .51 | | APR | | | .802 | | .033 | .023 | .220 | 8.63 | | 03 | | | .064 | | .020 | .014 | .019 | .52 | | 18 | | | .514 | | .035 | .012 | .227 | 5.22 | | *18 | | | .607 | | .034 | .012 | .227 | 6.71 | | 21 | | | .359 | | .024 | .016 | .121 | 3.86 | | MAY | | | | | | | | | | 05 | | | .080 | | .019 | .018 | .027 | .76 | | 06 | | | .196 | | .024 | .021 | .071 | 1.92 | | 28
*28 | | | .051
.068 | | .026
.029 | .025
.024 | .015
.015 | .45
.64 | | JUN | | | .000 | | .025 | .024 | .013 | .04 | | 09 | | | .033 | | .028 | .018 | .009 | .21 | | *09 | <.1 | .1 | | .05 | < .01 | .016 | | | | 16 | | | .118 | | .039 | .031 | .031 | 1.37 | | JUL | | | | | | | | | | 07 | | | .030 | | .042 | .035 | .009 | .22 | | *07
AUG | | | .031 | | .045 | .035 | .009 | .24 | | 04 | | | .019 | | .052 | .042 | .007 | .17 | | SEP | | | .010 | | .032 | .012 | .007 | • ± / | | 08 | | | .016 | | .044 | .034 | .006 | .19 | ^{*} Replicate sample. ** For these constituents, there are differences in the minimum constituent reporting levels between the analyzing agencies. < Actual value is known to be less than the value shown. THIS IS A BLANK PAGE # 02038850 HOLIDAY CREEK NEAR ANDERSONVILLE, VA LOCATION.--Lat 37°24'55", long 78°38'10", Appomattox County, Hydrologic Unit 02080207, on right bank 350 ft downstream from culvert on State Highway 614, 1.0 mi upstream from Holiday Lake, and 5.2 mi southwest of Andersonville. DRAINAGE AREA.--8.53 mi². PERIOD OF RECORD. -- April 1966 to current year. REVISED RECORDS.--WDR VA-72-1: 1967-71(M), 1966-69(P), 1971(P). GAGE.--Water-stage recorder. Datum of gage is 472.97 ft above sea level. REMARKS.--Records good except those for periods of doubtful gage-height record, Feb. 13-16, 20-22, Feb. 25 to Mar. 7, Mar. 10-18, Mar. 24 to Apr. 3, Apr. 7-16, 21-25, Aug. 5-7, 13-15, and Sept. 7, 9-20, 26-30, which are fair. Maximum discharge, 9,640 ft³/s, from rating curve extended above 4,200 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 0.73 ft, Aug. 12, 14, 15, 1987. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.—Peak discharges equal to or greater than base discharge of 150 ${\rm ft}^3/{\rm s}$ and maximum (*): REVISIONS.—The minimum discharge for water year 1997 has been revised to 1.0 ${\rm ft}^3/{\rm s}$ September 7, 8, 1997. Revised daily discharges, in cubic feet per second, for September 12 to 30, 1997 are given below. These figures supersede those published in the report for 1997. | Sept. 12 | 3.5 | Sept. | 17 | 2.0 | Sept. | 22 | 1.9 | Sept. | 27 | 2.0 | | |--------------|-----|--------|----|-----|-------|-----|-----|-------|-----|-----|-------| | 13 | 2.6 | | 18 | 4.4 | | 23 | 1.9 | | 28 | 4.3 | | | 14 | 2.2 | | 19 | 2.8 | | 24 | 2.4 | | 29 | 5.2 | | | 15 | 2.2 | | 20 | 2.4 | | 25 | 2.9 | | 30 | 3.1 | | | 16 | 2.3 | | 21 | 2.0 | | 26 | 2.5 | | | | | | MONTH | | TOTAL | M | EAN | | MAX | I | MIN | CFS | M | IN. | | September 19 | 997 |
80.7 | 2 | .69 | | 9.1 | | 1.1 | .3 | 2 | .35 | | Wtr Yr 1997 | | 3432.5 | 9 | .40 | | 107 | | 1.1 | 1.1 | 0 | 14.97 | | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 28 | 1500 | *488 | *4.27 | Apr. 4 | 0945 | 225 | 2.91 | | Feb. 4 | 1230 | 351 | 3.59 | Apr. 17 | 0815 | 367 | 3.67 | | Feb. 17 | 1315 | 357 | 3.62 | Aug. 16 | 0830 | 161 | 2.54 | | Mar 20 | 2400 | 271 | 3 16 | _ | | | | Minimum daily discharge, 0.90 ft³/s, Sept. 30. | | | DISCHA | RGE, IN C | UBIC FEET | PER SECON | ID, WATER
LY MEAN V | | OBER 1997 | TO SEPTEM | BER 1998 | | | |----------------------------------|-----------------------------------|---|--|---|---|---|--|--|---|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.5
2.3
2.4
2.3
2.1 | 11
9.4
6.5
4.9
4.0 | 7.4
5.8
5.3
11
8.1 | 7.2
6.0
7.0
8.1
7.5 | 27
26
23
133
73 | e20
e20
e19
e18
e17 | e15
e15
e14
100
33 | 16
18
15
14
27 | 6.6
6.2
6.0
6.6
7.0 | 3.9
3.5
3.5
3.3
3.4 | 2.0
1.9
1.9
1.7
e1.6 | 1.9
1.9
1.8
2.1 | | 6
7
8
9
10 | 2.0
1.9
2.1
2.3
2.5 | 4.2
35
27
13
8.7 | 6.6
5.7
5.3
5.3 | 7.5
10
16
13
8.9 | 57
38
25
26
23 | e16
e15
44
65
e27 | 25
e21
e19
e19
e18 | 17
21
47
22
17 | 6.7
6.2
5.8
6.0
9.2 | 3.1
3.7
3.8
3.7 | e1.5
e1.5
6.4
6.0
3.5 | 1.7
e1.8
2.1
e1.6
e1.5 | | 11
12
13
14
15 | 2.4
2.4
2.5
3.0
5.1 | 6.8
5.8
5.9
9.6
7.1 | 7.1
5.9
5.6
5.4
5.1 | 7.6
7.0
7.5
6.9 | 24
39
e27
e24
e23 | e25
e23
e21
e20
e19 | e17
e17
e16
e16
e15 | 14
14
13
12 | 8.3
7.5
6.7
5.9
6.8 | 3.1
2.8
2.7
2.6
2.5 | 3.1
2.6
e2.3
e2.2
e2.2 | e1.4
e1.3
e1.2
e1.1 | | 16
17
18
19
20 | 4.2
7.5
15
7.3
5.4 | 6.2
5.7
5.4
4.7
4.5 | 4.8
5.0
5.0
4.8
4.7 | 35
16
11
9.0
8.6 | e22
124
42
24
e22 | e18
e17
e16
72
62 | e15
102
29
34
47 | 11
10
9.4
9.0
8.8 | 6.0
5.5
5.2
9.3
7.6 | 2.5
3.4
2.7
2.4
2.3 | 27
7.8
5.3
3.7
3.1 | e1.0
e1.1
e1.2
e1.3
e1.3 | | 21
22
23
24
25 | 3.8
3.2
2.9
3.0
3.5 | 5.2
12
7.9
6.3
5.4 | 4.7
5.8
7.0
6.4 | 7.4
7.1
57
30
20 | e21
e20
39
34
e28 | 99
33
23
e21
e20 | e27
e23
e20
e18
e16 | 8.6
8.2
9.9
10
9.4 | 6.0
5.5
5.4
5.1
4.8 | 2.1
2.0
2.3
2.7
2.3 | 2.8
2.7
2.6
2.5
2.4 | 1.4
1.3
1.3
1.1 | | 26
27
28
29
30
31 | 6.9
8.8
4.9
3.8
3.5 | 5.3
5.0
5.0
5.0
6.2 | 8.8
8.4
8.9
8.6
8.1
7.1 | 13
40
275
48
25
28 | e25
e23
e21
 | e19
e18
e17
e16
e16
e15 | 15
13
13
13
12 | 8.5
13
11
8.7
7.7
7.0 | 4.5
4.1
4.6
5.6
4.5 | 2.3
3.1
3.4
2.5
2.1 | 2.3
2.4
2.3
2.2
2.1
2.1 | e.98
e.96
e.94
e.92
e.90 | | TOTAL MEAN MAX MIN CFSM IN. | 124.7
4.02
15
1.9
.47 | 248.7
8.29
35
4.0
.97
1.08 | 207.6
6.70
13
4.7
.79 | 773.3
24.9
275
6.0
2.92
3.37 | 1033
36.9
133
20
4.33
4.50 | 851
27.5
99
15
3.22
3.71 | 757
25.2
102
12
2.96
3.30 | 428.2
13.8
47
7.0
1.62
1.87 | 185.2
6.17
9.3
4.1
.72
.81 | 88.9
2.87
3.9
2.0
.34
.39 | 113.7
3.67
27
1.5
.43 | 41.00
1.37
2.1
.90
.16 | e Estimated. # 02038850 HOLIDAY CREEK NEAR ANDERSONVILLE, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1966 | - | 1998, | BY | WATER | YEAR | (WY) | | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------|--| |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|------|--| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | MEAN
MAX | 6.25
25.6 | 7.71
32.3 | 8.99
25.6 | 11.4
30.5 | 13.0
36.9 | 14.4
37.9 | 12.0
32.6 | 9.98
36.0 | 8.51
70.2 | 4.72
15.3 | 4.71
24.9 | 6.32
36.8 | | (WY) | 1972 | 1986 | 1974 | 1978 | 1998 | 1994 | 1973 | 1971 | 1972 | 1972 | 1973 | 1996 | | MIN | 1.23 | 2.40 | 2.16 | 2.40 | 5.38 | 4.12 | 4.37 | 2.93 | 1.63 | .61 | .58 | .81 | | (WY) | 1987 | 1982 | 1989 | 1989 | 1989 | 1981 | 1967 | 1981 | 1966 | 1966 | 1987 | 1970 | | SUMMARY | STATISTI | CS | FOR 3 | 1997 CALENI | DAR YEAR | FC | OR 1998 WA | TER YEAR | | WATER YEA | ARS 1966 | - 1998 | | ANNUAL | TOTAL | | | 2884.1 | | | 4852.30 | | | | | | | ANNUAL | MEAN | | | 7.90 | | | 13.3 | | | 9.03 | | | | HIGHEST | ANNUAL M | IEAN | | | | | | | | 18.6 | | 1973 | | LOWEST | ANNUAL ME | AN | | | | | | | | 3.28 | | 1981 | | HIGHEST | DAILY ME | AN | | 42 | Jul 24 | | 275 | Jan 28 | | 1740 | | 21 1972 | | LOWEST | DAILY MEA | M | | 1.1 | Sep 8 | | e.90 | Sep 30 | | .20 | aJul | 25 1966 | | ANNUAL | SEVEN-DAY | MINIMUM | | 1.3 | Sep 2 | | .97 | Sep 24 | | .20 | Sep | 6 1966 | | INSTANT | ANEOUS PE | AK FLOW | | | | | 488 | Jan 28 | | 9640 | Jun | 21 1972 | | INSTANT | ANEOUS PE | AK STAGE | | | | | 4.27 | Jan 28 | | 14.64 | Jun | 21 1972 | | INSTANT | ANEOUS LO | W FLOW | | | | | | | | .10 | Sep | 11 1966 | | ANNUAL | RUNOFF (C | FSM) | | .93 | | | 1.56 | | | 1.06 | | | | ANNUAL | RUNOFF (I | NCHES) | | 12.58 | | | 21.16 | | | 14.38 | | | | 10 PERC | ENT EXCEE | DS | | 14 | | | 27 | | | 15 | | | | 50 PERC | ENT EXCEE | DS | | 6.9 | | | 7.0 | | | 5.4 | | | | 90 PERC | ENT EXCEE | DS | | 2.0 | | | 2.0 | | | 1.9 | | | a And 11 other days in July and September 1966. e Estimated. # 02042500 CHICKAHOMINY RIVER NEAR PROVIDENCE FORGE, VA LOCATION.--Lat 37°26'10", long 77°03'40", New Kent County, Hydrologic Unit 02080206, on left bank 100 ft downstream from bridge on State Highway 618, 1.1 mi southwest of Providence Forge, and 1.7 mi downstream from Schiminoe Creek. DRAINAGE AREA. -- 252 mi². # WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- January 1942 to current year. REVISED RECORDS.--WSP 1553: 1956. WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 6.07 ft above sea level. REMARKS.--No estimated daily discharges. Records good. Maximum discharge, 7,710 ft³/s, from rating curve extended above 5,520 ft³/s. Minimum gage height, 1.53 ft, Sept. 13, 1965. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,880 $\rm ft^3/s$, Mar. 22, gage height, 9.84 ft; minimum discharge, .07 $\rm ft^3/s$, Oct. 9, 10, 11-14, gage height, 1.75 ft. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|--------|------|------|-------|-------|-------|-------|-------|------|------|-------|-------| | 1 | .16 | 92 | 181 | 390 | 2240 | 860 | 395 | 210 | 171 | 322 | 22 | 14 | | 2 | .12 | 87 | 153 | 378 | 1520 | 714 | 364 | 211 | 164 | 297 | 19 | 14 | | 3 | .10 | 85 | 140 | 319 | 1090 | 574 | 333 | 201 | 148 | 274 | 17 | 12 | | 4 | .10 | 80 | 137 | 265 | 1000 | 474 | 425 | 210 | 123 | 287 | 16 | 22 | | 5 | .10 | 72 | 144 | 215 | 1490 | 416 | 642 | 217 | 99 | 269 | 13 | 34 | | 6 | .09 | 64 | 156 | 176 | 1980 | 379 | 764 | 239 | 87 | 204 | 10 | 39 | | 7 | .08 | 120 | 154 | 153 | 2330 | 383 | 797 | 304 | 76 | 132 | 8.4 | 42 | | 8 | .08 | 263 | 141 | 149 | 2540 | 451 | 835 | 463 | 65 | 85 | 7.7 | 41 | | 9 | .08 | 410 | 131 | 176 | 1900 | 845 | 819 | 827 | 56 | 65 | 7.0 | 36 | | 10 | .08 | 530 | 126 | 197 | 1410 | 1320 | 825 | 913 | 67 | 167 | 6.0 | 33 | | 11 | .08 | 458 | 126 | 246 | 1130 | 1360 | 724 | 750 | 76 | 190 | 14 | 29 | | 12 | .07 | 515 | 124 | 264 | 936 | 1580 | 637 | 627 | 83 | 204 | 45 | 27 | | 13 | .07 | 613 | 124 | 306 | 773 | 1520 | 559 | 688 | 88 | 223 | 49 | 23 | | 14 | .27 | 646 | 123 | 313 | 648 | 1160 | 505 | 676 | 93 | 231 | 36 | 18 | | 15 | .89 | 596 | 122 | 292 | 534 | 849 | 447 | 589 | 108 | 283 | 22 | 13 | | 16 | .11 | 461 | 120 | 329 | 466 | 654 | 376 | 468 | 143 | 362 | 18 | 8.9 | | 17 | .36 | 332 | 113 | 400 | 540 | 510 | 359 | 369 | 175 | 351 | 20 | 6.1 | | 18 | 20 | 234 | 105 | 496 | 791 | 528 | 412 | 318 | 199 | 256 | 18 | 4.1 | | 19 | 30 | 188 | 98 | 467 | 958 | 940 | 475 | 288 | 210 | 137 | 15 | 2.4 | | 20 | 51 | 180 | 91 | 479 | 1070 | 1630 | 638 | 254 | 233 | 84 | 12 | 1.8 | | 21 | 57 | 172 | 87 | 474 | 1340 | 2070 | 904 | 214 | 305 | 64 | 10 | 1.3 | | 22 | 59 | 174 | 87 | 411 | 1230 | 2750 | 927 | 174 | 340 | 52 | 8.2 | 4.3 | | 23 | 56 | 172 | 100 | 369 | 1000 | 2500 | 809 | 146 | 295 | 49 | 6.6 | 6.0 | | 24 | 51 | 190 | 107 | 466 | 923 | 2130 | 677 |
141 | 212 | 41 | 4.8 | 9.5 | | 25 | 45 | 221 | 124 | 744 | 902 | 1640 | 552 | 132 | 175 | 34 | 4.1 | 10 | | 26 | 40 | 266 | 132 | 1100 | 875 | 1210 | 456 | 122 | 199 | 29 | 3.2 | 9.5 | | 27 | 54 | 431 | 156 | 1600 | 950 | 927 | 369 | 176 | 217 | 28 | 4.5 | 7.8 | | 28 | 63 | 427 | 225 | 1880 | 968 | 750 | 309 | 270 | 262 | 33 | 9.6 | 5.5 | | 29 | 73 | 307 | 283 | 2170 | | 622 | 265 | 236 | 297 | 40 | 15 | 3.8 | | 30 | 81 | 220 | 361 | 2170 | | 521 | 232 | 221 | 309 | 32 | 16 | 11 | | 31 | 88 | | 376 | 2540 | | 448 | | 191 | | 28 | 15 | | | TOTAL | 770.84 | 8606 | 4647 | 19934 | 33534 | 32715 | 16831 | 10845 | 5075 | 4853 | 472.1 | 489.0 | | MEAN | 24.9 | 287 | 150 | 643 | 1198 | 1055 | 561 | 350 | 169 | 157 | 15.2 | 16.3 | | MAX | 88 | 646 | 376 | 2540 | 2540 | 2750 | 927 | 913 | 340 | 362 | 49 | 42 | | MIN | .07 | 64 | 87 | 149 | 466 | 379 | 232 | 122 | 56 | 28 | 3.2 | 1.3 | | CFSM | .10 | 1.14 | .59 | 2.55 | 4.75 | 4.19 | 2.23 | 1.39 | .67 | .62 | .06 | .06 | | IN. | .11 | 1.27 | .69 | 2.94 | 4.95 | 4.83 | 2.48 | 1.60 | .75 | .72 | .07 | .07 | | | • | | | 2.,,1 | 2.23 | 1.05 | 2.10 | | • | | , | , | # 02042500 CHICKAHOMINY RIVER NEAR PROVIDENCE FORGE, VA--Continued | STATIS' | TICS OF M | ONTHLY MEA | N DATA | FOR WATER | YEARS 1942 | - 1998, | BY WATER | YEAR (WY) | | | | | |---------|-----------|------------|--------|-----------|------------|---------|------------|-----------|------|----------|-----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 144 | 209 | 287 | 380 | 430 | 481 | 384 | 240 | 165 | 146 | 161 | 107 | | MAX | 794 | 768 | 1043 | 1214 | 1198 | 1055 | 1152 | 676 | 757 | 1081 | 1445 | 737 | | (WY) | 1980 | 1986 | 1958 | 1978 | 1998 | 1998 | 1984 | 1978 | 1972 | 1945 | 1955 | 1979 | | MIN | 3.81 | 17.5 | 28.0 | 58.7 | 94.4 | 108 | 102 | 34.9 | 14.1 | 12.5 | 5.53 | .17 | | (WY) | 1969 | 1966 | 1966 | 1955 | 1942 | 1981 | 1995 | 1985 | 1977 | 1968 | 1995 | 1997 | | SUMMAR | Y STATIST | ICS | FOR | 1997 CALE | NDAR YEAR | F | OR 1998 W. | ATER YEAR | | WATER YE | CARS 1942 | - 1998 | | ANNUAL | TOTAL | | | 74943.3 | 0 | | 138771.9 | 4 | | | | | | ANNUAL | MEAN | | | 205 | | | 380 | | | 263 | | | | HIGHES' | r annual | MEAN | | | | | | | | 482 | | 1958 | | LOWEST | ANNUAL M | EAN | | | | | | | | 91.4 | | 1966 | | HIGHES' | T DAILY M | EAN | | 1090 | May 1 | | 2750 | Mar 22 | | 6680 | Aug | 15 1955 | | LOWEST | DAILY ME | AN | | .0 | 7 aSep 12 | | .0 | 7 b0ct 12 | | .07 | aSep | 12 1997 | | ANNUAL | SEVEN-DA | Y MINIMUM | | .0 | 7 Sep 12 | | .0 | 8 Oct 7 | | .07 | ' Sep | 12 1997 | | INSTAN' | TANEOUS P | EAK FLOW | | | | | 2880 | Mar 22 | | 7710 | Aug | 15 1955 | | INSTAN' | TANEOUS P | EAK STAGE | | | | | 9.8 | | | 11.67 | | 15 1955 | | | TANEOUS L | | | | | | .0 | 7 cOct 9 | | .06 | dSep | 12 1997 | | | RUNOFF (| | | .8 | | | 1.5 | | | 1.04 | | | | | RUNOFF (| | | 11.0 | 16 | | 20.4 | | | 14.16 | 5 | | | | CENT EXCE | | | 442 | | | 944 | | | 600 | | | | | CENT EXCE | | | 144 | | | 201 | | | 166 | | | | 90 PER | CENT EXCE | EDS | | .1 | .7 | | 8.3 | | | 22 | | | a Also Sept. 15-17, and Oct. 12, 13, 1997. b Also Oct. 13, 1997. c Also Oct. 10, 11-14, 1997. d Also Sept. 14-15, 16, 17, 18, 1997. # 02042500 CHICKAHOMINY RIVER NEAR PROVIDENCE FORGE, VA--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- April 1995 to current year. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |-----------|------|---|---|--|---|---|---|--|---|---|---|---| | OCT 1997 | | | | | | | | | | | | | | 21
NOV | 1200 | 56 | 138 | 6.6 | 13.5 | 12.6 | 770 | 7.8 | 73 | 12 | 2.5 | 8.4 | | 07 | 1130 | 111 | 160 | 6.2 | 8.5 | 10.3 | | | | 11 | 2.5 | 11 | | 08 | 1140 | 265 | 142 | 5.9 | 10.9 | 10.6 | | | | 10 | 2.4 | 7.6 | | 09 | 1415 | 437 | 143 | 5.9 | 11.1 | 10.8 | | | | | | | | 12 | 1550 | 541 | 142 | 5.5 | 8.6 | 10.4 | | | | 9.0 | 2.2 | 9.6 | | 18 | 1330 | 236 | 144 | | | 5.1 | | | | | | | | 20 | 1345 | 181 | | | | | | | | | | | | JAN 1998 | 1313 | 101 | | | | | | | | | | | | 16 | 1115 | 362 | 101 | 6.4 | 4.0 | 5.3 | 755 | 11.4 | 91 | 5.8 | 1.4 | 9.4 | | FEB | | | | | | | | | | | | J. 1 | | 16 | 1520 | 458 | 76 | 6.5 | 6.8 | 5.4 | | | | | | | | 17 | 1140 | 513 | 75 | 6.3 | 12.3 | 7.4 | | | | 4.9 | 1.3 | 5.9 | | 17 | 1715 | 590 | 73 | 6.5 | 15.0 | 8.3 | | | | | | | | 18 | 1115 | 788 | 70 | 6.4 | 12.0 | 9.2 | | | | 4.8 | 1.2 | 5.2 | | 18 | 1515 | 804 | 69 | 6.5 | 16.5 | 10.3 | | | | | | | | 19 | 1515 | 967 | 66 | 6.5 | 21.3 | 11.2 | | | | 4.5 | 1.1 | 5.2 | | 20 | 1100 | 1030 | 65 | 6.2 | | 9.9 | | | | | | | | 21 | 0900 | 1350 | 67 | 6.8 | 15.4 | 9.4 | | | | 4.3 | 1.1 | 5.5 | | 22 | 0910 | 1280 | 66 | 6.6 | 11.4 | 8.9 | | | | 4.4 | 1.2 | 5.4 | | 23 | 0930 | 995 | 66 | 6.5 | | 9.2 | | | | 4.5 | 1.2 | 5.3 | | 24 | 0915 | 930 | 67 | 6.6 | | 7.9 | | | | 4.4 | 1.2 | 4.8 | | 25 | 0930 | 898 | 64 | 6.6 | | 7.5 | | | | | | | | 26 | 0945 | 871 | 67 | 6.5 | | 8.3 | | | | | | | | 27 | 0845 | 943 | 67 | 6.6 | | 8.7 | | | | | | | | MAR | | | | | | | | | | | | | | 02 | 1030 | 722 | 75 | 6.5 | | 11.8 | | | | | | | | 04 | 1100 | 476 | 74 | 6.7 | 12.3 | 8.0 | | | | | | | | 06 | 0930 | 380 | 78 | 6.6 | | 6.8 | | | | | | | | 09 | 0900 | 769 | 62 | 6.6 | | 12.0 | | | | | | | | 10 | 0915 | 1290 | 55 | 6.5 | | 12.4 | | | | | | | | 11 | 0945 | 1370 | 47 | 6.5 | | 8.8 | | | | | | | | 12 | 0850 | 1570 | 62 | 6.6 | | 7.0 | | | | | | | | 13 | 0800 | 1590 | 60 | 6.6 | | 5.8 | | | | | | | | APR | 0000 | ±370 | 30 | 0.0 | | ٥.٥ | | | | | | | | 16 | 1015 | 380 | 76 | 6.3 | 22.5 | 17.6 | 735 | 6.5 | 71 | 6.4 | 1.6 | 5.8 | | JUL | 1013 | 300 | 70 | 0.3 | 44.5 | 1/.0 | 133 | 0.5 | / 1 | 0.4 | 1.0 | 3.0 | | | 1000 | 262 | 0.1 | <i>c</i> 1 | 26.0 | 22 5 | 752 | 1 0 | E 7 | 6 2 | 1 5 | 6 1 | | 16 | 1000 | 362 | 81 | 6.4 | 26.0 | 23.5 | 753 | 4.8 | 57 | 6.2 | 1.5 | 6.4 | | AUG | 1200 | 2 0 | 110 | E 0 | 27 5 | 24 5 | | 4 7 | | 0 0 | 2 1 | 6 5 | | 26 | 1200 | 2.8 | 110 | 5.8 | 27.5 | 24.5 | | 4.7 | | 8.8 | 2.1 | 6.5 | JAMES RIVER BASIN # 02042500 CHICKAHOMINY RIVER NEAR PROVIDENCE FORGE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | | ANC | | | | | | SOLIDS, | NITRO- | NITRO- | NITRO- | NITRO- | |-----------|----------------|------------------|------------------|-----------------|----------------|-----------------|-------------|------------------|----------------|----------------|----------------|----------------| | | POTAS- | WATER | | CHLO- | FLUO- | | SILICA, | RESIDUE | GEN, | GEN, | GEN, | GEN, AM- | | | SIUM, | UNFLTRD | SULFATE | RIDE, | RIDE, | BROMIDE | DIS- | AT 180 | NITRITE | NO2+NO3 | AMMONIA | MONIA + | | | DIS- | FET | DIS- | DIS- | DIS- | DIS- | SOLVED | DEG. C | DIS- | DIS- | DIS- | ORGANIC | | D | SOLVED | FIELD | SOLVED | SOLVED | SOLVED | SOLVED | (MG/L | DIS- | SOLVED | SOLVED | SOLVED | TOTAL | | DATE | (MG/L
AS K) | MG/L AS
CACO3 | (MG/L
AS SO4) | (MG/L
AS CL) | (MG/L
AS F) | (MG/L
AS BR) | AS
SIO2) | SOLVED
(MG/L) | (MG/L
AS N) | (MG/L
AS N) | (MG/L
AS N) | (MG/L
AS N) | | | (00935) | (00410) | (00945) | (00940) | (00950) | (71870) | (00955) | (70300) | (00613) | (00631) | (00608) | (00625) | | | (00)33) | (00410) | (00)43) | (00540) | (00)30) | (71070) | (00)33) | (70300) | (00013) | (00031) | (00000) | (00023) | | OCT 1997 | | | | | | | | | | | | | | 21 | 2.8 | 12 | 26 | 12 | | <.010 | 8.6 | 97 | | | | | | NOV | | | | | | | | | | | | | | 07 | 4.3 | | 35 | 16 | <.10 | <.010 | 12 | 107 | | | | | | 08 | 4.8 | 6 | 32 | 13 | <.10 | <.010 | 9.2 | 99 | | | | | | 09
12 | 4.1 |
3 | 32 | 14 |
<.10 | <.010 |
11 |
105 | | | | | | 18 | | | | 14 | | | | 105 | | | | | | 20 | | | | | | | | | | | | | | JAN 1998 | | | | | | | | | | | | | | 16 | 2.2 | 8 | 13 | 14 | <.10 | <.010 | 7.1 | 81 | | | | | | FEB | | | | | | | | | | | | | | 16 | | | | | | | | | <.010 | .134 | <.020 | .36 | | 17 | 1.9 | 8 | 11 | 8.5 | .11 | <.010 | 3.7 | 61 | <.010 | .136 | <.020 | 1.1 | | 17 | | | | | | | | | | | | | | 18 | 1.8 | 8 | 9.9 | 7.2 | <.10 | <.010 | 3.7 | 58 | | | | | | 18 | 1 0 | 8
8 | 8.7 |
7.4 |
<.10 | <.010 |
3.7 |
58 |
<.010 | 1.40 | <.020 | .31 | | 19
20 | 1.8 | 10 | 8.7 | 7.4 | <.10 | <.010 | 3.7 | 58 | <.010 | .140 | <.020 | | | 21 | 1.9 | 12 | 9.0 | 7.2 | <.10 | <.010 | 3.7 | 55 | <.010 | .147 | <.020 | .38 | | 22 | 1.9 | 11 | 9.3 | 6.8 | <.10 | <.010 | 4.0 | 60 | | | | | | 23 | 1.9 | 9 | 9.3 | 6.6 | <.10 | <.010 | 3.8 | 57 | <.010 | .129 | <.020 | .37 | | 24 | 1.8 | 8 | 13 | 6.4 | <.10 | <.010 | 3.2 | 56 | | | | | | 25 | | 8 | | | | | | | | | | | | 26 | | 9 | | | | | | | | | | | | 27 | | 9 | | | | | | | | | | | | MAR | | | | | | | | | | | | | | 02 | | 11
12 | | | | | | | | | | | | 04
06 | | 13 |
| | | | | | | | | | | 09 | | 11 | | | | | | | | | | | | 10 | | 10 | | | | | | | | | | | | 11 | | 10 | | | | | | | | | | | | 12 | | 10 | | | | | | | | | | | | 13 | | 9 | | | | | | | | | | | | APR | | | | | | | | | | | | | | 16 | 1.5 | 19 | 4.0 | 7.4 | <.10 | <.010 | 1.6 | 60 | | | | | | JUL | 1 0 | - 4 | | | 1.0 | 0.1.0 | 0 0 | | | | | | | 16 | 1.0 | 14 | 9.0 | 7.7 | <.10 | <.010 | 9.3 | 73 | | | | | | AUG
26 | 1.8 | | 7.3 | 9.2 | <.10 | <.010 | 6.9 | 74 | | | | | | ۷٠ | 1.0 | | 1.3 | ٥.۵ | \.±U | <.U1U | 0.9 | / 1 | | | | | < Actual value is known to be less than the value shown. # 02042500 CHICKAHOMINY RIVER NEAR PROVIDENCE FORGE, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | H-2 /
H-1
STABLE
ISOTOPE
RATIO
PER
MIL
(82082) | O-18 /
O-16
STABLE
ISOTOPE
RATIO
PER
MIL
(82085) | LIGHT
ABSOR-
BENCE
AT
253.7 NM
(PER
CM)**
(99905) | |-----------|--|--|---|--|--|---|---|---|---|---|--| | OCT 1997 | | | | | | | | | | | | | 21 | | | | | | | 120 | 60 | -24.8 | -4.33 | .210 | | NOV | | | | | | | | | | | | | 07 | | | | | | | 84 | 178 | -32.5 | -5.51 | .179 | | 08 | | | | | | | 250 | 464 | -45.7 | -7.11 | .244 | | 09 | | | | | | | | | | | .309 | | 12 | | | | | | | 120 | 254 | -44.7 | -7.22 | .249 | | 18 | | | | | | | | | -45.1 | -7.24 | .231 | | 20 | | | | | | | | | -45.6 | -7.23 | .197 | | JAN 1998 | | | | | | | | | | | | | 16 | | | | | | | 550 | 24 | | | .284 | | FEB | 0.4 | 20 | 010 | . 010 | 017 | | | | | | 0.40 | | 16
17 | .24 | .38 | .012 | <.010
.018 | .017
.017 | | 300 | 23 | | | .242 | | 17 | .20 | | .013 | .010 | .017 | | | 2.3 | | | .252 | | 18 | | | | | | | 270 | 16 | | | .246 | | 18 | | | | | | | 270 | | | | .240 | | 19 | .28 | .42 | .017 | .010 | .017 | | 320 | 17 | | | .285 | | 20 | | | | | | | | | -49.3 | -8.07 | | | 21 | .27 | .42 | .027 | .012 | .020 | | 340 | 17 | -49.5 | -8.14 | .296 | | 22 | | | | | | | 350 | 17 | -50.9 | -8.26 | .324 | | 23 | .29 | .42 | .023 | .014 | .021 | | 350 | 21 | -50.6 | -8.15 | .371 | | 24 | | | | | | | 420 | 21 | | | .357 | | 25 | | | | | | | | | | | .320 | | 26 | | | | | | | | | | | .314 | | 27 | | | | | | | | | | | .280 | | MAR | | | | | | | | | | | | | 02 | | | | | | | | | | | .325 | | 04 | | | | | | | | | | | .345 | | 06 | | | | | | | | | | | .300 | | 09 | | | | | | | | | | | .309 | | 10 | | | | | | | | | | | .327 | | 11 | | | | | | | | | | | .386 | | 12 | | | | | | | | | | | .326 | | 13 | | | | | | | | | | | .360 | | APR | | | | | | | | 0.5 | | | 450 | | 16 | | | | | | | 680 | 85 | | | .450 | | JUL
16 | | | | | | 12 | 440 | 71 | | | .388 | | AUG | | | | | | 12 | 440 | / 1 | | | .300 | | 26 | | | | | | | 220 | 546 | | | | | ∠0 | | | | | | | ∠∠∪ | 240 | | | | ^{**} Abbreviations used: NM, nanometers; PER CM, per centimeter. < Actual value is known to be less than the value shown. THIS IS A BLANK PAGE MTN 3.70 4.16 5.11 5.15 4.95 #### GREAT DISMAL SWAMP BASIN #### 02043600 LAKE DRUMMOND IN GREAT DISMAL SWAMP, VA LOCATION.--Lat 36°35'42", long 76°26'23", Chesapeake City, Hydrologic Unit 03010205, on right bank in outlet canal, 200 ft upstream from dam and gates, 0.5 mi downstream from Lake Drummond, 3.1 mi north of North Carolina State line, and 20 mi southwest of Norfolk. PERIOD OF RECORD.--May 1926 to current year. Prior to October 1973, published as Lake Drummond in Dismal Swamp. REVISED RECORDS. -- WSP 1032: 1934-43. GAGE.--Nonrecording gage. Datum of gage is 12.16 ft above sea level. Aug. 22, 1978, to Oct. 1, 1981, water-stage recorder at same site and datum. REMARKS.--Mean daily gage heights are shown in table below. Maximum gage height, 6.68 ft, Sept. 17, 1960. Minimum gage height, -0.67 ft, Nov. 3, 1952. EXTREMES FOR CURRENT YEAR.--Maximum instantaneous gage height, 5.76 ft, Feb. 7; minimum instantaneous gage height, 3.70 ft, Oct. 15. GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 4.00 4.16 5.11 5.23 5.27 5.13 5.17 5.24 5.22 5.20 5.12 4.63 1 5.15 5.21 5.27 5.23 5.10 5.10 2 4.00 4.18 5.14 5.25 5.18 4.62 5.03 5.27 5.06 3.95 4.20 5.18 5.26 5.18 5.17 5.20 5.05 4.60 3 5.23 5.24 4 3.93 4.19 5.20 5.27 5.16 5.31 5.33 4.99 5.05 4.76 5 3.91 4.20 5.28 5.28 5.33 5.08 5.21 5.31 5.27 5.04 4.99 4.71 6 3.88 4.18 5.34 5.27 5.48 5.12 5.19 5.31 5.23 5.01 4.96 4.67 5 75 4 99 4 94 7 3 87 4 20 5 30 5 25 5 14 5 18 5 29 5 21 4 66 8 3 87 4 25 5.32 5 25 5 74 5.19 5.15 5 32 5.20 4.97 4 88 4.74 9 3.84 4.35 5.36 5.25 5.62 5.29 5.13 5.34 5.18 4.95 4.88 4.71 10 3.82 4.36 5.35 5.22 5.48 5.28 5.18 5.22 5.20 4.95 4.88 4.69 11 3.80 4.36 5.36 5.23 5.34 5.20 5.19 5.17 5.22 4.93 4.87 4.60 12 3.78 4.40 5.30 5 22 5.31 5.27 5 16 5.17 5.22 4.86 4.86 4.60 13 3.74 4.44 5.24 5.27 5.17 5.25 5.15 5.12 5.22 4.82 4.82 4.57 14 3.72 4.58 5.23 5.26 5.12 5.26 5.16 5.13 5.24 4.79 4.79 4.54 15 3.70 4.57 5.25 5.26 5.11 5.28 5.15 5.14 5.24 4.74 4.78 4.51 3.72 4.59 5.26 5.13 5.19 4.85 5.32 5.25 5.12 5.28 4.75 4.50 17 3.74 4.60 5.26 5.32 5.20 5.17 5.10 5.27 5.28 5.11 4.97 4.45 3.84 4.62 5.28 5.28 5.22 5.16 5.10 5.29 5.28 5.14 4.93 18 4.42 19 3.89 4.65 5.28 5.22 5.20 5.13 5.18 5.31 5.28 5.16 4.89 4.41 20 3.94 4.69 5.28 5.22 5.19 5.11 5.22 5.32 5.30 5.15 4.90 3.92 5.28 5.18 5.33 3.91 4.77 5.29 5.19 5.11 5.22 5.21 5.32 5.28 5.15 4.82 4.40 23 3.90 4.88 5.31 5.18 4.95 5.22 5.28 5.31 5.35 5.16 4.78 4.36 3.90 4.90 5.28 5.08 4.75 24 5.18 5.24 5.30 5.33 5.30 5.25 4.32 5.23 25 3.92 4.92 5.32 5.15 5.05 5.30 5.30 5.29 5.22 4.70 4.28 3.93 4.94 5.26 5.18 5.15 5.26 5.26 5.36 5.26 5.23 4.25 26 4.65 4.02 4.94 5.25 4.23 27 5.28 5.19 5.17 5.26 5.27 5.25 5.19 4.50 4.95 5.28 5.26 4.72 28 4.08 5.33 5.22 5.18 5.22 5.26 5.18 4.22 29 4.08 4.98 5.32 5.22 5.19 5.28 5.21 5.24 4.69 4.21 ---5.17 ___ 30 4.05 5.08 5.30 5.23 5.18 5.25 5.19 5.12 5.13 4.65 4.20 31 4 06 ___ 5 27 5 26 ___ 5 17 5 20 5 14 4 64 ___ MEAN 3 89 4 56 5 28 5 24 5 25 5 20 5 20 5 26 5 25 5 05 4 85 4 49 MAX 4 08 5.08 5 36 5 32 5 75 5.29 5 31 5.36 5.35 5.25 5 12 4.76 5.08 5.10 5.12 5.12 4.74 4.50 4.20 02043600 LAKE DRUMMOND IN GREAT DISMAL SWAMP, VA--Continued #### CHOWAN RIVER BASIN # 02047000 NOTTOWAY RIVER NEAR SEBRELL, VA LOCATION.--Lat 36°46'13", long 77°09'59", Southampton County, Hydrologic Unit 03010201, on right bank at bridge on State Highway 653, 1 mi downstream from Three Creek, 2.5 mi southwest of Sebrell, and 5.5 mi upstream from Assamoosick Swamp. DRAINAGE AREA. -- 1,421 mi². PERIOD OF RECORD. -- September 1941 to current year. REVISED RECORDS.--WSP 1333: 1942, 1944, 1948-49. WSP 2104: Drainage area. WDR-91-1: 1982(m). GAGE.--Water-stage recorder. Datum of gage is 5.94 ft above sea level. Prior to Aug. 23, 1950, nonrecording gage on right bank at site 1,000 ft upstream at same datum. Aug. 23, 1950 to Oct. 1, 1996, water-stage recorder at above site and datum. Nonrecording gage Oct. 1, 1996 to Apr. 9, 1997 at present site and datum. Apr. 9, 1997 to current year, water-stage recorder at present site and datum. REMARKS.--Records good except those for period of no gage-height record, May 3-7, which is fair. Maximum discharge, 26,000 ft³/s, from rating curve extended above 25,000 ft³/s. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Maximum discharge, $16,000 \text{ ft}^3/\text{s}$, Mar. 24, gage height, 21.31 ft; minimum, 52 ft $^3/\text{s}$, Oct. 14, 15, 17, gage height, 2.98 ft. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | DAILY MEAN VALUES | | | | | | | | | | | | |-------|-------------------|-------|-------|-------|--------|--------|-------|-------|-------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 79 | 250 | 746 | 1830 | 10500 | 3840 | 2260 | 1120 | 872 | 251 | 100 | 62 | | 2 | 90 | 209 | 864 | 1560 | 10400 | 3130 | 1980 | 1070 | 777 | 236 | 109 | 65 | | 3 | 93 | 188 | 1000 | 1300 | 9250 | 2440 | 1820 | e1150 | 567 | 221 | 107 | 66 | | 4 | 92 | 191 | 992 | 1140 | 7870 | 2050 | 1900 | e1360 | 488 | 199 | 93 | 83 | | 5 | 85 | 204 | 949 | 1020 | 7650 | 1820 | 2340 | e1550 | 436 | 188 | 85 | 105 | | 6 | 78 | 201 | 894 | 933 | 8120 | 1640 | 2950 | e1500 | 403 | 177 | 81 | 122 | | 7 | 73 | 219 | 845 | 881 | 9300 | 1510 | 3510 | e1360 | 381 | 165 | 79 | 279 | | 8 | 69 | 321 | 789 | 877 | 11100 | 1500 | 4020 | 1250 | 354 | 156 | 75 | 328 | | 9 | 65 | 469 | 734 | 1050 | 11400 | 2620 | 4220 | 1810 | 328 | 148 | 72 | 238 | | 10 | 61 | 801 | 684 | 1620 | 10300 | 4160 | 3760 | 2460 | 313 | 138 | 74 | 176 | | | | 205 | | 0110 | 0.400 | 61.00 | 2020 | 2010 | 201 | 100 | | 100 | | 11 | 60 | 905 | 664 | 2110 | 8480 | 6170 | 3030 | 3010 | 301 | 130 | 72 | 137 | | 12 | 57 | 818 |
673 | 2130 | 6430 | 9360 | 2630 | 3560 | 301 | 126 | 68 | 114 | | 13 | 55 | 686 | 697 | 1690 | 4710 | 11000 | 2390 | 3980 | 319 | 123 | 92 | 97 | | 14 | 53 | 622 | 687 | 1370 | 3730 | 10400 | 2050 | 3630 | 326 | 121 | 127 | 83 | | 15 | 52 | 727 | 651 | 1250 | 3100 | 8240 | 1740 | 2740 | 321 | 123 | 119 | 73 | | 16 | 53 | 916 | 604 | 1500 | 2630 | 5710 | 1560 | 1960 | 315 | 122 | 104 | 66 | | 17 | 52 | 940 | 571 | 2360 | 2440 | 3930 | 1470 | 1460 | 329 | 208 | 109 | 62 | | 18 | 56 | 883 | 564 | 3110 | 3000 | 3320 | 1610 | 1170 | 361 | 241 | 164 | 60 | | 19 | 84 | 750 | 542 | 3720 | 3660 | 4350 | 2140 | 971 | 355 | 163 | 115 | 56 | | 20 | 124 | 638 | 512 | 4190 | 4200 | 7140 | 2750 | 828 | 388 | 165 | 206 | 55 | | 21 | 136 | 556 | 484 | 4140 | 4900 | 9780 | 3320 | 702 | 684 | 128 | 182 | 54 | | 22 | 158 | 550 | 471 | 3510 | 5580 | 12700 | 3900 | 609 | 744 | 113 | 134 | 56 | | 23 | 181 | 643 | 509 | 2830 | 5550 | 15300 | 4270 | 551 | 554 | 104 | 106 | 63 | | 24 | 175 | 1040 | 563 | 2680 | 4720 | 15900 | 4170 | 511 | 493 | 103 | 90 | 74 | | 25 | 163 | 1490 | 668 | 3070 | 4020 | 14700 | 3640 | 480 | 512 | 98 | 79 | 70 | | 26 | 145 | 1310 | 764 | 3590 | 3890 | 12300 | 2860 | 492 | 706 | 94 | 72 | 65 | | 27 | 138 | 982 | 878 | 4230 | 4050 | 9590 | 2180 | 529 | 524 | 91 | 73 | 66 | | 28 | 130 | 805 | 1060 | 5780 | 4170 | 6880 | 1720 | 601 | 403 | 90 | 77 | 67 | | 29 | 168 | 714 | 1350 | 7530 | | 4690 | 1420 | 727 | 329 | 89 | 70 | 63 | | 30 | 286 | 662 | 1740 | 8290 | | 3520 | 1230 | 873 | 279 | 93 | 69 | 60 | | 31 | 294 | | 1930 | 9250 | | 2760 | | 858 | | 102 | 64 | | | | | | | | | | | | | | | | | TOTAL | 3405 | 19690 | 25079 | 90541 | 175150 | 202450 | 78840 | 44872 | 13463 | 4506 | 3067 | 2965 | | MEAN | 110 | 656 | 809 | 2921 | 6255 | 6531 | 2628 | 1447 | 449 | 145 | 98.9 | 98.8 | | MAX | 294 | 1490 | 1930 | 9250 | 11400 | 15900 | 4270 | 3980 | 872 | 251 | 206 | 328 | | MIN | 52 | 188 | 471 | 877 | 2440 | 1500 | 1230 | 480 | 279 | 89 | 64 | 54 | | CFSM | .08 | .46 | .57 | 2.06 | 4.40 | 4.60 | 1.85 | 1.02 | .32 | .10 | .07 | .07 | | IN. | .09 | .52 | .66 | 2.37 | 4.59 | 5.30 | 2.06 | 1.17 | .35 | .12 | .08 | .08 | e Estimated. ## CHOWAN RIVER BASIN # 02047000 NOTTOWAY RIVER NEAR SEBRELL, VA--Continued | STATIST | rics of M | ONTHLY MEAN | DATA F | OR WATER | YEARS 1941 | - 1998, | BY WATER | YEAR (WY) | | | | | |----------------------|------------------------------------|-------------|--------|----------|------------|---------|-----------|-----------|------|---------|-----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 656 | 877 | 1340 | 2074 | 2527 | 2826 | 2099 | 1338 | 766 | 729 | 625 | 534 | | MAX | 4491 | 4854 | 4310 | 6115 | 6255 | 6531 | 5127 | 5180 | 2246 | 5782 | 2831 | 4631 | | (WY) | 1973 | 1986 | 1958 | 1978 | 1998 | 1998 | 1987 | 1978 | 1972 | 1975 | 1955 | 1979 | | MIN | 27.4 | 59.5 | 98.8 | 196 | 516 | 389 | 427 | 300 | 131 | 48.9 | 43.3 | 27.8 | | (WY) | 1955 | 1942 | 1966 | 1966 | 1981 | 1981 | 1966 | 1942 | 1942 | 1966 | 1963 | 1954 | | SUMMAR | Y STATIST | ICS | FOR | 1997 CAL | ENDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER Y | EARS 1941 | - 1998 | | ANNUAL | ANNUAL MEAN | | | 448897 | | | 664028 | | | | | | | ANNUAL | ANNUAL TOTAL ANNUAL MEAN | | | 1230 | | | 1819 | | | 1360 | | | | HIGHEST | ANNUAL MEAN
HIGHEST ANNUAL MEAN | | | | | | | | | 2671 | | 1978 | | LOWEST | ANNUAL M | EAN | | | | | | | | 366 | | 1981 | | HIGHEST | r daily M | EAN | | 9400 | May 4 | | 15900 | Mar 24 | | 25500 | Jul | 19 1975 | | LOWEST | DAILY ME. | AN | | 52 | Oct 15 | | 52 | Oct 15 | | 14 | Oct : | 14 1954 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 54 | Oct 12 | | 54 | Oct 12 | | 15 | Oct | 8 1954 | | INSTAN | TANEOUS P | EAK FLOW | | | | | 16000 | Mar 24 | | 26000 | Jul | 19 1975 | | INSTAN | TANEOUS P | EAK STAGE | | | | | 21.3 | 1 Mar 24 | | 24.4 | 3 Jul | 19 1975 | | INSTAN | TANEOUS L | OW FLOW | | | | | 52 | a0ct 14 | | b12 | Oct : | 23 1941 | | ANNUAL RUNOFF (CFSM) | | | - 1 | 87 | | 1.2 | 8 | | .9 | 6 | | | | ANNUAL | ANNUAL RUNOFF (INCHES) | | | 11. | 75 | | 17.3 | 8 | | 13.0 | 1 | | | 10 PERG | 10 PERCENT EXCEEDS | | | 2710 | | | 4700 | | | 3380 | | | | 50 PERG | CENT EXCE | EDS | | 714 | | | 673 | | | 742 | | | | 90 PER | CENT EXCE | EDS | | 78 | | | 73 | | | 102 | | | a Also Oct. 15, 17, 1997. b Observed. #### CHOWAN RIVER BASIN #### 02049500 BLACKWATER RIVER NEAR FRANKLIN, VA LOCATION.--Lat 36°45'45", long 76°53'55", Southampton County, Hydrologic Unit 03010202, on right bank 0.4 mi south of Burdette, 0.5 mi upstream from Black Creek, 3.3 mi downstream from Corrowaugh Swamp, and 6.0 mi north of DRAINAGE AREA. -- 617 mi². PERIOD OF RECORD. -- August 1944 to current year. REVISED RECORDS. -- WSP 2104: Drainage area. GAGE. -- Water-stage recorder. Datum of gage is 1.56 ft above sea level. REMARKS.--Records good except those for periods of doubtful or no gage-height record, Nov. 9-14, 24, 25, Feb. 6, 7, and Apr. 28, 29, which are fair, and for periods of tidal effect below 15 ft³/s, which are poor. Low flow reversed by tide some years. Diversion upstream from station by city of Norfolk for municipal water supply most years. Maximum discharge, 9,420 ft³/s, from rating curve extended above 9,400 ft³/s. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1940 reached a stage of about 22 ft, discharge, 21,000 $\rm ft^3/s$, from rating curve extended above 9,400 $\rm ft^3/s$. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 7,250 ${\rm ft}^3/{\rm s}$, Feb. 7, gage height, 15.27 ft; minimum daily, 0.80 ${\rm ft}^3/{\rm s}$, Oct. 17. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUL AUG SEP e2.4 9.2 e2.3 9.7 9.0 e2.2 7.7 e2.1 e2.0 e1.9 e6970 8.3 e1.8 e7150 e1 7 4 8 e1.6 e70 8.5 3.2 1.0 e1 5 e115 6 8 2 9 e1.4 e210 5.5 2.7 e1 3 e360 4 5 2 2 e1.2 e560 3.4 1.9 e1.1 e720 2.8 1.8 e1.0 2 8 1.9 e.90 4.2 3.1 e.80 3.9 e3.5 3.3 9.4 e7.1 1.9 1.2 8.2 .96 5.9 e.90 6.9 6.4 e.87 6.2 e.85 2.4 5.2 e496 6.2 7.3 e510 e.83 7.4 e2.0 7.7 6.4 7.7 7.3 7.8 e720 7.1 e640 7.6 7.0 ---7.1 6.9 7.0 ------------9.4 ---TOTAL 122.00 628.9 218.91 1088.8 MEAN 3.94 56 8 20 3 7 06 36 3 MAX MTN .80 1.0 2.8 .83 6.2 29 2 1 14 29 5 19 9 Ω Ω 0.3 Ω Ω Ω Ω (†) MEAN± 5.08 56.8 20.3 7.06 36.3 .01 .09 .03 .01 .06 CFSM‡ .62 .87 2.52 5.70 4.07 1.49 .84 IN.‡ .01 .69 1.00 2.91 5.94 4.70 1.66 .97 .10 .04 .01 .07 CFSM# .83 IN.# 11.31 † Average daily diversion, in cubic feet per second, by city of Norfolk. TOTAL 183451.33 MEAN 503 MAX 2650 MIN .77 MEAN‡ 514 WTR YR 1998 TOTAL 297801.61 MEAN 816 MAX 7150 MIN .80 MEAN; 823 CFSM; 1.33 IN.; 18.11 CAL YR 1997 [‡] Adjusted for diversion. e Estimated (b) 1.02 13.83 8.2 1640 375 ## CHOWAN RIVER BASIN ## 02049500 BLACKWATER RIVER NEAR FRANKLIN, VA--Continued | STAT | ISTICS OF | MONTHLY MEAN | I DATA | FOR WATER | YEARS 1944 | - 1998, | BY WATER | YEAR (WY) | [UNADJ | USTED] | | | |------|------------|--------------|--------|-----------|------------|---------|------------|-----------|--------|----------|----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 1 291 | 373 | 634 | 1011 | 1206 | 1298 | 918 | 562 | 345 | 294 | 353 | 279 | | MAX | 1795 | 1713 | 2082 | 2271 | 3520 | 2915 | 2783 | 1890 | 1925 | 2003 | 1481 | 2490 | | (WY) | 1973 | 1980 | 1958 | 1978 | 1998 | 1989 | 1989 | 1958 | 1963 | 1945 | 1969 | 1960 | | MIN | .94 | 1.69 | 2.12 | 12.5 | 152 | 158 | 107 | 51.4 | 15.0 | 3.02 | 2.08 | 2.16 | | (WY) | 1988 | 1981 | 1981 | 1981 | 1981 | 1981 | 1995 | 1985 | 1986 | 1986 | 1995 | 1995 | | | | | | | | | | | | | | | | SUMM | IARY STATI | STICS | FOR | 1997 CALI | ENDAR YEAR | F | OR 1998 WA | ATER YEAR | | WATER YE | ARS 1944 | - 1998 | | ANNU | JAL TOTAL | | | 183451.3 | 33 | | 297801.61 | _ | | | | | | ANNU | JAL MEAN | | | 503 | | | 816 | | | 628 | | | | HIGH | EST ANNUA | L MEAN | | | | | | | | 1155 | | 1958 | | LOWE | ST ANNUAL | MEAN | | | | | | | | 133 | | 1981 | | HIGH | EST DAILY | MEAN | | 2650 | May 3 | | 7150 | Feb 7 | | 9420 | Sep 3 | 14 1960 | | LOWE | ST DAILY | MEAN | | | 77 Jul 15 | | e.80 | Oct 17 | | .07 | Oct 3 | 16 1981 | | ANNU | JAL SEVEN- | DAY MINIMUM | | 1.1 | l Oct 11 | | 1.1 | Aug 19 | | .26 | Oct : | 10 1987 | | INST | CANTANEOUS | PEAK FLOW | | | | | 7250 | Feb 7 | | 9420 | Sep 3 | 14 1960 | | INST | ANTANEOUS | PEAK STAGE | | | | | a15.27 | Feb 7 | | a17.14 | Sep 3 | 14 1960 | | | | | | | | | (1) | | | (1.) | | | INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) ANNUAL RUNOFF (CFSM) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS .81 11.06 2.0 1210 342 (b) 1.32 17.95 3.4 2380 396 a From floodmarks. b Not determined, tidally affected most years during periods of extreme low flows; minimum measured flow, $2.4~{\rm ft}^3/{\rm s}$ (reverse flow), Sept. 17, 1952. e Estimated. #### CHOWAN RIVER BASIN ## 02051500 MEHERRIN RIVER NEAR LAWRENCEVILLE, VA LOCATION.--Lat 36°43'00", long 77°49'55", Brunswick County, Hydrologic Unit 03010204, on right bank 50 ft upstream from Gholson Bridge on State Highway 715, 0.6 mi upstream from Allen Creek, and 3.0 mi southeast of Lawrence-ville. DRAINAGE AREA. -- 552 mi². PERIOD OF RECORD. --October 1928 to current year. Monthly discharge only for some periods, published in WSP 1303. REVISED RECORDS.--WSP 972: 1932(M), 1935. WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 136.56 ft above sea level. Prior to Nov. 17, 1931, nonrecording gage at same site and datum. REMARKS.--Records good except those for periods of doubtful or no gage-height record, Nov. 27 to Dec. 2, Mar. 20-25, June 4-15, July 1-15, Aug. 18-21, and Aug. 30 to Sept. 3, which are fair. Maximum discharge, 38,000 ft³/s, from rating curve extended above 13,000 ft³/s on basis of velocity-area studies and records for Nottoway River near Stony
Creek. Minimum gage height, 0.72 ft, Sept. 23, 24, 1932. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 4,500 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |---------|------|-----------------------------------|---------------------|---------|---------|-----------------------------------|------------------| | Jan. 25 | 0330 | 5,090 | 16.68 | Feb. 19 | 1030 | 6,600 | 19.50 | | Jan. 30 | 0400 | 6,560 | 19.42 | Mar. 10 | 1230 | 6,830 | 19.90 | | Feb. 6 | 0900 | 8,520 | 22.31 | Mar. 21 | Unknown | *14,300 | *28.39 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 28 ft^3/s , Sept. 30, gage height, 1.53 ft . | | | | • | | D | AILY MEAN | VALUES | | | | | | |-------|------|------|------|-------|-------|-----------|--------|-------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 121 | 124 | e400 | 437 | 836 | 600 | 560 | 423 | 391 | e170 | 67 | e56 | | 2 | 96 | 134 | e370 | 360 | 666 | 570 | 650 | 567 | 294 | e150 | 65 | e52 | | 3 | 82 | 141 | 336 | 303 | 573 | 546 | 661 | 633 | 250 | e130 | 62 | e62 | | 4 | 75 | 138 | 280 | 280 | 2630 | 527 | 998 | 519 | e230 | e120 | 60 | 119 | | 5 | 72 | 133 | 264 | 266 | 6510 | 489 | 2780 | 459 | e220 | e180 | 58 | 488 | | 6 | 72 | 127 | 251 | 252 | 8110 | 460 | 1410 | 419 | e228 | e160 | 55 | 249 | | 7 | 71 | 166 | 232 | 246 | 4230 | 445 | 892 | 394 | e210 | e125 | 52 | 107 | | 8 | 67 | 312 | 208 | 533 | 1480 | 665 | 730 | 1320 | e200 | e105 | 52 | 70 | | 9 | 65 | 410 | 197 | 1710 | 1040 | 4930 | 788 | 2800 | e190 | e100 | 287 | 66 | | 10 | 65 | 269 | 200 | 979 | 815 | 6690 | 1170 | 1220 | e185 | e200 | 368 | 63 | | 11 | 64 | 210 | 226 | 551 | 700 | 3230 | 993 | 726 | e200 | e225 | 379 | 60 | | 12 | 61 | 177 | 232 | 413 | 680 | 1020 | 774 | 590 | e210 | e140 | 214 | 59 | | 13 | 60 | 169 | 228 | 352 | 852 | 804 | 633 | 549 | e220 | e120 | 117 | 56 | | 14 | 60 | 306 | 209 | 336 | 703 | 703 | 570 | 510 | 254 | e90 | 74 | 53 | | 15 | 71 | 461 | 195 | 421 | 585 | 637 | 559 | 459 | e230 | e85 | 67 | 49 | | 16 | 113 | 430 | 185 | 3040 | 530 | 573 | 537 | 414 | 291 | 82 | 66 | 49 | | 17 | 120 | 267 | 182 | 2970 | 1320 | 535 | 1010 | 389 | 375 | 89 | 88 | 48 | | 18 | 119 | 209 | 178 | 1100 | 4970 | 1650 | 3600 | 369 | 286 | 83 | e190 | 45 | | 19 | 124 | 185 | 173 | 769 | 6050 | 5140 | 1970 | 339 | 269 | 93 | e110 | 43 | | 20 | 167 | 172 | 171 | 757 | 1560 | e11000 | 1680 | 315 | 302 | 82 | e70 | 44 | | 21 | 166 | 165 | 167 | 723 | 928 | e13500 | 1380 | 304 | 338 | 75 | e63 | 45 | | 22 | 136 | 766 | 173 | 545 | 772 | e11500 | 882 | 290 | 301 | 77 | 61 | 46 | | 23 | 121 | 1880 | 228 | 787 | 830 | e9000 | 748 | 276 | 246 | 73 | 60 | 47 | | 24 | 105 | 622 | 258 | 4110 | 2240 | e3000 | 670 | 295 | 230 | 84 | 59 | 42 | | 25 | 101 | 368 | 309 | 3740 | 1450 | e1450 | 589 | 319 | 244 | 91 | 58 | 39 | | 26 | 108 | 278 | 401 | 1290 | 896 | 887 | 525 | 367 | 212 | 163 | 59 | 38 | | 27 | 153 | e250 | 426 | 863 | 721 | 787 | 482 | 438 | 189 | 77 | 61 | 40 | | 28 | 240 | e220 | 977 | 3730 | 646 | 719 | 455 | 397 | 173 | 89 | 64 | 36 | | 29 | 212 | e210 | 1000 | 5980 | | 664 | 438 | 427 | 172 | 87 | 66 | 33 | | 30 | 147 | e235 | 633 | 5340 | | 616 | 425 | 339 | 189 | 69 | e64 | 30 | | 31 | 124 | | 496 | 1260 | | 577 | | 323 | | 83 | e60 | | | TOTAL | 3358 | 9534 | 9785 | 44443 | 53323 | 83914 | 29559 | 17189 | 7329 | 3497 | 3176 | 2234 | | MEAN | 108 | 318 | 316 | 1434 | 1904 | 2707 | 985 | 554 | 244 | 113 | 102 | 74.5 | | MAX | 240 | 1880 | 1000 | 5980 | 8110 | 13500 | 3600 | 2800 | 391 | 225 | 379 | 488 | | MIN | 60 | 124 | 167 | 246 | 530 | 445 | 425 | 276 | 172 | 69 | 52 | 30 | | CFSM | .20 | .58 | . 57 | 2.60 | 3.45 | 4.90 | 1.78 | 1.00 | . 44 | . 20 | .19 | .13 | | IN. | .23 | .64 | .66 | 3.00 | 3.59 | 5.66 | 1.99 | 1.16 | .49 | .24 | .21 | .15 | e Estimated. ## CHOWAN RIVER BASIN # 02051500 MEHERRIN RIVER NEAR LAWRENCEVILLE, VA--Continued | STATIST | rics of Mo | ONTHLY MEAN | I DATA FO | R WATER | YEARS 1929 | - 1998, | BY WATER Y | ZEAR (WY) | | | | | |---------|-----------------------------|-------------|-----------|-----------|------------|---------|-------------|-----------|------|-----------|---------|--------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 307 | 381 | 474 | 735 | 843 | 927 | 750 | 460 | 317 | 316 | 296 | 243 | | MAX | 2266 | 2853 | 1340 | 2391 | 1904 | 2707 | 2067 | 1571 | 1555 | 2358 | 4199 | 1532 | | (WY) | 1972 | 1986 | 1997 | 1936 | 1998 | 1998 | 1987 | 1958 | 1938 | 1945 | 1940 | 1979 | | MIN | 17.1 | 44.1 | 64.6 | 88.8 | 175 | 190 | 162 | 128 | 96.5 | 42.8 | 33.0 | 9.70 | | (WY) | 1931 | 1934 | 1966 | 1934 | 1931 | 1981 | 1966 | 1942 | 1959 | 1932 | 1995 | 1954 | | SUMMARY | Y STATIST | ICS | FOR 1 | .997 CALE | NDAR YEAR | F | OR 1998 WAT | TER YEAR | | WATER YEA | RS 1929 | - 1998 | | ANNUAL | ANNUAL TOTAL
ANNUAL MEAN | | | 195204 | | | 267341 | | | | | | | ANNUAL | MEAN | | | 535 | | | 732 | | | 502 | | | | HIGHEST | r annual i | MEAN | | | | | | | | 916 | | 1973 | | LOWEST | ANNUAL MI | EAN | | | | | | | | 202 | | 1981 | | HIGHEST | r DAILY M | EAN | | 8910 | Apr 30 | | e13500 | Mar 21 | | 35300 | Aug 1 | 7 1940 | | LOWEST | DAILY ME | AN | | 60 | a0ct 13 | | 30 | Sep 30 | | 4.2 | b0ct | 7 1954 | | ANNUAL | SEVEN-DAY | MINIMUM | | 63 | Oct 8 | | 37 | Sep 24 | | 4.6 | Oct | 4 1954 | | INSTANT | TANEOUS PI | EAK FLOW | | | | | 14300 | Mar 21 | | 38000 | Aug 1 | 7 1940 | | INSTANT | TANEOUS PI | EAK STAGE | | | | | c28.39 | Mar 21 | | 42.00 | Aug 1 | 7 1940 | | INSTANT | FANEOUS LO | OW FLOW | | | | | 28 | Sep 30 | | 4.2 | Oct | 7 1954 | | ANNUAL | RUNOFF (| CFSM) | | .9 | 7 | | 1.33 | | | .91 | | | | ANNUAL | RUNOFF (| INCHES) | | 13.1 | 6 | | 18.02 | | | 12.37 | | | | 10 PERC | CENT EXCE | EDS | | 1020 | | | 1390 | | | 974 | | | | 50 PERC | CENT EXCE | EDS | | 307 | | | 269 | | | 252 | | | | 90 PERC | CENT EXCE | EDS | | 90 | | | 61 | | | 66 | | | a Also Oct. 14, 1997. b Also Oct. 8, 1954. c From floodmarks. e Estimated. ### 02055000 ROANOKE RIVER AT ROANOKE, VA LOCATION.--Lat 37°15'30", long 79°56'20", Roanoke City, Hydrologic Unit 03010101, on left bank 50 ft downstream from Walnut Avenue bridge, 3.2 mi upstream from Tinker Creek, and at mile 360.6. DRAINAGE AREA. -- 395 mi². PERIOD OF RECORD.--February 1899 to current year. Monthly discharge only for some periods, published in WSP 1303. Records for July 1896 to January 1899 published in WSP 11, 15, 27, and 20th Annual Report, Part 4, are unreliable, due to doubtful gage-height record, and should not be used. REVISED RECORDS.--WSP 972: 1928, 1930, 1933. WSP 1433: 1899-1904, 1914-17(M), 1918-24, 1925-27(M), 1929-34(M), 1935, 1936-39(M). WSP 2104: Drainage area. WDR VA-72-1: 1928(M), 1940(M). See also PERIOD OF RECORD. GAGE.--Water-stage recorder. Datum of gage is 906.84 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to June 7, 1937, nonrecording gage on downstream side of highway bridge 50 ft upstream at same datum. REMARKS.--Records good except those for period of no gage-height record Aug. 2-3, and period of doubtful gage-height record, Aug. 30 to Sept. 30, which are fair. Prior to 1949, diurnal fluctuation at low flow caused by powerplants upstream from station. Since March 1994, water withdrawn upstream for municipal use by the city of Roanoke, amount unknown. American Electric Power and Virginia Department of Emergency Services gage-height radio transmitters at station. Maximum discharge, 32,300 ft³/s, from rating curve extended above 26,000 ft³/s. Practically no flow Dec. 23, 1909, Dec. 19, 1963, when flow was retarded by freezing, gage height, 0.0 ft. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,500 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1300 | 7,700 | 9.43 | Feb. 17 | 1745 | 8,990 | 10.37 | | Jan. 28 | 1600 | 3,790 | 6.16 | Mar. 21 | 0300 | *12,900 | *13.01 | | Feb. 4 | 1730 | 11,500 | 12.14 | Apr. 20 | 0245 | 5,130 | 7.40 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum daily discharge, 56 ft³/s, Sept. 16, 17. | | | 2200111 | 1102, 11 | 00210 122 | | AILY MEAN | VALUES | 310 <u>221</u> (133 . | 10 02111 | | | | |-------------|------|---------|----------|-----------|-------|-----------|--------|------------------------|----------|----------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 99 | 156 | 108 | 135 | 1050 | 749 | 460 | 745 | 381 | 185 | 81 | e72 | | 2 | 84 | 143 | 109 | 125 | 833 | 644 | 427 | 1320 | 328 | 165 | e83 | e68 | | 3 | 77 | 154 | 107 | 134 | 805 | 571 | 399 | 944 | 622 | 151 | e78 | e66 | | 3
4
5 | 74 | 140 | 114 | 145 | 6970 | 508 | 809 | 1170 | 421 | 157 | 71 | e68 | | 5 | 72 | 118 | 108 | 168 | 5530 | 455 | 995 | 1130 | 380 | 160 | 70 | e66 | | | | | | | | | | | | | | | | 6 | 69 | 113 | 106 | 195 | 3980 | 411 | 746 | 919 | 361 | 148 | 69 | e65 | | 7
8 | 66 | 119 | 101 | 303 | 2740 | 396 | 624 | 772 | 325 | 126 | 65 | e64 | | 8 | 66 | 114 | 97 | 3980 | 1800 | 498 | 551 | 820 | 283 | 121 | 368 | e66 | | 9 | 64 | 109 | 97 | 1770 | 1330 | 908 | 699 | 756 | 264 | 140 | 154 | e64 | | 10 | 63 | 105 | 108 |
814 | 1100 | 985 | 733 | 650 | 275 | 145 | 155 | e62 | | | | | | | | | | | | | | | | 11 | 63 | 104 | 108 | 639 | 1020 | 731 | 650 | 1200 | 311 | 136 | 172 | e60 | | 12 | 65 | 99 | 112 | 612 | 1080 | 596 | 570 | 1060 | 375 | 127 | 134 | e60 | | 13 | 64 | 107 | 106 | 584 | 1140 | 523 | 500 | 867 | 338 | 118 | 112 | e58 | | 14 | 64 | 118 | 100 | 521 | 953 | 497 | 473 | 699 | 304 | 106 | 102 | e58 | | 15 | 66 | 110 | 97 | 747 | 763 | 454 | 447 | 614 | 321 | 102 | 104 | e58 | | 16 | 64 | 111 | 94 | 1540 | 719 | 398 | 419 | 586 | 296 | 114 | 276 | e56 | | 17 | 65 | 106 | 92 | 1020 | 5030 | 370 | 1450 | 548 | 254 | 137 | 303 | e56 | | 18 | 72 | 101 | 92 | 709 | 4250 | 391 | 1360 | 455 | 223 | 102 | 171 | e140 | | 19 | 76 | 99 | 93 | 613 | 2050 | 1360 | 1560 | 398 | 212 | 105 | 133 | e62 | | 20 | 73 | 97 | 92 | 592 | 1530 | 4080 | 3840 | 365 | 212 | 104 | 116 | e62 | | 20 | / 3 | 97 | 92 | 592 | 1530 | 4080 | 3840 | 305 | 218 | 104 | 110 | 600 | | 21 | 69 | 141 | 91 | 567 | 1250 | 8810 | 2020 | 343 | 203 | 97 | 104 | e64 | | 22 | 67 | 165 | 124 | 532 | 1030 | 2960 | 1470 | 328 | 188 | 125 | 97 | e64 | | 23 | 66 | 164 | 116 | 663 | 1390 | 1810 | 1210 | 368 | 173 | 117 | 93 | e66 | | 24 | 75 | 138 | 143 | 801 | 1470 | 1350 | 1060 | 482 | 160 | 103 | 92 | e63 | | 25 | 102 | 109 | 160 | 788 | 1130 | 1050 | 895 | 529 | 178 | 100 | 85 | e60 | | 26 | 128 | 107 | 154 | 639 | 961 | 878 | 771 | 465 | 174 | 99 | 83 | e60 | | 27 | 114 | 110 | 195 | 624 | 845 | 766 | 669 | 671 | 164 | 97 | 82 | e58 | | 28 | 109 | 108 | 181 | 2770 | 788 | 686 | 614 | 845 | 161 | 94 | 78 | e58 | | 29 | 94 | 105 | 157 | 2210 | | 617 | 559 | 600 | 222 | 87 | 79 | e60 | | 30 | 84 | 105 | 161 | 1770 | | 540 | 521 | 505 | 207 | 87
79 | e75 | | | | | | | | | | | | | | | e62 | | 31 | 77 | | 147 | 1360 | | 492 | | 456 | | 78 | e70 | | | TOTAL | 2391 | 3579 | 3670 | 28070 | 53537 | 35484 | 27501 | 21610 | 8322 | 3725 | 3755 | 1944 | | MEAN | 77.1 | 119 | 118 | 905 | 1912 | 1145 | 917 | 697 | 277 | 120 | 121 | 64.8 | | MAX | 128 | 165 | 195 | 3980 | 6970 | 8810 | 3840 | 1320 | 622 | 185 | 368 | 140 | | MIN | 63 | 97 | 91 | 125 | 719 | 370 | 399 | 328 | 160 | 78 | 65 | 56 | | CFSM | .20 | .30 | .30 | 2.29 | 4.84 | 2.90 | 2.32 | 1.76 | .70 | .30 | .31 | .16 | | IN. | .23 | .34 | .35 | 2.64 | 5.04 | 3.34 | 2.59 | 2.04 | .78 | .35 | .35 | .18 | | | | | | | | | | | | | | | e Estimated. 212 ## ROANOKE RIVER BASIN ## 02055000 ROANOKE RIVER AT ROANOKE, VA--Continued | STATISTICS (| OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1899 | - 1998 | . B | WATER | YEAR | (WY |) | |--------------|----|---------|------|------|-----|-------|-------|------|--------|-----|-------|------|-----|---| | | | | | | | | | | | | | | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|---|---------|-------|-----------|-----------|------|---------|------------|------|----------|----------|--------| | MEAN | 233 | 248 | 351 | 481 | 576 | 699 | 588 | 422 | 307 | 220 | 226 | 201 | | MAX | 1080 | 1626 | 1425 | 1353 | 1912 | 2521 | 2558 | 1466 | 1206 | 1190 | 2140 | 1569 | | (WY) | 1907 | 1986 | 1902 | 1937 | 1998 | 1899 | 1987 | 1901 | 1972 | 1905 | 1940 | 1928 | | MIN | 47.9 | 43.8 | 55.2 | 65.5 | 52.5 | 119 | 108 | 112 | 75.3 | 45.6 | 43.5 | 42.6 | | (WY) | 1992 | 1932 | 1918 | 1981 | 1934 | 1981 | 1942 | 1941 | 1926 | 1930 | 1981 | 1930 | | | | | | | | | | | | | | | | SUMMARY | SUMMARY STATISTICS ANNUAL TOTAL | | FOR 1 | L997 CALE | NDAR YEAR | F | OR 1998 | WATER YEAR | | WATER YE | ARS 1899 | - 1998 | | ANNUAL | ANNUAL TOTAL
ANNUAL MEAN | | | 108139 | | | 193588 | | | | | | | ANNUAL | MEAN | | 296 | | | | 530 | | | 376 | | | | HIGHEST | NNUAL MEAN
IGHEST ANNUAL MEAN | | | | | | | | | 836 | | 1901 | | LOWEST | ANNUAL M | EAN | | | | | | | | 113 | | 1981 | | HIGHEST | DAILY M | EAN | | 2550 | Mar 4 | | 8810 | Mar 21 | | 18200 | Aug 1 | 5 1940 | | LOWEST | DAILY MEA | AN | | 51 | aSep 22 | | 56 | bSep 16 | | 19 | Aug 2 | 9 1981 | | ANNUAL | SEVEN-DAY | MINIMUM | | 56 | Sep 17 | | 58 | Sep 11 | | 22 | Aug 2 | 4 1981 | | INSTANT | ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW | | | | | | 12900 | Mar 21 | | 32300 | Nov | 4 1985 | | INSTANT | INSTANTANEOUS PEAK STAGE | | | | | | 13. | 01 Mar 21 | | c23.35 | Nov | 4 1985 | | INSTANT | INSTANTANEOUS LOW FLOW | | | | | | | l) | | (f) | Dec 2 | 3 1909 | | ANNUAL | ANNUAL RUNOFF (CFSM) | | | .75 | | | | . 34 | | .95 | | | | ANNUAL | RUNOFF (| INCHES) | | 10.1 | 8 | | 18. | . 23 | | 12.93 | | | 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Sept. 23, 1997. b Also Sept. 17, 1998. c From floodmark. d Not determined. f Practically no flow; retarded by freezing. #### 02055100 TINKER CREEK NEAR DALEVILLE, VA LOCATION.--Lat 37°25'03", long 79°56'08", Botetourt County, Hydrologic Unit 03010101, on left bank 1,100 ft downstream from Norfolk Southern Railway bridge, 0.2 mi downstream from unnamed tributary, 0.5 mi south of Glebe Mills, and 1.3 mi northwest of Daleville. DRAINAGE AREA. -- 11.7 mi². PERIOD OF RECORD. -- April 1956 to current year. REVISED RECORDS.--WSP 1904: 1958-60(P). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,217.47 ft above sea level (Norfolk Southern Railway bench mark). REMARKS.--Records good except those for periods of no gage-height record, Aug. 15-18 and Sept. 11-15, which are fair. Withdrawal of water 1,000 ft downstream of gage by city of Roanoke for Carvins Cove Reservoir. Virginia Department of Emergency Services radio transmitter at station. Maximum discharge, 10,400 ft³/s, from rating curve extended above 130 ft³/s on basis of contracted-opening measurement at gage height 9.82 ft and slope-area measurements at gage heights 8.52 ft, 9.82 ft, and 13.36 ft. Minimum discharge, 0.20 ft³/s, result of freezeup. Minimum gage height, 0.99 ft, June 12, 24, 1970. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1940 reached a stage of 9.0 ft, from information by local resident. EXTREMES FOR CURRENT YEAR.—Peak discharges equal to or greater than base discharge of 250 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-----------------------------|----------------------|-----------------------------------|----------------------|--------------------|--------------|-----------------------------------|---------------------| | Jan. 8
Feb. 4
Feb. 17 | 0500
1315
0815 | 1,670
1,010
635 | 7.65
6.40
5.30 | Mar. 20
Apr. 17 | 1830
0630 | *2,050
580 | *8.18
5.11 | Minimum discharge, 1.8 ft^3/s , Sept. 28, gage-height, 1.16 ft. | | | DISCHA | RGE, IN C | UBIC FEET | PER SECON | ID, WATER
LY MEAN V | | OBER 1997 | TO SEPTE | MBER 1998 | | | |----------------------------------|--|------------------------------------|---|---|---|---|--|---|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.9
2.7
2.6
2.5
2.3 | 8.0
8.0
4.8
3.8
3.3 | 3.2
3.0
2.9
3.3
3.0 | 3.4
3.4
4.0
4.8
5.2 | 35
31
38
454
187 | 32
30
28
27
26 | 23
22
22
33
26 | 26
24
25
28
26 | 11
11
10
10 | 5.7
5.6
5.5
6.2
6.4 | 3.9
3.6
3.5
3.4
3.3 | 2.4
2.3
2.2
2.3
2.2 | | 6
7
8
9
10 | 2.2
2.2
2.2
2.2
2.3 | 3.3
4.3
4.0
4.2
4.1 | 2.8
2.8
2.8
2.8
3.5 | 5.3
9.3
207
27
17 | 149
98
75
61
52 | 25
24
34
60
38 | 24
23
22
24
22 | 23
22
22
20
19 | 10
9.4
9.0
9.1
9.7 | 5.5
5.2
5.6
5.6
5.4 | 3.2
3.1
9.7
7.4
6.1 | 2.1
2.1
2.2
2.1
2.1 | | 11
12
13
14
15 | 2.4
2.3
2.3
2.1
2.1 | 4.1
3.8
3.7
4.4
4.0 | 3.3
3.1
3.0
3.0
2.8 | 14
13
14
13
30 | 49
49
44
39
35 | 33
30
28
27
27 | 20
19
18
18
17 | 27
23
21
20
19 | 10
11
9.9
9.5 | 5.0
4.8
4.7
4.6
4.5 | 7.6
5.0
4.4
4.2
e4.2 | e2.1
e2.1
e2.1
e2.1 | | 16
17
18
19
20 | 2.2
2.3
2.5
2.5
2.4 | 3.7
3.5
3.5
3.4
3.3 | 2.8
2.8
2.8
2.8
2.7 | 28
22
19
17
15 | 36
281
104
66
58 | 26
25
29
52
390 | 19
115
39
72
61 | 18
17
16
16 | 9.0
8.5
7.8
7.9
7.2 | 4.4
4.5
4.2
4.1
4.1 | e12
e15
e10
6.5
4.5 | 2.0
2.1
2.5
2.1
2.1 | | 21
22
23
24
25 | 2.4
2.3
2.4
3.3
4.2 | 5.0
5.3
4.0
3.5
3.3 | 2.7
3.8
3.5
3.5 | 13
13
36
27
23 | 48
42
70
56
45 | 185
75
53
44
38 | 40
33
33
31
27 | 14
13
15
16
14 | 6.9
6.9
6.7
6.5 | 3.9
4.5
5.1
4.8
4.6 | 3.5
3.1
2.9
2.8
2.7 | 2.1
2.1
2.0
2.0
2.0 | | 26
27
28
29
30
31 | 4.1
4.3
3.4
3.3
3.1
3.2 | 3.2
3.1
3.1
3.1
3.2 | 3.6
4.8
4.6
4.5
4.2
3.7 | 19
18
73
55
52
42 | 40
37
35
 | 34
31
29
27
25
24 | 25
23
22
21
20 | 13
23
17
14
13 |
6.0
5.7
6.0
8.7
6.5 | 4.5
4.4
4.3
4.0
3.8
4.0 | 2.6
2.6
2.5
2.5
2.5 | 2.1
2.1
2.0
2.0
2.2 | | TOTAL MEAN MAX MIN CFSM IN. | 83.2
2.68
4.3
2.1
.23
.26 | 122.0
4.07
8.0
3.1
.35 | 102.5
3.31
4.8
2.7
.28
.33 | 842.4
27.2
207
3.4
2.32
2.68 | 2314
82.6
454
31
7.06
7.36 | 1556
50.2
390
24
4.29
4.95 | 914
30.5
115
17
2.60
2.91 | 591
19.1
28
12
1.63
1.88 | 257.1
8.57
11
5.7
.73
.82 | 149.5
4.82
6.4
3.8
.41
.48 | 150.8
4.86
15
2.4
.42
.48 | 63.9
2.13
2.5
2.0
.18
.20 | e Estimated. 14.43 2.6 24 ## ROANOKE RIVER BASIN ## 02055100 TINKER CREEK NEAR DALEVILLE, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1956 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|-----|---| | | | | | | | | | | | | | | | | | 10.06 5.5 2.4 18 | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|------------|----------|------|------------|-----------|------|----------|----------|---------| | MEAN | 8.20 | 11.2 | 10.7 | 14.6 | 19.5 | 23.1 | 20.1 | 12.8 | 8.94 | 6.76 | 6.43 | 6.87 | | MAX | 34.2 | 118 | 32.6 | 35.9 | 82.6 | 69.3 | 87.9 | 33.8 | 39.0 | 21.8 | 29.8 | 50.4 | | (WY) | 1980 | 1986 | 1973 | 1996 | 1998 | 1993 | 1987 | 1958 | 1972 | 1973 | 1984 | 1979 | | MIN | 2.09 | 1.76 | 2.00 | 1.78 | 3.78 | 3.16 | 3.21 | 3.44 | 2.01 | 1.13 | 2.01 | 1.36 | | (WY) | 1987 | 1982 | 1966 | 1966 | 1981 | 1981 | 1981 | 1981 | 1988 | 1966 | 1981 | 1968 | | | | | | | | | | | | | | | | SUMMARY | STATIST: | ICS | FOR 1 | L997 CALEN | DAR YEAR | FC | OR 1998 WA | ATER YEAR | | WATER YE | ARS 1956 | - 1998 | | ANNUAL | TOTAL | | | 3164.6 | | | 7146.4 | | | | | | | ANNUAL | MEAN | | | 8.67 | | | 19.6 | | | 12.4 | | | | HIGHEST | C ANNUAL N | MEAN | | | | | | | | 21.6 | | 1973 | | LOWEST | ANNUAL M | EAN | | | | | | | | 3.23 | | 1981 | | HIGHEST | C DAILY ME | EAN | | 93 | Mar 3 | | 454 | Feb 4 | | 2560 | Nov | 4 1985 | | LOWEST | DAILY MEA | AN | | 2.0 | Aug 17 | | 2.0 | aSep 16 | | .90 | Jul | 26 1966 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 2.1 | Sep 2 | | 2.0 | Sep 23 | | .99 | Jul | 21 1966 | | INSTANT | TANEOUS PI | EAK FLOW | | | | | 2050 | Mar 20 | | 10400 | Nov | 4 1985 | | INSTANT | TANEOUS PI | EAK STAGE | | | | | 8.18 | Mar 20 | | b13.36 | Nov | 4 1985 | | INSTANT | TANEOUS LO | OW FLOW | | | | | 1.8 | Sep 28 | | c.20 | Jan | 24 1961 | | ANNUAL | RUNOFF (| CFSM) | | .74 | | | 1.67 | 7 | | 1.06 | | | 22.72 6.2 2.3 39 ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Sept. 23-25, 28, 29, 1998. b From floodmarks. c Result of freezeup. ## 02056000 ROANOKE RIVER AT NIAGARA, VA LOCATION.--Lat 37°15'18", long 79°52'18", Roanoke County, Hydrologic Unit 03010101, on right bank 200 ft downstream from powerplant of American Electric Power at Niagara, 2 mi downstream from Tinker Creek, 2.1 mi southeast of Vinton, and at mile 355.3. DRAINAGE AREA. -- 512 mi². PERIOD OF RECORD. -- July 1926 to current year. REVISED RECORDS.--WSP 972: 1927(M), 1929(M), 1934(M), 1937(M). WSP 1303: 1928, 1930, 1933-38, 1940. WSP 2104: Drainage area. WDR VA-72-1: 1928(M), 1930(M), 1933(M), 1935-36(M), 1938(M), 1940, 1944-45(M), 1948-49(M), 1951(M), 1955(M), 1960(M), 1967(M), 1969(M). GAGE.--Water-stage recorder. Datum of gage is 820.15 ft above sea level (levels by U.S. Army Corps of Engineers). REMARKS.--Records good except those for period of no gage-height record, Oct. 15 to Nov. 14, and period of doubtful gage height record, June 18 to July 28, which are fair. Flow regulated by dam and powerplant 200 ft upstream from station. Maximum discharge, 52,300 ft³/s, from rating curve extended above 12,000 ft³/s on basis of slope-area measurements at gage heights 18.98 ft and 25.30 ft. Minimum gage height, 0.17 ft, Aug. 25, 1971. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,500 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1345 | 11,500 | 12.79 | Mar. 20 | 2045 | 18,400 | 15.53 | | Jan. 28 | 1500 | 7,770 | 10.84 | Apr. 20 | 0315 | 7,840 | 10.88 | | Feb. 4 | 1645 | *20,000 | *16.06 | Aug. 8 | 1415 | 4,350 | 8.45 | | Feb. 17 | 1800 | 12,800 | 13.37 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 70 ft^3/s , Sept. 29, gage height, 1.37 ft . | | DAILY MEAN VALUES | | | | | | | | | | | | |-------|-------------------|------|------|-------|-------|-------|-------|-------|-------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 194 | e240 | 159 | 207 | 1330 | 1000 | 715 | 980 | 527 | e350 | 179 | 154 | | 2 | 159 | e220 | 171 | 193 | 1080 | 887 | 668 | 1650 | 472 | e330 | 175 | 145 | | 3 | 149 | e240 | 157 | 203 | 1110 | 788 | 626 | 1140 | 749 | e350 | 169 | 146 | | 4 | 142 | e220 | 170 | 214 | 12400 | 712 | 1180 | 1410 | 571 | e380 | 162 | 153 | | 5 | 136 | e190 | 170 | 238 | 8410 | 666 | 1280 | 1420 | 552 | e340 | 155 | 137 | | 6 | 135 | e180 | 149 | 264 | 5570 | 605 | 999 | 1130 | 514 | e310 | 159 | 141 | | 7 | 127 | e190 | 148 | 401 | 3640 | 585 | 878 | 959 | 467 | e270 | 147 | 134 | | 8 | 129 | e180 | 149 | 6490 | 2450 | 769 | 795 | 1020 | 429 | e260 | 833 | 149 | | 9 | 127 | e170 | 160 | 2230 | 1910 | 1320 | 978 | 940 | 409 | e300 | 262 | 139 | | 10 | 122 | e170 | 167 | 980 | 1550 | 1360 | 976 | 822 | 435 | e310 | 354 | 133 | | 11 | 120 | e160 | 163 | 660 | 1460 | 1030 | 891 | 1620 | 506 | e290 | 447 | 132 | | 12 | 123 | e150 | 176 | 538 | 1540 | 860 | 799 | 1320 | 593 | e270 | 235 | 127 | | 13 | 146 | e160 | 157 | 525 | 1540 | 752 | 724 | 1070 | 482 | e250 | 206 | 129 | | 14 | 126 | e180 | 151 | 469 | 1300 | 713 | 701 | 885 | 453 | e230 | 198 | 128 | | 15 | e125 | 172 | 150 | 979 | 1060 | 660 | 675 | 774 | 501 | e220 | 213 | 129 | | 16 | e125 | 143 | 148 | 1970 | 1020 | 597 | 661 | 793 | 440 | e260 | 814 | 126 | | 17 | e130 | 170 | 144 | 1280 | 7590 | 566 | 2450 | 681 | 406 | e290 | 546 | 120 | | 18 | e140 | 165 | 144 | 879 | 6190 | 612 | 2000 | 589 | e360 | e220 | 288 | 251 | | 19 | e150 | 152 | 139 | 716 | 2860 | 1770 | 2430 | 529 | e345 | e230 | 254 | 134 | | 20 | e140 | 140 | 137 | 622 | 2130 | 6360 | 5620 | 510 | e380 | e220 | 229 | 125 | | 21 | e135 | 228 | 142 | 520 | 1690 | 12600 | 2630 | 483 | e350 | e210 | 213 | 157 | | 22 | e132 | 281 | 213 | 439 | 1370 | 4360 | 1760 | 458 | e330 | e270 | 203 | 140 | | 23 | e130 | 236 | 178 | 1040 | 2120 | 2510 | 1410 | 539 | e310 | e240 | 200 | 154 | | 24 | e150 | 201 | 216 | 1110 | 2110 | 1820 | 1240 | 667 | e300 | e220 | 179 | 141 | | 25 | e170 | 183 | 267 | 1040 | 1590 | 1400 | 1020 | 663 | e330 | e210 | 172 | 140 | | 26 | e200 | 170 | 218 | 826 | 1320 | 1170 | 889 | 607 | e315 | e220 | 184 | 137 | | 27 | e180 | 156 | 297 | 795 | 1150 | 1040 | 792 | 857 | e300 | e210 | 162 | 123 | | 28 | e170 | 169 | 296 | 5220 | 1060 | 952 | 720 | 1020 | e350 | e190 | 159 | 126 | | 29 | e150 | 159 | 245 | 3210 | | 879 | 664 | 751 | e420 | 184 | 164 | 131 | | 30 | e130 | 161 | 241 | 2390 | | 803 | 627 | 626 | e385 | 178 | 157 | 140 | | 31 | e120 | | 245 | 1770 | | 746 | | 593 | | 182 | 146 | | | TOTAL | 4412 | 5536 | 5667 | 38418 | 78550 | 50892 | 37798 | 27506 | 12981 | 7994 | 7964 | 4221 | | MEAN | 142 | 185 | 183 | 1239 | 2805 | 1642 | 1260 | 887 | 433 | 258 | 257 | 141 | | MAX | 200 | 281 | 297 | 6490 | 12400 | 12600 | 5620 | 1650 | 749 | 380 | 833 | 251 | | MIN | 120 | 140 | 137 | 193 | 1020 | 566 | 626 | 458 | 300 | 178 | 146 | 120 | | CFSM | .28 | .36 | .36 | 2.42 | 5.48 | 3.21 | 2.46 | 1.73 | . 85 | .50 | .50 | . 27 | | IN. | .32 | .40 | .41 | 2.79 | 5.71 | 3.70 | 2.75 | 2.00 | .94 | .58 | .58 | .31 | e Estimated. ## 02056000 ROANOKE RIVER AT NIAGARA, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1927 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|-----|---| | | | | | | | | | | | | | | | | | 141 | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|-----------|-----------|------|---------|------------|------|-----------|----------|---------| | MEAN | 355 | 372 | 478 | 644 | 790 | 922 | 833 | 569 | 425 | 293 | 342 | 317 | | MAX | 1722 | 2100 | 2065 | 1941 | 2805 | 2846 | 3661 | 1447 | 1550 | 1396 | 2456 | 2051 | | (WY) | 1938 | 1986 | 1949 | 1937 | 1998 | 1993 | 1987 | 1958 | 1972 | 1949 | 1940 | 1928 | | MIN | 86.0 | 101 | 115 | 110 | 117 | 210 | 157 | 193 | 158 | 109 | 92.2 | 84.0 | | (WY) | 1931 | 1942 | 1966 | 1966 | 1934 | 1981 | 1942 | 1930 | 1966 | 1930 | 1956 | 1954 | | SUMMARY | STATIST | ICS | FOR 1 | L997 CALE | NDAR YEAR | F | OR 1998 | WATER YEAR | | WATER YEA | ARS 1927 | - 1998 | | | | | | | | | | | | | | | | ANNUAL | TOTAL | | | 155989 | | | 281939 | | | | | | | ANNUAL | MEAN | | | 427 | | | 772 | | | 527 | | | | HIGHEST | ANNUAL N | MEAN | | | | | | | | 984 | | 1949 | | LOWEST | ANNUAL MI | EAN | | | | | | | | 198 | | 1981 | | HIGHEST | DAILY M | EAN | | 3600 | Mar 4 | | 12600 | Mar 21 | | 19700 | Nov | 4 1985 | | LOWEST | DAILY MEA | AN | | 120 | aSep 21 | | 120 | b0ct 11 | | 8.0 | Oct | 9 1954 | | ANNUAL | SEVEN-DAY | MINIMUM | | 126 | Oct 6 | |
126 | Oct 6 | | 67 | Jan 2 | 28 1966 | | INSTANT | CANEOUS PI | EAK FLOW | | | | | 20000 | Feb 4 | | 52300 | Nov | 4 1985 | | INSTANT | CANEOUS PI | EAK STAGE | | | | | 16 | .06 Feb 4 | | c25.30 | Nov | 4 1985 | | INSTANT | CANEOUS LO | OW FLOW | | | | | 70 | Sep 29 | | 1.0 | dOct 1 | 6 1956 | | ANNUAL | RUNOFF (| CFSM) | | .8 | 3 | | 1. | . 51 | | 1.03 | | | | ANNUAL | RUNOFF (| INCHES) | | 11.3 | 3 | | 20 | . 48 | | 13.98 | | | | 10 PERC | CENT EXCE | EDS | | 886 | | | 1540 | | | 996 | | | | 50 PERC | CENT EXCE | EDS | | 280 | | | 310 | | | 314 | | | 140 137 90 PERCENT EXCEEDS a Also Oct. 11, 31, 1997. b Also Oct. 31, 1997, and Sept. 17, 1998. c From floodmark. d Also Oct. 20, 1956, and Nov. 25, 26, 1990. ## 02056650 BACK CREEK NEAR DUNDEE, VA LOCATION.--Lat 37°13'39", long 79°52'06", Roanoke County, Hydrologic Unit 03010101, on right bank 65 ft upstream from bridge on State Highway 660, 0.9 mi upstream from Horseshoe Branch, 1.1 mi southeast of Dundee, 2.8 mi west of Hardy Post Office, and at mile 2.4. DRAINAGE AREA. -- 56.8 mi². PERIOD OF RECORD. -- July 1974 to current year. GAGE.--Water-stage recorder. Datum of gage is 822.67 ft above sea level. Prior to Apr. 4, 1975, nonrecording gage, and Apr. 4, 1975, to Nov. 4, 1985, water-stage recorder, at site 80 ft downstream at same datum. REMARKS.--Records good except for period of no gage-height record, Oct. 1-22, which is fair. Maximum discharge, $20,000 \text{ ft}^3/\text{s}$, from rating curve extended above 5,900 ft $^3/\text{s}$ on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. EXTREMES OUTSIDE PERIOD OF RECORD.--Floods of May 30, 1971, and June 21, 1972, reached a stage of 17.5 ft and 20.0 ft, respectively, from information by local resident. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 600 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 0700 | 1,880 | 9.01 | Feb. 17 | 1530 | 1,400 | 8.04 | | Jan. 28 | 1645 | 660 | 6.05 | Mar. 20 | 2115 | 2,720 | 10.44 | | Feb. 4 | 1315 | *3,940 | *12.16 | Apr. 19 | 2115 | 727 | 6.28 | Minimum discharge, 3.0 ft³/s, Sept. 9, 14-16, gage-height 2.41 ft. | | | DISCHAR | RGE, IN C | UBIC FEET | | ND, WATER
LY MEAN V | | OBER 1997 | TO SEPTE | MBER 1998 | | | |-------|-------|---------|-----------|-----------|------|------------------------|------|-----------|----------|-----------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e15 | 32 | 19 | 26 | 154 | 137 | 100 | 141 | 64 | 31 | 10 | 5.7 | | 2 | e14 | 42 | 16 | 27 | 122 | 125 | 90 | 141 | 58 | 25 | 9.0 | 5.4 | | 3 | e14 | 32 | 15 | 28 | 123 | 112 | 85 | 105 | 56 | 25 | 7.2 | 5.7 | | 4 | e13 | 22 | 20 | 28 | 1790 | 101 | 158 | 120 | 54 | 25 | 6.4 | 6.2 | | 5 | e13 | 19 | 20 | 35 | 651 | 93 | 130 | 144 | 57 | 27 | 5.8 | 6.0 | | 6 | e12 | 17 | 16 | 41 | 479 | 87 | 110 | 107 | 59 | 24 | 5.4 | 5.2 | | 7 | e12 | 23 | 14 | 74 | 327 | 82 | 100 | 98 | 52 | 22 | 5.0 | 5.1 | | 8 | e12 | 23 | 13 | 703 | 250 | 120 | 95 | 104 | 48 | 22 | 81 | 4.0 | | 9 | e13 | 21 | 15 | 286 | 205 | 237 | 132 | 92 | 47 | 28 | 42 | 3.4 | | 10 | e14 | 19 | 18 | 133 | 167 | 188 | 122 | 84 | 54 | 23 | 23 | 4.2 | | 11 | e16 | 18 | 21 | 84 | 161 | 143 | 106 | 152 | 53 | 19 | 22 | 4.0 | | 12 | e15 | 17 | 18 | 67 | 199 | 120 | 96 | 118 | 65 | 18 | 16 | 3.9 | | 13 | e15 | 17 | 16 | 63 | 178 | 107 | 91 | 102 | 55 | 17 | 13 | 3.7 | | 14 | e14 | 32 | 15 | 53 | 154 | 100 | 89 | 91 | 47 | 16 | 13 | 3.3 | | 15 | e13 | 28 | 14 | 143 | 129 | 92 | 86 | 83 | 53 | 14 | 14 | 3.3 | | 16 | e14 | 21 | 14 | 219 | 123 | 86 | 82 | 83 | 47 | 13 | 32 | 3.5 | | 17 | e15 | 17 | 15 | 135 | 873 | 82 | 188 | 110 | 44 | 40 | 40 | 3.8 | | 18 | e17 | 17 | 14 | 93 | 512 | 87 | 142 | 77 | 39 | 19 | 22 | 5.6 | | 19 | e15 | 16 | 14 | 77 | 318 | 131 | 264 | 69 | 38 | 16 | 16 | 5.0 | | 20 | e13 | 16 | 13 | 64 | 254 | 789 | 364 | 65 | 38 | 19 | 13 | 5.9 | | 21 | e11 | 18 | 13 | 55 | 214 | 694 | 233 | 62 | 34 | 13 | 11 | 6.5 | | 22 | e10 | 38 | 18 | 52 | 178 | 343 | 181 | 59 | 34 | 11 | 11 | 7.7 | | 23 | 9.3 | 31 | 22 | 173 | 320 | 251 | 154 | 67 | 32 | 12 | 9.9 | 8.6 | | 24 | 10 | 23 | 20 | 156 | 291 | 203 | 145 | 80 | 31 | 11 | 9.5 | 6.1 | | 25 | 20 | 20 | 39 | 132 | 223 | 167 | 120 | 83 | 30 | 11 | 8.9 | 5.3 | | 26 | 23 | 19 | 32 | 96 | 184 | 145 | 107 | 74 | 28 | 12 | 8.1 | 5.5 | | 27 | 34 | 18 | 33 | 105 | 162 | 132 | 99 | 118 | 26 | 12 | 7.7 | 5.3 | | 28 | 16 | 16 | 43 | 539 | 147 | 123 | 92 | 99 | 26 | 13 | 7.5 | 4.5 | | 29 | 11 | 16 | 32 | 332 | | 113 | 86 | 78 | 46 | 11 | 7.1 | 4.1 | | 30 | 9.8 | 18 | 34 | 263 | | 105 | 84 | 67 | 33 | 8.4 | 6.2 | 4.5 | | 31 | 9.5 | | 28 | 210 | | 99 | | 81 | | 8.6 | 5.9 | | | TOTAL | 442.6 | 666 | 634 | 4492 | 8888 | 5394 | 3931 | 2954 | 1348 | 566.0 | 488.6 | 151.0 | | MEAN | 14.3 | 22.2 | 20.5 | 145 | 317 | 174 | 131 | 95.3 | 44.9 | 18.3 | 15.8 | 5.03 | | MAX | 34 | 42 | 43 | 703 | 1790 | 789 | 364 | 152 | 65 | 40 | 81 | 8.6 | | MIN | 9.3 | 16 | 13 | 26 | 122 | 82 | 82 | 59 | 26 | 8.4 | 5.0 | 3.3 | | CFSM | .25 | .39 | .36 | 2.55 | 5.59 | 3.06 | 2.31 | 1.68 | .79 | .32 | .28 | .09 | | IN. | .29 | .44 | .42 | 2.94 | 5.82 | 3.53 | 2.57 | 1.93 | .88 | .37 | .32 | .10 | e Estimated. ## ROANOKE RIVER BASIN ## 02056650 BACK CREEK NEAR DUNDEE, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1974 | - 1998 | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|--------|----|-------|------|-----|---| | | | | | | | | | | | | | | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|------|-------|------------|-----------|------|--------------------|-----------|------|----------|----------|--------| | MEAN | 35.4 | 50.1 | 49.3 | 72.4 | 86.5 | 114 | 115 | 68.4 | 54.9 | 29.2 | 25.3 | 40.6 | | MAX | 154 | 292 | 117 | 146 | 317 | 265 | 396 | 190 | 173 | 110 | 121 | 314 | | (WY) | 1977 | 1986 | 1987 | 1996 | 1998 | 1993 | 1987 | 1978 | 1992 | 1989 | 1985 | 1979 | | MIN | 5.61 | 6.58 | 13.9 | 11.6 | 21.6 | 20.5 | 22.4 | 20.8 | 11.1 | 6.96 | 3.47 | 5.03 | | (WY) | 1992 | 1982 | 1981 | 1981 | 1989 | 1981 | 1981 | 1981 | 1986 | 1981 | 1981 | 1998 | | SUMMARY | STATIST | ICS | FOR I | 1997 CALEN | NDAR YEAR | F | OR 1998 W <i>I</i> | ATER YEAR | | WATER YE | ARS 1974 | - 1998 | | ANNUAL | TOTAL | | | 16902.8 | | | 29955.2 | | | | | | | ANNUAL | MEAN | | | 46.3 | | | 82.1 | | | 61.6 | | | | HIGHEST | ' ANNUAL I | MEAN | | | | | | | | 108 | | 1987 | | LOWEST | ANNUAL MI | EAN | | | | | | | | 15.9 | | 1981 | | HIGHEST | M VITACL | EΔN | | 401 | Jun 2 | | 1790 | Feb 4 | | 4000 | Nov | 4 1985 | | ANNUAL IUIAL | 10902.0 | 29933.2 | | | |--------------------------|------------|-------------|-------------------|--| | ANNUAL MEAN | 46.3 | 82.1 | 61.6 | | | HIGHEST ANNUAL MEAN | | | 108 1987 | | | LOWEST ANNUAL MEAN | | | 15.9 1981 | | | HIGHEST DAILY MEAN | 401 Jun 2 | 1790 Feb 4 | 4000 Nov 4 1985 | | | LOWEST DAILY MEAN | 5.1 aSep 5 | 3.3 bSep 14 | .90 Aug 30 1981 | | | ANNUAL SEVEN-DAY MINIMUM | 7.1 Sep 17 | 3.6 Sep 11 | 1.1 Aug 26 1981 | | | INSTANTANEOUS PEAK FLOW | | 3940 Feb 4 | 20000 Nov 4 1985 | | | INSTANTANEOUS PEAK STAGE | | 12.16 Feb 4 | c25.10 Nov 4 1985 | | | INSTANTANEOUS LOW FLOW | | 3.0 dSep 9 | (f) | | | ANNUAL RUNOFF (CFSM) | .82 | 1.44 | 1.09 | | | ANNUAL RUNOFF (INCHES) | 11.07 | 19.62 | 14.75 | | | 10 PERCENT EXCEEDS | 92 | 178 | 118 | | | 50 PERCENT EXCEEDS | 35 | 32 | 34 | | | 90 PERCENT EXCEEDS | 10 | 7.4 | 10 | | | | | | | | a Also Sept. 6, 8, 1997. b Also Sept. 15, 1998. c From floodmark, present site. d Also Sept. 14-16, 1998. f Not determined. ## 02058400 PIGG RIVER NEAR SANDY LEVEL, VA LOCATION.--Lat 36°56'45", long 79°31'30", Pittsylvania County, Hydrologic Unit 03010101, on left bank 300 ft downstream from Harpen Creek, 0.5 mi upstream from bridge on State Highway 40, and 1.1 mi south of Sandy Level. DRAINAGE AREA. -- 350 mi². PERIOD OF RECORD. -- May 1963 to current year. REVISED RECORDS.--WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 617.00 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to Nov. 18, 1963, nonrecording gage at same site and datum. REMARKS.--No estimated daily discharges. Records good. American Electric Power gage-height transmitter at station, recorder at Roanoke. Maxi- mum discharge, 65,600 ft³/s, from rating curve extended above 25,500 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 1.95 ft, Aug. 29, 30, 1981. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $4,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 28 | 1330 | *12,500 | 18.52 | Feb. 17 | 1830 | 6,210 | 11.44 | | Feb. 5 | 0200 | 6,820 | 12.32 | Apr. 20 | 0530 | 4,980 | 9.63 | Minimum discharge, 80 ft³/s, Sept. 17. | | | DISCHARGE, | IN CUI | BIC FEET | | D, WATER
Y MEAN VA | | BER 1997 I | O SEPTEME | ER 1998 | | | |-------|------|------------|--------|----------|-------|-----------------------|-------|------------|-----------|---------|------|------| | | | | | | DAIL | I MEAN VA | TOES | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 180 | 242 | 222 | 241 | 502 | 460
 387 | 423 | 334 | 217 | 152 | 105 | | 2 | 161 | 343 | 211 | 243 | 438 | 435 | 395 | 700 | 320 | 204 | 152 | 104 | | 3 | 159 | 364 | 196 | 263 | 421 | 416 | 370 | 483 | 316 | 205 | 138 | 103 | | 4 | 161 | 252 | 218 | 289 | 3300 | 394 | 487 | 474 | 352 | 203 | 128 | 118 | | 5 | 160 | 209 | 230 | 290 | 3900 | 385 | 548 | 516 | 341 | 237 | 123 | 128 | | 6 | 156 | 201 | 210 | 285 | 1440 | 373 | 435 | 449 | 338 | 227 | 119 | 116 | | 7 | 150 | 240 | 194 | 313 | 960 | 368 | 401 | 435 | 328 | 199 | 117 | 105 | | 8 | 149 | 246 | 190 | 1980 | 706 | 685 | 391 | 686 | 309 | 195 | 128 | 100 | | 9 | 149 | 224 | 189 | 1300 | 565 | 2770 | 404 | 571 | 299 | 224 | 450 | 94 | | 10 | 149 | 209 | 203 | 559 | 488 | 1260 | 470 | 459 | 326 | 305 | 253 | 90 | | 11 | 147 | 197 | 222 | 390 | 459 | 672 | 416 | 522 | 334 | 227 | 198 | 88 | | 12 | 145 | 194 | 215 | 339 | 928 | 531 | 389 | 585 | 326 | 196 | 178 | 90 | | 13 | 145 | 196 | 199 | 335 | 632 | 472 | 373 | 473 | 341 | 190 | 158 | 89 | | 14 | 146 | 245 | 193 | 326 | 496 | 447 | 375 | 436 | 299 | 186 | 152 | 86 | | 15 | 165 | 262 | 189 | 603 | 440 | 427 | 381 | 411 | 290 | 177 | 148 | 83 | | 16 | 179 | 231 | 186 | 1340 | 433 | 403 | 368 | 391 | 343 | 169 | 178 | 82 | | 17 | 168 | 207 | 186 | 624 | 3760 | 396 | 2120 | 406 | 411 | 390 | 267 | 82 | | 18 | 179 | 197 | 186 | 422 | 2650 | 423 | 1340 | 375 | 327 | 256 | 272 | 117 | | 19 | 196 | 194 | 183 | 370 | 943 | 573 | 1040 | 356 | 283 | 185 | 194 | 101 | | 20 | 226 | 192 | 182 | 355 | 689 | 1160 | 3450 | 345 | 284 | 179 | 162 | 95 | | 21 | 186 | 197 | 181 | 315 | 589 | 2390 | 1030 | 340 | 266 | 168 | 150 | 101 | | 22 | 168 | 253 | 209 | 292 | 500 | 1070 | 700 | 335 | 252 | 158 | 144 | 114 | | 23 | 160 | 271 | 283 | 1470 | 1320 | 678 | 600 | 349 | 255 | 221 | 140 | 137 | | 24 | 160 | 233 | 268 | 1140 | 1510 | 552 | 541 | 420 | 243 | 176 | 139 | 112 | | 25 | 181 | 208 | 359 | 689 | 757 | 489 | 483 | 416 | 229 | 161 | 135 | 102 | | 26 | 220 | 200 | 368 | 475 | 584 | 459 | 449 | 368 | 225 | 155 | 131 | 101 | | 27 | 336 | 199 | 323 | 859 | 515 | 444 | 426 | 401 | 217 | 153 | 125 | 99 | | 28 | 263 | 194 | 392 | 9520 | 489 | 426 | 416 | 502 | 208 | 166 | 123 | 93 | | 29 | 205 | 193 | 355 | 2540 | | 411 | 399 | 392 | 256 | 166 | 119 | 88 | | 30 | 187 | 201 | 335 | 952 | | 397 | 391 | 362 | 259 | 151 | 114 | 87 | | 31 | 183 | | 288 | 641 | | 389 | | 340 | | 140 | 109 | | | TOTAL | 5519 | | 7365 | 29760 | 30414 | 20755 | 19975 | 13721 | 8911 | 6186 | 5096 | 3010 | | MEAN | 178 | 226 | 238 | 960 | 1086 | 670 | 666 | 443 | 297 | 200 | 164 | 100 | | MAX | 336 | 364 | 392 | 9520 | 3900 | 2770 | 3450 | 700 | 411 | 390 | 450 | 137 | | MIN | 145 | 192 | 181 | 241 | 421 | 368 | 368 | 335 | 208 | 140 | 109 | 82 | | CFSM | .51 | .65 | .68 | 2.74 | 3.10 | 1.91 | 1.90 | 1.26 | .85 | .57 | .47 | .29 | | IN. | .59 | .72 | .78 | 3.16 | 3.23 | 2.21 | 2.12 | 1.46 | .95 | .66 | .54 | .32 | # 02058400 PIGG RIVER NEAR SANDY LEVEL, VA--Continued | STATIST | TICS OF M | ONTHLY MEAN | DATA I | FOR WATER | YEARS 1963 | - 1998, | BY WATE | R YEAR | (WY) | | | | | |---------|-----------|-------------|--------|-----------|------------|---------|---------|---------|--------|---------|------------|-------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MA | y JUN | JUL | AUG | | SEP | | MEAN | 303 | 317 | 361 | 491 | 517 | 608 | 549 | 41 | 1 344 | 264 | 247 | | 306 | | MAX | 1220 | 995 | 836 | 1054 | 1086 | 1578 | 2265 | 98 | 9 1200 | 814 | 867 | 1 | 1864 | | (WY) | 1991 | 1986 | 1974 | 1978 | 1998 | 1993 | 1987 | 197 | 3 1972 | 1972 | 1985 | 1 | 1987 | | MIN | 110 | 103 | 143 | 160 | 228 | 203 | 202 | 16 | 5 114 | 85.4 | 49.3 | 7 | 70.0 | | (WY) | 1982 | 1982 | 1966 | 1981 | 1968 | 1981 | 1985 | 198 | 1 1981 | 1967 | 1981 | 1 | 1968 | | SUMMAR | Y STATIST | ICS | FOR | 1997 CAL | ENDAR YEAR | F | OR 1998 | WATER Y | EAR | WATER Y | YEARS 1963 | 3 – 1 | 1998 | | ANNUAL | TOTAL | | | 137785 | | | 157506 | | | | | | | | ANNUAL | MEAN | | | 377 | | | 432 | | | 394 | | | | | HIGHES | T ANNUAL | MEAN | | | | | | | | 709 | | 1 | 1987 | | LOWEST | ANNUAL M | EAN | | | | | | | | 155 | | 1 | 1981 | | HIGHES | T DAILY M | EAN | | 3320 | Apr 29 | | 9520 | Jan | 28 | 34900 | Sep | 8] | 1987 | | LOWEST | DAILY ME | AN | | 105 | Sep 9 | | 82 | aSep | 16 | 25 | Aug | 29 1 | 1981 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 125 | Sep 3 | | 86 | Sep | 11 | 29 | Aug | 24] | 1981 | | INSTAN | TANEOUS P | EAK FLOW | | | | | 12500 | Jan | 28 | 65600 | Sep | 8 1 | 1987 | | INSTAN | TANEOUS P | EAK STAGE | | | | | 18. | 52 Jan | 28 | b31.1 | l2 Sep | 8] | 1987 | | INSTAN | TANEOUS L | OW FLOW | | | | | 80 | Sep | 17 | 24 | cAug | 29 1 | 1981 | | ANNUAL | RUNOFF (| CFSM) | | 1. | 08 | | 1. | 23 | | 1.1 | 13 | | | | ANNUAL | RUNOFF (| INCHES) | | 14. | 64 | | 16. | 74 | | 15.2 | 29 | | | | 10 PER | CENT EXCE | EDS | | 602 | | | 685 | | | 606 | | | | | 50 PER | CENT EXCE | EDS | | 332 | | | 272 | | | 262 | | | | | 90 PER | CENT EXCE | EDS | | 161 | | | 127 | | | 126 | | | | a Also Sept. 17, 1998. b From high-water marks. c Also Aug. 30, 1981. ## 02060500 ROANOKE (STAUNTON) RIVER AT ALTAVISTA, VA LOCATION.--Lat 37°06'16", long 79°17'44", Pittsylvania County, Hydrologic Unit 03010101, on right bank 12 ft upstream from bridge on alternate U.S. Highway 29, 0.3 mi south of Altavista, 0.3 mi downstream from Sycamore Creek, 3.5 mi upstream from Big Otter River, and at mile 286.5. DRAINAGE AREA. -- 1,789 mi². PERIOD OF RECORD. -- August 1930 to current year. REVISED RECORDS.--WSP 892: 1938(M). WSP 972: 1931-33. WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 503.10 ft above sea level. Prior to Feb. 21, 1951, on left bank 50 ft downstream at same datum. REMARKS.--No estimated daily discharges. Records good. Flow regulated since 1962 by Leesville Lake (station 02059400) 9.5 mi upstream and since 1963 by Smith Mountain Lake (station 02057400) 27.5 mi upstream. U.S. Army Corps of Engineers satellite gage-height telemeter at station. American Electric Power gage-height transmitter at station with recorder at Roanoke. Hadson Power Company gage-height telemeter at station. Maximum discharge, 105,000 ft³/s, from rating curve extended above 52,000 ft³/s on basis of unit hydrograph and flood-routing studies by U.S. Army Corps of Engineers and records for other stations in Roanoke River Basin. Minimum gage height, 1.53 ft, Jan. 2, 1977, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 19,300 ${\rm ft}^3/{\rm s}$, Jan. 28, gage height, 19.32 ft; minimum daily, 668 ${\rm ft}^3/{\rm s}$, Aug. 28. | | | DISCH | ARGE, IN | CUBIC FE | ET : | | ND, WATER
LY MEAN V | | остові | ER 1997 | TO SEPTE | MBER 199 | 98 | | | |------------------|-------|----------------|------------------|--------------|------------|--------|------------------------|------------|------------|----------------|--------------|----------------|------|-------|----------------| | DAY | OCT | NOV | DEC | JA | N | FEB | MAR | A | PR | MAY | JUN | JUI | _ | AUG | SEP | | 1 | 799 | 851 | 851 | 83 | 8 | 9250 | 2470 | 20 | 10 | 2640 | 1660 | 896 | 5 | 705 | 673 | | 2 | 783 | 1100 | 826 | 84 | 0 | 5320 | 2270 | 21 | 90 | 3860 | 1550 | 783 | 3 | 708 | 677 | | 3 | 789 | 938 | 810 | | | 4870 | 2280 | 19 | | 5000 | 1400 | 755 | | 698 | 703 | | 4 | 791 | 833 | 843 | | | 11600 | 2260 | 30 | | 3490 | 1410 | 753 | | 687 | 700 | | 5 | 778 | 839 | 846 | | | 15900 | 2230 | 40 | | 3190 | 1410 | 784 | | 690 | 705 | | 3 | ,,, | 033 | 010 | | | 13700 | 2230 | 10 | 00 | 3170 | 1110 | 70 | - | 050 | 703 | | 6 | 773 | 834 | 821 | 91 | .3 | 13800 | 1870 | 31 | 10 | 3110 | 1420 | 775 | 5 | 687 | 677 | | 7 | 768 | 970 | 816 | 96 | 9 | 12200 | 1560 | 22 | 20 | 2990 | 1400 | 75 | 7 | 691 | 683 | | 8 | 782 | 917 | 806 | 291 | .0 | 10300 | 1790 | 18 | 40 | 3410 | 1280 | 723 | 3 | 904 | 689 | | 9 | 806 | 885 | 821 | 189 | 0 | 9910 | 4690 | 19 | 80 | 3140 | 1080 | 763 | L | 872 | 670 | | 10 | 784 | 848 | 830 | | | 5830 | 5590 | 25 | | 2650 | 1070 | 757 | | 724 | 678 | | | | | | | | | | | | | | | | | | | 11 | 779 | 852 | 834 | 106 | 0 | 2890 | 5260 | 25 | 20 | 3050 | 1010 | 730 |) | 749 | 713 | | 12 | 771 | 843 | 835 | 152 | 0 | 4580 | 5210 | 22 | 30 | 4530 | 1830 | 708 | 3 | 741 | 686 | | 13 | 775 | 830 | 832 | 202 | 0 | 3930 | 3520 | 20 | 20 | 3170 | 1880 | 726 | 5 | 721 | 689 | | 14 | 789 | 827 | 807 | 357 | 0 | 3130 | 1710 | 19 | 70 | 2630 | 1430 | 717 | 7 | 711 | 681 | | 15 | 819 | 843 | 786 | 298 | 0 | 2490 | 1640 | 18 | 70 | 2370 | 1230 | 693 | 3 | 719 | 681 | | | | | | | | | | | | | | | | | | | 16 | 815 | 811 | 813 | 613 | 0 | 2010 | 1750 | 18 | 50 | 2040 | 1190 | 704 | 1 | 1590 | 686 | | 17 | 807 | 796 | 795 | 513 | 0 | 9930 | 2000 | 80 | 60 | 2000 | 1110 | 773 | 3 | 862 | 687 | | 18 | 812 | 829 | 802 | 224 | 0 | 12400 | 2320 | 103 | 00 | 1950 | 1250 | 738 | 3 | 810 | 691 | | 19 | 785 | 812 | 807 | | | 11900 | 4130 | 49 | | 1840 | 1140 | 743 | | 741 | 712 | | 20 | 794 | 827 | 820 | 179 | | 9850 | 7650 | 131 | | 1640 | 1060 | 73 | | 713 | 744 | | | | | | | | | | | | | | | | | | | 21 | 802 | 831 | 826 | 168 | 0 | 5320 | 14800 | 115 | 00 | 1580 | 1040 | 722 | 2 | 705 | 709 | | 22 | 778 | 899 | 825 | 431 | .0 | 3950 | 13700 | 46 | 40 | 1500 | 1030 | 719 | 9 | 702 | 720 | | 23 | 796 | 941 | 829 | 385 | 0 | 7400 | 11700 | 34 | 40 | 1470 | 898 | 729 | 9 | 689 | 702 | | 24 | 775 | 859 | 838 | 425 | 0 | 8770 | 5480 | 30 | 40 | 1790 | 820 | 724 | 1 | 702 | 687 | | 25 | 801 | 855 | 892 | 306 | 0 | 3900 | 2770 | 26 | 50 | 1900 | 821 | 729 | € | 1880 | 691 | | 0.6 | 070 | 0.47 | 005 | 01.0 | | 0750 | 0700 | 0.2 | 0.0 | 1710 | 0.0.4 | 71 | _ | 1000 | 707 | | 26 | 878 | 847 | 895 | | | 2750 | 2700 | 23 | | 1710 | 804 | 715 | | 1220 | 707 | | 27 | 895 | 842 | 885 | | | 2600 | 2850 | 18 | | 2010 | 805 | 73 | | 669 | 686 | | 28 | 914 | 833 | 929 | | | 2540 | 2810 | 18 | | 2870 | 1220 | 743 | |
668 | 699 | | 29 | 810 | 819 | 927 | | | | 2200 | 16 | | 2150 | 1030 | 720 | | 2210 | 763 | | 30 | 795 | 845 | 915 | | | | 2010 | 19 | | 1630 | 1020 | 690 | | 732 | 681 | | 31 | 789 | | 872 | 1100 | 0 | | 2000 | - | | 1650 | | 703 | 3 | 673 | | | TOTAL | 24832 | 25856 | 26034 | 12180 | 6 | 199320 | 125220 | 1086 | 10 | 78960 | 36298 | 2294 | 1 | 26573 | 20870 | | MEAN | 801 | 862 | 840 | 392 | 9 | 7119 | 4039 | 36 | 20 | 2547 | 1210 | 740 |) | 857 | 696 | | MAX | 914 | 1100 | 929 | 1730 | 0 | 15900 | 14800 | 131 | 00 | 5000 | 1880 | 896 | 5 | 2210 | 763 | | MIN | 768 | 796 | 786 | | | 2010 | 1560 | 16 | | 1470 | 804 | 690 | | 668 | 670 | | (†) | -5409 | -1380 | -60 | | | -3250 | +1880 | +7 | | -1350 | +471 | -1790 | | -7160 | -10400 | | MEAN‡ | 627 | 816 | 838 | | | 7002 | 4100 | 36 | | 2504 | 1226 | 682 | | 626 | 349 | | CFSM‡ | .35 | .46 | .47 | 2.6 | | 3.91 | 2.29 | 2. | | 1.40 | .69 | . 38 | | .35 | .20 | | IN.‡ | .40 | .51 | .54 | | | 4.08 | 2.64 | 2. | | 1.61 | .76 | . 44 | | .40 | .22 | | ~ | 1000 | | | | 1.50 | | 5016 | | | | 1500 | ~=~ | | | 11 6- | | CAL YR
WTR YR | | TOTAL
TOTAL | 579961
817323 | MEAN
MEAN | 158
223 | | 7910
17300 | MIN
MIN | 759
668 | MEAN‡
MEAN‡ | 1530
2215 | CFSM‡
CFSM‡ | 1.24 | | 11.61
16.81 | [†] Total change in contents, equivalent in cubic feet per second, per month, in Smith Mountain and Leesville Lakes; provided by American Electric Power. [‡] Adjusted for monthly change in contents. # 02060500 ROANOKE (STAUNTON) RIVER AT ALTAVISTA, VA--Continued | STATISTICS OF MONTHLY MEAN | I DATA FOR WATER Y | EARS 1931 - | - 1962, BY | WATER Y | YEAR (WY) | [UNREGU | LATED] | | | |--|---|---|--|--|---|--|---|---|--| | OCT NOV MEAN 1431 1366 MAX 6570 3335 (WY) 1938 1948 MIN 324 388 (WY) 1931 1932 | DEC JAN
1845 2321
5971 7148
1949 1936
528 543
1932 1956 | FEB
2615
5338
1960
517
1934 | MAR
2949
5313
1936
1260
1940 | APR
2831
4818
1951
815
1942 | MAY
2042
4825
1958
827
1934 | JUN
1592
3056
1950
653
1956 | JUL
1388
5354
1949
442
1932 | AUG
1630
10210
1940
314
1932 | SEP
1307
3461
1945
284
1954 | | SUMMARY STATISTICS | | | | | | | | | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 1940
3424
915
98300
156
181
105000
a40.08
94
1.08
14.73
3590
1310 | 1
Aug 15 1
Sep 30 1
Aug 26 1
Aug 15 1
Aug 15 1
Jan 31 1 | 1949
1956
1940
1962
1932
1940
1940
1934 | | | | | | | | STATISTICS OF MONTHLY MEAN | I DATA FOR WATER Y | EARS 1963 - | - 1998, BY | | | - | | _ | | | OCT NOV MEAN 1167 1326 MAX 4811 6190 (WY) 1991 1986 MIN 189 396 (WY) 1964 1982 | DEC JAN
1417 2176
3622 4643
1997 1978
351 620
1964 1965 | FEB
2353
7119
1998
581
1981 | MAR
2872
7795 1
1993
338
1981 | APR
2547
0930
1987
604
1964 | MAY
1951
4716
1978
484
1964 | JUN
1545
5684
1972
220
1964 | JUL
1103
3363
1972
504
1981 | AUG
1037
3108
1985
311
1963 | SEP
1228
5246
1987
439
1963 | | SUMMARY STATISTICS | | | | | | | | | 1998 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 579961
1589
7910
759
775
.89
12.06
2870
1070 | Jun 3
Sep 22
Sep 18 | | 2239 | Jan 28
Aug 28
Sep 6
Jan 28
Jan 28
CAug 3 | | 1723
2903
645
46700
39
116
62100
34.45
13
.96
13.09
3440 | Sep 8
Jul 10
Sep 8
Sep 8
Jan 30 | 1987
1981
1987
1966
1965
1987
1987 | a From floodmarks. b Result of regulation. c Also Aug. 28, 30, 31, Sept. 27, 30, 1968. ### 02062500 ROANOKE (STAUNTON) RIVER AT BROOKNEAL, VA LOCATION.--Lat 37°02'28", long 78°57'02", Campbell County, Hydrologic Unit 03010102, on left bank 1,600 ft upstream from bridge on U.S. Highway 501 at Brookneal, 2.9 mi upstream from Falling River, and at mile 255.9. DRAINAGE AREA. -- 2,415 mi². PERIOD OF RECORD. -- April 1923 to current year. REVISED RECORDS.--WSP 892: 1928(M). WSP 972: 1928-34. WSP 1303: 1924-27(M), 1929(M), 1941(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 351.96 ft above sea level. Apr. 30, 1923, to Aug. 29, 1929, nonrecording gage, Aug. 30, 1929, to Aug. 15, 1940, water-stage recorder, and Aug. 16 to Oct. 1, 1940, nonrecording gage at site 1,800 ft downstream at same datum. Oct. 2, 1940, to Sept. 30, 1941, nonrecording gage at site 1,600 ft downstream at same datum. REMARKS.--Records good except for estimated discharge, which is fair. Flow regulated since 1962 by Leesville Lake (station 02059400) 40.1 mi upstream and since 1963 by Smith Mountain Lake (station 02057400) 58.1 mi upstream. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, $130,000~{\rm ft}^3/{\rm s}$, at present site, from gage-height relation curve, from rating curve extended above $55,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement by Geological Survey, unit hydrograph and flood-routing studies by U.S. Army Corps of Engineers, and records for other stations in Roanoke River Basin. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 34,900 ft³/s, Jan. 28, gage height, 27.92 ft; minimum daily, 830 ft^3/s , Sept. 15. | | | DIS | CHARGE, IN | CUBIC I | FEET E | | OND, WATE | | OCTO: | BER 1997 | TO SEPT | EMBER 199 | 8 | | |--|--|--|--|---|----------------------------------|--|--|--|-----------------------|---|---|--|--|---| | DAY | OCT | NO | V DEC | J | AN | FEB | MAR | AP | R | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1070
1010
990
990
995 | e128
e150
e175
e145
e130 | 0 1200
0 1160
0 1260 | 12:
12:
13: | 30
90
90 | 10400
5620
6710
13000
27300 | 3840
3650
3630
3560
3490 | 317
336
306
399
649 | 0 | 3370
4760
5800
e4950
e5300 | e2350
e2310
2060
2090
e2060 | 1500
1260
1200
1170
1300 | 1040
1040
1000
1010
966 | 875
856
881
922
912 | | 6
7
8
9
10 | 981
974
972
995
1000 | 113
149
169
140
127 | 0 1180
0 1150
0 1140 | 170
e340
e720 | 00
00
00 | 19100
16600
11800
11000
8530 | 3380
2810
3410
7580
8310 | 485
377
331
297
400 | 0.0 | e4700
e4150
8870
5060
4050 | e2080
e2060
e1980
e1750
e1720 | 1350
1210
1200
1170
1210 | 964
967
978
2060
1510 | 888
841
861
841
836 | | 11
12
13
14
15 | 978
968
962
976
1050 | 120
118
117
119
121 | 0 1220
0 1190
0 1170 | e220
e250
e361 | 00
00
50 | 4190
5860
5810
4520
3800 | 6760
6420
5770
3300
3040 | 386
363
320
318
304 | 0 | 3520
5250
4640
3670
3450 | e1770
e1990
e2520
e2400
e1870 | 1170
1100
1090
1110
1080 | 1230
1180
1100
1070
1090 | 855
876
854
842
830 | | 16
17
18
19
20 | 1060
1080
1190
1120
1060 | 119
112
113
112
111 | 0 1130
0 1110
0 1110 | e720
e420
e250 | 00
00
00 | 3250
11600
19300
15500
11800 | 2970
3080
3520
5420
9810 | 293
1020
1520
765
1750 | 0 | 3010
2920
2840
2730
2520 | e1890
e1720
1780
e1850
e1830 | 1060
1090
1190
1110
1120 | 1130
1950
1360
1200
1090 | 833
845
860
897
946 | | 21
22
23
24
25 | 1060
1030
1010
1000
1020 | 115
129
142
131
121 | 0 1150
0 1190
0 1230 | e330
e920
804 | 00
00
40 | 7710
5480
6900
12700
6370
| 29200
20300
15600
8960
4520 | 1580
798
510
444
400 | 0 | 2420
2280
2260
2470
2740 | e1800
e1700
e1600
1350
1330 | 1090
1070
1070
1090
1100 | 1040
1040
1010
981
996 | 935
989
994
893
878 | | 26
27
28
29
30
31 | 1230
1440
1280
1210
1070
1060 | 118
117
116
114
116 | 0 1410
0 1520
0 1540
0 1490 | 390
2750
2810
1990 | 50
00
00
00 | 4210
4030
3910
 | 3950
4020
4010
3630
3270
3180 | 378
310
296
280
273 | 0 0 0 | 2600
2620
3520
3240
2490
2370 | 1290
1270
1530
1560
1630 | 1080
1070
1170
1130
1060
1030 | 2380
907
865
1460
1710
850 | 906
901
873
863
941 | | TOTAL
MEAN
MAX
MIN
(†)
MEAN‡
CFSM‡
IN.‡ | 32831
1059
1440
962
-5409
885
.37
.42 | 3807
126
175
111
-138
122
.5 | 9 1242
0 1540
0 1110
0 -60
3 1240
1 .51 | 610
2810
123
+2283
683
2.3 | 01
00
30
30
37
83 | 267000
9536
27300
3250
-3250
9420
3.90
4.06 | 194390
6271
29200
2810
+1880
6331
2.62
3.02 | 16205
540
1750
273
+73
542
2.2 | 2
0
0
0
6 | 114570
3696
8870
2260
-1350
3652
1.51
1.74 | 55140
1838
2520
1270
+471
1854
.77
.86 | 35650
1150
1500
1030
-1790
1092
.45
.52 | 37174
1199
2380
850
-7160
968
.40
.46 | 26524
884
994
830
-10400
537
.22
.25 | | CAL YR
WTR YR | | TOTAL
TOTAL | 809732
1191039 | MEAN
MEAN | 2218
3263 | MAX
MAX | 10800
29200 | MIN
MIN | 920
830 | | 2160
3239 | CFSM‡
CFSM‡ 1 | .89 IN.; | | [†] Total change in contents, equivalent in cubic feet per second, per month, in Smith Mountain and Leesville Lakes; provided by Appalachian Power Company. ‡ Adjusted for monthly change in contents. e Estimated. # 02062500 ROANOKE (STAUNTON) RIVER AT BROOKNEAL, VA--Continued | STATIST | | ONTHLY MEAN | | | | | | | | _ | | | |---|--|---|--|--|--|--|---|---|--|--|---|--| | | OCT
1884
8561
1938
415
1931 | NOV
1762
3861
1949
527
1932 | DEC
2417
7776
1949
805
1932 | JAN
3019
9381
1936
821
1956 | FEB
3349
6272
1960
754
1934 | MAR
3603
7071
1936
1666
1940 | APR
3521
6407
1935
1083
1942 | MAY
2512
5789
1958
1132
1956 | JUN
1991
4320
1929
714
1926 | JUL
1726
7125
1949
489
1930 | AUG
2133
14270
1940
384
1932 | SEP
1731
7430
1928
371
1930 | | SUMMARY | STATIST | ICS | | WATER Y | EARS 1924 | - 1962 | | | | | | | | LOWEST A
HIGHEST
LOWEST I
ANNUAL S
INSTANTA
INSTANTA
ANNUAL I
ANNUAL I
10 PERCE | ANNUAL M DAILY M DAILY M DAILY M SEVEN-DA ANEOUS P ANEOUS P ANEOUS L RUNOFF (ENT EXCE | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW CFSM) INCHES) EDS EDS | | 2466
4386
1172
113000
e191
207
130000
46.5
(a)
1.0
13.8
4450
1720
744 | Aug
Sep
Aug
Aug
0 Aug | 1949
1956
16 1940
2 1932
27 1932
15 1940
(b) | | | | | | | | STATIST | ICS OF M | ONTHLY MEAN | DATA | FOR WATER | YEARS 19 | 63 - 1998, | BY WATER | YEAR (WY) | [REGUI | LATED, UNADJ | USTED] | | | | OCT | NOV | DEC | JAN | FEB | MAR | | | JUN | JUL | AUG | SEP | | MEAN | 1625 | NOV
1847 | 2091 | 3110 | 3386 | 4123 | 3633 | 2729 | 2174 | 1519 | 1417 | 1722 | | MAX | 6446 | 8961 | 5625 | 7695 | 9536 | 11760 | 14410 | 7039 | 7522 | 4775 | 4675 | 8822 | | (WY) | 1991 | 1986 | 1997 | 1978 | 1998 | 1993 | 1987 | 1978 | 1995 | 1972 | 1985 | 1996 | | MIN | 325 | 553 | 637 | 867 | 953 | 561 | 921 | 836 | 405 | 683 | 411 | 512 | | (WY) | 1964 | 1982 | 1964 | 1981 | 1981 | 1981 | 1981 | 1964 | 1964 | 4775
1972
683
1963 | 1964 | 1965 | | SUMMARY | STATIST | ICS | FOI | R 1997 CAL | ENDAR YEA | R I | FOR 1998 WA | TER YEAR | | WATER YEA | RS 1963 | - 1998 | | ANNUAL 7 | т∩тът. | | | 809732 | | | 1191039 | | | | | | | ANNUAL N | | | | 2218 | | | 3263 | | | 2442 | | | | | ANNUAL | MEAN | | 10800 | | | 3203 | | | 4440 | | 1973 | | | ANNUAL M | EAN | | | | | | | | 0.5.2 | | 1981 | | HIGHEST | DAILY M | EAN | | 10800 | Mar | 4 | 29200 | Mar 21 | | 65600 | Sep | 9 1987 | | | DAILY ME | AN | | 920 | Sep | 7 | 830 | Sep 15 | | 65600
140 | Jul | 25 1966 | | ANNUAL S | SEVEN-DA | Y MINIMUM | | 946 | | 3 | 847 | Sep 10 | | 203 | Sep | 4 1965 | | INSTANTA | ANEOUS P | EAK FLOW | | | _ | | 34900 | Jan 28 | | 85800 | Sep | 9 1987 | | INSTANTA | ANEOUS P | EAK STAGE | | | | | 27.92 | Jan 28 | | 39.80 | Sep | 9 1987 | | INSTANTA | ANEOUS L | OW FLOW | | | | | 807 | Sep 9 | | c136 | dJul | 25 1966 | | ANNUAL F | RUNOFF (| CFSM) | | | 92 | | 1.35
18.35 | | | 65600
140
203
85800
39.80
c136
1.01
13.74 | | | | ANNUAL F | RUNOFF (| INCHES) | | 12. | 47 | | 18.35 | | | 13.74 | | | | 10 PERCE | ENT EXCE | EDS | | 4180 | | | 7200 | | | 4770 | | | | 50 PERCE | ENT EXCE | CFSM) INCHES) EDS EDS EDS | | 1590 | 92
47 | | 1490 | | | 1430 | | | | 90 PERCE | ENT EXCE | EDS | | 1000 | | | 970 | | | 544 | | | a Probably less than 191 ft³/s. b Probably occurred Sept. 1, 2, 1932. c Lowest recorded discharge; may have been lower during period of no gage-height record, July 25, 26, 1966. d Also July 26, 1966. e Estimated. #### 02066000 ROANOKE (STAUNTON) RIVER AT RANDOLPH, VA LOCATION.--Lat 36°54'54", long 78°44'28", Halifax County, Hydrologic Unit 03010102, on right bank 6 ft downstream from bridge on State Highway 746, 2.8 mi northwest of Randolph, 3.6 mi upstream from Roanoke Creek, and at mile 227.3. DRAINAGE AREA. -- 2,977 mi². PERIOD OF RECORD.--August 1900 to September 1906, October 1927 to September 1930, October 1950 to current year. Monthly discharge only for some periods, published in WSP 1303. Prior to October 1902, published as Staunton River at Randolph. Gage heights collected since 1905 at this site or at former site are contained in reports of the National Weather Service. REVISED RECORDS.--WSP 1203: 1928-30. WSP 1303: 1901-6. WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 307.59 ft above sea level. Aug. 27, 1900, to Oct. 13, 1902, nonrecording gage at site 3.2 mi downstream at datum about 5.9 ft lower. Oct. 14, 1902, to Aug. 11, 1906, and Oct. 1, 1927, to Mar. 31, 1930, nonrecording gage at site of original gage at datum 3.93 ft lower than present datum. REMARKS.--No estimated daily discharges. Records good. Flow regulated since 1962 by Leesville Lake (station 02059400) 68.7 mi upstream and since 1963 by Smith Mountain Lake (station 02057400) 86.7 mi upstream. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, 97,000 ft³/s, from graph based on gage readings, site and datum then in use. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 16, 1940, reached a stage of 41.6 ft, present site and datum, discharge, $150,000~\rm{ft}^3/s$, from information by U.S. Army Corps of Engineers. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 EXTREMES FOR CURRENT YEAR.--Maximum discharge, 36,400 ${\rm ft}^3/{\rm s}$, Jan. 29, gage height, 27.17 ${\rm ft}$; minimum daily, 953 ${\rm ft}^3/{\rm s}$, Sept. 16. DATLY MEAN VALUES DAY ОСТ NOV DEC JAN FEB MAR APR MAY TIIN TITT. AUG SEP 2.0 1730 1200 2.8 ---___ TOTAL MEAN MAX MIN -10400 -5409 -1380 -60 +22830 -3250 +1880 +730 -1350+471 -1790 -7160 MEAN‡ 2.78 2.26 CFSM‡ 4.07 1.65 TN ± 3 21 4 24 3 16 2 52 1 90 TOTAL CAL YR 1997 CFSM‡ IN. # 12.03 MEAN MAX MIN MEAN1 .89 TOTAL 1501069 CESMt 1 37 WTR YR 1998 MEAN MAX MTN MEAN± TN ± 18 65 † Total change in contents, equivalent in cubic feet per second, per month, in Smith Mountain and Leesville Lakes; provided by Appalachian Power Company. [‡] Adjusted for monthly change in contents. # 02066000 ROANOKE (STAUNTON) RIVER AT RANDOLPH, VA--Continued | | | 1EARS 1901-1906, | 1928-1930, 1951- | L962, BY WATE | ER YEAR (WY) | [UNREGULATED] | |--|--|----------------------------|--|----------------------------|---|--| | OCT NOV | DEC JAN | FEB MAR | | Z JUN | | AUG SEP | | MEAN 2434 2112 | 3590 3457 | 4788 5322 | | | | 530 2181 | | MAX 6861 4104 | 9620 6419 | 11120 11010 | | | | 185 8928 | | (WY) 1930 1958
MIN 782 844 | 1902
1902
1125 1026 | 1902 1903
2047 2633 | | | | 901 1928
450 410 | | (WY) 1954 1954 | 1956 1956 | 1959 1956 | 1930 1950 | 5 1037
5 1956 | | 930 1930 | | (11) | 1950 1950 | 1939 1930 | 1930 1930 | 1,50 | 1750 1 | 150 1550 | | SUMMARY STATISTICS | WATER YE | ARS 1901 - 1906 | | | | | | | | 1928 - 1930 | | | | | | | | 1951 - 1962 | | | | | | ANNUAL MEAN
HIGHEST ANNUAL MEAN | 3357
5727 | 1901 | | | | | | LOWEST ANNUAL MEAN | 1501 | 1901 | | | | | | | | | | | | | | LOWEST DAILY MEAN | 256 | Sep 16 1954 | | | | | | ANNUAL SEVEN-DAY MINIMUM | 284 | Sep 13 1954 | | | | | | INSTANTANEOUS PEAK FLOW | 97000 | Dec 31 1901
Dec 31 1901 | | | | | | INSTANTANEOUS PEAR STAGE
INSTANTANEOUS I.OW FI.OW | 256 | Sep 16 1954 | | | | | | HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS | 1.13 | DCP 10 1951 | | | | | | ANNUAL RUNOFF (INCHES) | 15.31 | | | | | | | 10 PERCENT EXCEEDS | 6030 | | | | | | | 50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | 2230
1040 | | | | | | | 90 PERCENI EXCEEDS | 1040 | | | | | | | STATISTICS OF MONTHLY MEA | N DATA FOR WATER | YEARS 1963 - 199 | 8, BY WATER YEAR | (WY) [REGUL | ATED, UNADJUS | TED] | | OCT NOV | DEC JAN | FEB MAR | | | | AUG SEP | | MEAN 2065 2331 | 2608 3851 | 4202 5100 | | | | 690 2147 | | MAX 7906 11230 | 6887 9532 | 12230 13970 | | | | 988 11350 | | (WY) 1991 1986
MIN 428 789 | | 1998 1975
1549 769 | | | | 985 1996
493 662 | | (WY) 1964 1982 | 1054 1085
1966 1966 | 1549 769
1981 1981 | | 3 491
1 1964 | | | | (WI) 1964 1982 | 1966 1966 | 1981 1981 | | | | 264 1062 | | | | | . 1701 170 | 1 1904 | 1964 1 | 964 1963 | | SUMMARY STATISTICS | FOR 1997 CALE | NDAR YEAR | FOR 1998 WATER Y | | WATER YEARS | | | | | NDAR YEAR | FOR 1998 WATER Y | | | | | ANNUAL TOTAL | 984273 | NDAR YEAR | | | WATER YEARS | | | | | NDAR YEAR | FOR 1998 WATER Y | | | | | ANNUAL TOTAL
ANNUAL MEAN | 984273 | NDAR YEAR | FOR 1998 WATER Y | | WATER YEARS | 1963 - 1998 | | ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN | 984273 | NDAR YEAR
Mar 4 | FOR 1998 WATER YE | | WATER YEARS 3022 5102 | 1963 - 1998 | | ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN | 984273
2697 | | FOR 1998 WATER YE | EAR | WATER YEARS 3022 5102 1151 78700 | 1963 - 1998
1987
1981 | | ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN | 984273
2697
13400
959 | Mar 4 | FOR 1998 WATER YE
1501069
4113
33500 Jan
953 Sep | EAR | WATER YEARS 3022 5102 1151 78700 | 1963 - 1998
1987
1981
Sep 8 1996 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN | 984273
2697
13400
959 | Mar 4
Sep 8 | FOR 1998 WATER YE
1501069
4113
33500 Jan
953 Sep
972 Sep
36400 Jan | 29
16
13
29 | WATER YEARS 3022 5102 1151 78700 179 | 1963 - 1998
1987
1981
Sep 8 1996
aSep 8 1965 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM | 984273
2697
13400
959 | Mar 4
Sep 8 | FOR 1998 WATER YE
1501069
4113
33500 Jan
953 Sep
972 Sep
972 Sep
36400 Jan
27.17 Jan | 29
16
13
29 | WATER YEARS 3022 5102 1151 78700 179 238 | 1963 - 1998
1987
1987
1981
Sep 8 1996
aSep 8 1965
Sep 5 1965 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW | 984273
2697
13400
959
1000 | Mar 4
Sep 8
Sep 3 | FOR 1998 WATER YE
1501069
4113
33500 Jan
953 Sep
972 Sep
36400 Jan
27.17 Jan
945 cSep | 29
16
13
29
29 | WATER YEARS 3022 5102 1151 78700 179 238 89300 34.94 176 | 1963 - 1998
1987
1981
Sep 8 1996
aSep 8 1965
Sep 5 1965
Sep 7 1996 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) | 984273
2697
13400
959
1000 | Mar 4
Sep 8
Sep 3 | FOR 1998 WATER YI
1501069
4113
33500 Jan
953 Sep
972 Sep
36400 Jan
27.17 Jan
945 cSep
1.38 | 29
16
13
29
29 | WATER YEARS 3022 5102 1151 78700 179 238 89300 34.94 176 1.02 | 1963 - 1998
1987
1981
Sep 8 1996
aSep 8 1965
Sep 5 1965
Sep 7 1996
Sep 7 1996 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) | 984273
2697
13400
959
1000 | Mar 4
Sep 8
Sep 3 | FOR 1998 WATER YI
1501069
4113
33500 Jan
953 Sep
972 Sep
36400 Jan
27.17 Jan
945 cSep
1.38
18.76 | 29
16
13
29
29 | 3022
5102
1151
78700
179
238
89300
34.94
176
1.02
13.79 | 1963 - 1998
1987
1981
Sep 8 1996
aSep 8 1965
Sep 5 1965
Sep 7 1996
Sep 7 1996 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS | 984273
2697
13400
959
1000 | Mar 4
Sep 8
Sep 3 | FOR 1998 WATER YE 1501069 4113 33500 Jan 953 Sep 972 Sep 36400 Jan 27.17 Jan 945 cSep 1.38 18.76 9420 | 29
16
13
29
29 | WATER YEARS 3022 5102 1151 78700 179 238 89300 34.94 176 1.02 13.79 5800 | 1963 - 1998
1987
1981
Sep 8 1996
aSep 8 1965
Sep 5 1965
Sep 7 1996
Sep 7 1996 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) | 984273
2697
13400
959
1000 | Mar 4
Sep 8
Sep 3 | FOR 1998 WATER YI
1501069
4113
33500 Jan
953 Sep
972 Sep
36400 Jan
27.17 Jan
945 cSep
1.38
18.76 | 29
16
13
29
29 | 3022
5102
1151
78700
179
238
89300
34.94
176
1.02
13.79 | 1963 - 1998
1987
1981
Sep 8 1996
aSep 8 1965
Sep 5 1965
Sep 7 1996
Sep 7 1996 | a Also July 7, 1970. b Also Sept. 9, 1965. c Also Sept. 16, 1998. ## 02071530 SMITH RIVER AT SMITH RIVER CHURCH NEAR WOOLWINE, VA LOCATION.--Lat 36°46'42", long 80°14'58", Patrick County, Hydrologic Unit 03010103, on left bank 10 ft downstream from bridge on State Highway 708, 119 miles southeast of Woolwine, and 29 miles upstream from Philpott Dam. DRAINAGE AREA. -- 26.7 mi². PERIOD OF RECORD. -- October 1994 to current year. GAGE.--Water-stage recorder. Elevation of gage is 210 ft above sea level, from topographic map. REMARKS.--Records good. Several observations of water temperature were made during the year. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,150 $\rm ft^3/s$, Aug. 17, gage height, 7.68 $\rm ft$; minimum, 8.8 $\rm ft^3/s$, Sept. 27-29, gage height, 2.42 $\rm ft$. | | | DISCHAF | RGE, IN CU | BIC FEET | | ND, WATER
LY MEAN V | | OBER 1997 | TO SEPTEM | MBER 1998 | | | |-------|------|---------|------------|----------|------|------------------------|------|-----------|-----------|-----------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e15 | 25 | 16 | 18 | 64 | 77 | 59 | 75 | 45 | 29 | 17 | 17 | | 2 | e14 | 37 | 14 | 18 | 57 | 73 | 55 | 62 | 44 | 27 | 15 | 17 | | 3 | e15 | 22 | 14 | 21 | 68 | 69 | 54 | 60 | 43 | 26 | 14 | 17 | | 4 | e14 | 19 | 21 | 24 | 347 | 65 | 63 | 62 | 49 | 27 | 14 | 20 | | 5 | e14 | 17 | 16 | 23 | 197 | 63 | 55 | 60 | 47 | 27 | 13 | 16 | | 6 | e13 | 17 | 15 | 28 | 125 | 61 | 53 | 56 | 45 | 25 | 13 | 15 | | 7 | e13 | 16 | 14 | 92 | 100 | 60 | 51 | 67 | 43 | 24 | 13 | 14 | | 8 | e12 | 18 | 13 | 326 | 85 | 187 | 51 | 87 | 41 | 26 | 101 | 14 | | 9 | e13 | 17 | 14 | 142 | 75 | 272 | 81 | 66 | 43 | 25 | 46 | 14 | | 10 | e13 | 16 | 17 | 69 | 68 | 143 | 63 | 64 | 46 | 23 | 41 | 14 | | 11 | e14 | 16 | 16 | 52 | 87 | 112 | 59 | 89 | 43 | 22 | 37 | 14 | | 12 | e13 | 16 | 14 | 46 | 98 | 98 | 56 | 68 | 41 | 22 | 26 | 13 | | 13 | e14 | 21 | 14 | 44 | 81 | 89 | 54 | 63 | 39 | 22 | 23 | 12 | | 14 | e13 | 31 | 13 | 39 | 72 | 83 | 55 | 60 | 37 | 21 | 21 | 12 | | 15 | e13 | 22 | 13 | 80 | 66 | 78 | 52 | 57 | 39 | 20 | 21 | 12 | | 16 | 13 | 19 | 14 | 74 | 89 | 76 | 53 | 54 | 39 | 23 | 53 | 12 | | 17 | 14 | 17 | 13 | 55 | 383 | 74 | 175 | 52 | 37 | 29 | 172 | 11 | | 18 | 15 | 16 | 13 | 47 | 193 | 77 | 93 | 50 | 34 | 20 | 45 | 12 | | 19 | 17 | 16 | 13 | 44 | 136 | 111 | 173 | 48 | 36 | 19 | 35 | 13 | | 20 | 15 | 15 | 12 | 40 | 117 | 157 | 154 | 47 | 33 | 18 | 30 | 13 | | 21 | 14 | 17 | 12 | 37 | 101 | 135 | 107 | 47 | 32 | 22 | 27 | 15 | | 22 | 14 | 25 | 28 | 42 | 91 | 105 | 91 | 45 | 31 | 24 | 25 | 16 | | 23 | 14 | 18 | 21 | 130 | 169 | 93 | 82 | 56 | 30 | 21 | 23 | 13 | | 24 | 16 | 16 | 25 | 80 | 123 | 85 | 75 | 71 | 33 | 20 | 22 | 13 | | 25 | 23 | 15 | 37 | 62 | 103 | 80 | 69 | 51 | 32 | 19 | 21 | 13 | | 26 | 32 | 15 | 20 | 53 | 92 | 75 | 65 | 48 | 29 | 18 | 20 | 12 | | 27 | 27 | 15 | 30 | 85 | 89 | 73 | 63 | 85 | 27 | 19 | 20 | 11 | | 28 | 17 | 14 | 25 | 237 | 82 | 72 | 61 | 59 | 27 | 19 | 19 | 10 | | 29 | 16 | 15 | 23 | 125 | | 67 | 59 | 52 | 41 | 17 | 18 | 10 | | 30 | 16 | 18 | 20 | 92 | | 60 | 58 | 49 | 31 | 16 | 18 | 12 | | 31 | 16 | | 16 | 75 | | 56 | | 47 | | 18 | 17 | | | TOTAL | 482 | 561 | 546 | 2300 | 3358 | 2926 | 2239 | 1857 | 1137 | 688 | 980 | 407 | | MEAN | 15.5 | 18.7 | 17.6 | 74.2 | 120 | 94.4 | 74.6 | 59.9 | 37.9 | 22.2 | 31.6 | 13.6 | | MAX | 32 | 37 | 37 | 326 | 383 | 272 | 175 | 89 | 49 | 29 | 172 | 20 | | MIN | 12 | 14 | 12 |
18 | 57 | 56 | 51 | 45 | 27 | 16 | 13 | 10 | | CFSM | .58 | .70 | .66 | 2.78 | 4.49 | 3.54 | 2.80 | 2.24 | 1.42 | .83 | 1.18 | .51 | | IN. | .67 | .78 | .76 | 3.20 | 4.68 | 4.08 | 3.12 | 2.59 | 1.58 | .96 | 1.37 | .57 | e Estimated. # 02071530 SMITH RIVER AT SMITH RIVER CHURCH NEAR WOOLWINE, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1995 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|-----|---| OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|----------|------|-------|-----------|-----------|------|-----------|-----------|------|---------|-----------|--------| | MEAN | 28.7 | 35.1 | 45.7 | 74.3 | 75.1 | 72.8 | 56.3 | 50.6 | 40.5 | 23.2 | 29.7 | 28.5 | | MAX | 49.8 | 54.3 | 95.2 | 86.9 | 120 | 94.4 | 74.6 | 59.9 | 50.8 | 24.5 | 55.1 | 70.0 | | (WY) | 1997 | 1997 | 1997 | 1995 | 1998 | 1998 | 1998 | 1998 | 1996 | 1996 | 1996 | 1996 | | MIN | 15.5 | 18.7 | 17.6 | 54.5 | 55.0 | 52.4 | 32.3 | 37.4 | 30.1 | 22.2 | 13.9 | 13.2 | | (WY) | 1998 | 1998 | 1998 | 1997 | 1995 | 1995 | 1995 | 1995 | 1995 | 1998 | 1995 | 1995 | | | | | | | | | | | | | | | | SUMMARY | STATIST: | ICS | FOR : | 1997 CALE | NDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER Y | EARS 1995 | - 1998 | | ANNUAL | TOTAL | | | 14616 | | | 17481 | | | | | | | ANNUAL TOTAL | 14616 | | 17481 | | | | | | | |--------------------------|-------|--------|-------|------|----|-------|-----|----|------| | ANNUAL MEAN | 40.0 | | 47.9 | | | 46.6 | | | | | HIGHEST ANNUAL MEAN | | | | | | 52.5 | | | 1997 | | LOWEST ANNUAL MEAN | | | | | | 37.0 | | | 1995 | | HIGHEST DAILY MEAN | 222 | Apr 29 | 383 | Feb | 17 | 669 | Dec | 1 | 1996 | | LOWEST DAILY MEAN | 12 | Oct 8 | 10 | Sep | 28 | 8.1 | Aug | 25 | 1995 | | ANNUAL SEVEN-DAY MINIMUM | 13 | Dec 15 | 12 | Sep | 24 | 9.6 | Aug | 20 | 1995 | | INSTANTANEOUS PEAK FLOW | | | 1150 | Aug | 17 | 1420 | Aug | 12 | 1996 | | INSTANTANEOUS PEAK STAGE | | | 7.68 | Aug | 17 | 8.45 | Aug | 12 | 1996 | | INSTANTANEOUS LOW FLOW | | | 8.8 | aSep | 27 | 4.6 | Aug | 22 | 1995 | | ANNUAL RUNOFF (CFSM) | 1.50 | | 1.79 | | | 1.74 | | | | | ANNUAL RUNOFF (INCHES) | 20.36 | | 24.36 | | | 23.70 | | | | | 10 PERCENT EXCEEDS | 73 | | 92 | | | 81 | | | | | 50 PERCENT EXCEEDS | 31 | | 31 | | | 38 | | | | | 90 PERCENT EXCEEDS | 14 | | 13 | | | 15 | | | | a Also Sept. 28, 29, 1998. ## 02072000 SMITH RIVER NEAR PHILPOTT, VA LOCATION.--Lat 36°46'50", long 80°01'30", Franklin County, Hydrologic Unit 03010103, on left bank 900 ft down-stream from Philpott Dam, 1.3 mi southwest of Philpott (corrected), 11.6 mi upstream from Reed Creek, and at mile 44.1. DRAINAGE AREA. -- 216 mi². PERIOD OF RECORD. -- August 1946 to current year. REVISED RECORDS.--WSP 1553: 1953(M), 1955-56(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 804.27 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to Oct. 8, 1952, at site 1.9 mi downstream at different datum. REMARKS.--No estimated daily discharges. Records good. Since August 1950, flow regulated by Philpott Lake (station 02071900) 0.2 mi upstream. Maximum discharge, 17,000 ft³/s, at site then in use, from rating curve extended above 9,700 ft³/s on basis of slope-area measurements at gage heights 18.2 ft and 20.3 ft. Minimum discharge observed, 2.3 ft³/s, result of repairs at dam, but may have been less during periods of estimated record. Minimum daily discharge, 20 ft³/s, caused by turbines being shut down for repair at Philpott Dam. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,420 ft^3/s , Oct. 2, gage height, 5.10 ft ; minimum daily, 45 ft^3/s , Jan. 10. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | | DISCHA | KGE, IN C | OBIC PEE | I PER | | D, WAIER
Y MEAN V | | OBER | . 1997 10 |) SEPIE | MBEK 19 | 98 | | | |--------|-------|--------|-----------|----------|-------|------|----------------------|-------|------|-----------|---------|---------|------|------|-------| | | | | | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | | FEB | MAR | APR | | MAY | JUN | JU | L | AUG | SEP | | 1 | 218 | 55 | 165 | 165 | | 52 | 52 | 312 | | 555 | 454 | 35 | 7 | 58 | 267 | | 2 | 218 | 55 | 164 | 165 | | 666 | 756 | 351 | | 54 | 455 | 35 | 8 | 58 | 280 | | 3 | 225 | 227 | 165 | 53 | | 616 | 756 | 352 | | 55 | 455 | 20 | 6 | 317 | 283 | | 4 | 53 | 226 | 165 | 53 | | 617 | 759 | 53 | | 568 | 456 | 5 | | 317 | 213 | | 5 | 53 | 226 | 165 | 213 | | 611 | 759 | 53 | | 806 | 456 | 5 | 7 | 318 | 57 | | 6 | 217 | 226 | 53 | 160 | | 756 | 762 | 453 | | 807 | 53 | 36 | 7 | 318 | 57 | | 7 | 219 | 225 | 53 | 172 | | 756 | 53 | 453 | | 812 | 53 | 36 | 0 | 318 | 266 | | 8 | 218 | 55 | 165 | 173 | | 756 | 53 | 453 | | 905 | 203 | 36 | 3 | 59 | 268 | | 9 | 53 | 55 | 165 | 179 | | 757 | 304 | 453 | | 1170 | 204 | 25 | 9 | 58 | 265 | | 10 | 383 | 168 | 165 | 45 | | 756 | 970 | 454 | | 816 | 305 | 20 | 8 | 371 | 265 | | 11 | 53 | 167 | 165 | 49 | | 763 | 1290 | 53 | | 60 | 294 | 5 | 7 | 369 | 265 | | 12 | 53 | 168 | 165 | 220 | | 761 | 1290 | 53 | | 63 | 254 | 5 | 7 | 370 | 57 | | 13 | 223 | 167 | 53 | 181 | | 763 | 1200 | 402 | | 63 | 53 | 26 | | 266 | 57 | | 14 | 222 | 168 | 53 | 189 | | 52 | 52 | 403 | | 64 | 53 | 25 | | 214 | 260 | | 15 | 328 | 55 | 166 | 182 | | 53 | 52 | 404 | | 167 | 254 | 36 | 2 | 58 | 253 | | 16 | 57 | 55 | 165 | 179 | | 360 | 394 | 403 | | 55 | 254 | 36 | 2 | 61 | 254 | | 17 | 274 | 168 | 165 | 52 | | 360 | 150 | 405 | | 55 | 254 | 31 | 4 | 368 | 254 | | 18 | 53 | 166 | 165 | 52 | | 945 | 150 | 693 | | 558 | 254 | 5 | 8 | 367 | 255 | | 19 | 53 | 168 | 166 | 234 | | 1250 | 150 | 1250 | | 558 | 255 | 5 | 8 | 368 | 50 | | 20 | 222 | 167 | 53 | 190 | : | 1250 | 913 | 1250 | | 556 | 53 | 26 | 1 | 264 | 50 | | 21 | 222 | 167 | 53 | 196 | | 669 | 62 | 1280 | | 559 | 53 | 26 | 2 | 211 | 256 | | 22 | 222 | 55 | 166 | 181 | | 660 | 1260 | 1280 | | 306 | 406 | 41 | | 57 | 256 | | 23 | 222 | 55 | 165 | 197 | | 758 | 1040 | 1190 | | 55 | 406 | 31 | | 58 | 256 | | 24 | 224 | 167 | 165 | 52 | | 757 | 649 | 764 | | 55 | 407 | 31 | | 395 | 256 | | 25 | 53 | 166 | 166 | 52 | | 755 | 656 | 54 | | 205 | 407 | 5 | 8 | 383 | 256 | | 26 | 54 | 165 | 165 | 235 | | 757 | 405 | 54 | | 204 | 407 | 5 | | 386 | 50 | | 27 | 223 | 166 | 53 | 182 | | 760 | 353 | 354 | | 461 | 55 | 36 | | 281 | 51 | | 28 | 223 | 166 | 53 | 173 | | 52 | 53 | 353 | | 456 | 56 | 36 | | 229 | 313 | | 29 | 223 | 53 | 165 | 579 | | | 53 | 552 | | 456 | 257 | 36 | | 50 | 324 | | 30 | 223 | 53 | 165 | 580 | | | 326 | 503 | | 53 | 358 | 26 | | 50 | 271 | | 31 | 223 | | 165 | 52 | | | 353 | | | 53 | | 21 | 3 | 358 | | | TOTAL | 5507 | 4180 | 4222 | 5385 | 18 | 8068 | 16075 | 15087 | 1 | 1610 | 7884 | 764 | | 7355 | 6265 | | MEAN | 178 | 139 | 136 | 174 | | 645 | 519 | 503 | | 375 | 263 | 24 | | 237 | 209 | | MAX | 383 | 227 | 166 | 580 | | 1250 | 1290 | 1280 | | 1170 | 456 | 41 | | 395 | 324 | | MIN | 53 | 53 | 53 | 45 | | 52 | 52 | 53 | | 53 | 53 | 5 | | 50 | 50 | | MIN | 53 | 53 | 53 | 45 | | 52 | 52 | 53 | | 53 | 53 | 5 | | 50 | 50 | | (†) | -2687 | -630 | -343 | +10386 | + : | 2037 | -176 | -116 | | +630 | -1124 | -314 | | -862 | -4089 | | MEAN‡ | 91 | 118 | 125 | 509 | | 718 | 513 | 499 | | 395 | 225 | 14 | | 209 | 73 | | CFSM‡ | . 42 | . 55 | .58 | 2.36 | | 3.32 | 2.37 | 2.31 | | 1.83 | 1.04 | . 6 | | .97 | .34 | | IN.‡ | . 49 | .61 | .67 | 2.72 | | 3.46 | 2.74 | 2.58 | | 2.11 | 1.16 | .7 | / | 1.12 | .37 | | CAL YR | 1997 | TOTAL | 104991 | MEAN | 288 | MAX | 676 | MIN | 46 | MEAN‡ | 258 | CFSM‡ | 1.19 | IN.‡ | 16.23 | | WTR YR | 1998 | TOTAL | 109282 | MEAN | 299 | MAX | 1290 | MIN | 45 | MEAN‡ | 299 | CFSM‡ | 1.38 | IN.‡ | 18.80 | [†] Total change in contents, equivalent in cubic feet per second, per month, in Philpott Lake; provided by U.S. Army Corps of Engineers. tagineers. Adjusted for monthly change in contents. ## 02072000 SMITH RIVER NEAR PHILPOTT, VA--Continued | STATISTICS OF MONTHLY MEAN | DATA FOR WATER | YEARS 1947 | - 1950, | BY WATER | YEAR (WY) | [UNREG | GULATED] | | | |---|--|--|--|--|--|---|--|--|--| | OCT NOV
MEAN 326 318
MAX 522 371
(WY) 1948 1948
MIN 183 202
(WY) 1949 1947 | DEC JAN 292 324 507 403 1949 1949 166 238 1947 1948 | FEB
339
406
1948
209
1947 | MAR
397
474
1949
303
1950 | APR
381
490
1948
244
1950 | MAY
442
631
1949
195
1947 | JUN
381
562
1949
284
1948 | JUL
385
915
1949
158
1947 | AUG
338
759
1949
141
1947 | SEP
331
531
1949
166
1947 | | SUMMARY STATISTICS | WATER Y | EARS 1947 - | 1950 | | | | | | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW
FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 354
517
237
44500
93
104
17000
20.3
21
1.6
22.3
560
274
148 | May 31
Sep 5
Sep 3
Jun 29
0 Jun 29
Aug 15 | 1949
1947
1950
1947
1947
1949
1949 | | | | | | | | STATISTICS OF MONTHLY MEAN | | | | | , , | | , | | | | OCT NOV MEAN 238 228 MAX 755 835 (WY) 1990 1986 MIN 96.1 70.5 (WY) 1952 1953 | DEC JAN 250 277 586 526 1997 1991 88.0 71.1 1996 1953 | FEB
273
718
1973
58.2
1953 | MAR
342
946
1993
60.5
1953 | APR
389
1194
1983
69.2
1969 | MAY
313
796
1978
61.3
1964 | JUN
283
827
1972
67.2
1964 | JUL
243
646
1972
82.2
1964 | AUG
256
479
1970
77.4
1964 | SEP
261
724
1979
126
1956 | | SUMMARY STATISTICS | FOR 1997 CALE | NDAR YEAR | F | OR 1998 WA | ATER YEAR | | WATER YEA | RS 1951 | - 1998 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 104991
288
676
46
133
18.0
651
226
52 | May 7
cMar 16
Nov 29
3 | | 109282
299
1290
45
75
1420
5.10
17
1.39
18.82
756
223
53 | bMar 11
Jan 10
May 11
Oct 2
Oct 2
fSep 15 | | 279 441 123 5710 d20 42 9500 15.00 g2.3 1.29 17.57 657 208 | Apr 2
Mar 2
Mar
Dec
Dec
Dec 1 | 1973
1953
4 1992
4 1984
2 1953
7 1950
7 1950
6 1985 | - a No gage-height record; discharge computed on basis of records for stations at Bassett and at Martinsville. b Also Mar. 12, 1998. c Also May. 10, 11, 17, 25, and Sept. 20, 21, 1997. d Caused by turbines being shut down for repair at Philpott Dam. f Also Sept. 16, 17, 18, 21, 22, 23, 24, 25 and 28, 1998. g Result of repair at dam, but may have been less during periods of estimated record. ## 02072500 SMITH RIVER AT BASSETT, VA LOCATION.--Lat 36°46'12", long 80°00'04", Henry County, Hydrologic Unit 03010103, on left bank 25 ft upstream from bridge on State Highway 666 at north edge of North Bassett, 1.0 mi northwest of Bassett, 3.0 mi downstream from Town Creek, 5.6 mi upstream from Reed Creek, 6.2 mi downstream from Philpott Dam, and at mile 38.1. DRAINAGE AREA. -- 259 mi². PERIOD OF RECORD. -- April 1939 to current year. REVISED RECORDS. -- WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 753.09 ft above sea level (levels by U.S. Army Corps of Engineers). REMARKS.--No estimated daily discharge. Records good. Since August 1950, flow regulated by Philpott Lake (station 02071900) 6.2 mi upstream. Diversion upstream from station by Henry County Public Service Authority, since 1985, has averaged less than 1.0 ft³/s. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Minimum gage height, 1.06 ft, Sept. 18, 26, 1953. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Oct. 19, 1937, reached a stage of about 22.9 ft, from information by local residents, discharge, $38,000 \text{ ft}^3/\text{s}$, from rating curve extended above 23,000 ft³/s on basis of backwater studies and records for station at Martinsville. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,340 $\rm ft^3/s$, Apr. 19, gage height, 6.11 ft; minimum, 55 $\rm ft^3/s$, Sept. 28; minimum daily, 58 $\rm ft^3/s$, Sept. 27. | | | DI | SCHARGE, I | N CUBIC F | EET PER S | ECOND, WAT | | OCTOB | ER 1997 | TO SEP | TEMBER | 1998 | | | |---------|-------|-------|------------|-----------|-----------|--------------|-------|-------|---------|--------|--------|------|------|----------------------| | DAY | OCT | NO | V DEC | JAN | FEB | MAR | APR | | MAY | JUN | JU | L | AUG | SEP | | 1 | 251 | 9 | 0 200 | 205 | 104 | 109 | 508 | | 716 | e513 | 41 | 9 | 84 | 304 | | 2 | 243 | 10 | 4 196 | 206 | e670 | 881 | 430 | | e148 | e537 | 41 | 7 | 78 | 315 | | 3 | 260 | 26 | | | | 884 | 429 | | e119 | e533 | 25 | | 357 | 318 | | 4 | 76 | 25 | | | | 884 | 136 | | 684 | e545 | 8 | | 359 | 252 | | 5 | 73 | 25 | | 263 | | 885 | 116 | | e948 | e539 | 10 | | 358 | 77 | | | , , | 23 | 5 200 | 200 | 01100 | 005 | 110 | | C5 10 | 6557 | | - | 330 | | | 6 | 248 | 25 | 4 77 | 209 | e990 | 884 | 547 | | e940 | e110 | 41 | 9 | 357 | 73 | | 7 | 248 | 25 | 9 74 | 230 | e940 | 104 | 545 | | e986 | e97 | 42 | 3 | 358 | 298 | | 8 | 246 | 8 | 7 194 | 509 | e905 | 224 | 544 | е | 1000 | 263 | 42 | 5 | 130 | 301 | | 9 | 72 | 7 | 8 197 | 271 | e900 | 750 | 551 | | 1490 | 265 | 31 | 5 | 98 | 300 | | 10 | 411 | 19 | | | | 1080 | 547 | | e975 | e384 | 25 | | 424 | 298 | | | | | | | | | | | | | | | | | | 11 | 73 | 19 | 4 204 | 88 | 902 | 1520 | 104 | | e122 | e361 | 8 | 6 | 424 | 299 | | 12 | 70 | 19 | 4 201 | 271 | 947 | 1510 | 101 | | e116 | 324 | 8 | 3 | 421 | 73 | | 13 | 239 | 19 | 6 82 | 231 | 910 | 1500 | 482 | | e114 | 100 | 30 | 5 | 307 | 69 | | 14 | 245 | 20 | 8 82 | 234 | 123 | 141 | 488 | | e111 | 96 | 30 | 5 | 249 | 285 | | 15 | 373 | 8 | | | | 108 | 486 | | e254 | 316 | 41 | | 81 | 278 | | | | | | | | | | | | | | | | | | 16 | 82 | 7 | | 302 | 454 | 498 | 487 | | e108 | 319 | 41 | 7 | 150 | 279 | | 17 | 303 | 19 | 0 199 | 109 | 880 | 215 | 907 | | e108 | 321 | 41 | 0 | 527 | 277 | | 18 | 79 | 19 | 3 198 | 95 | 1110 | 217 | 763 | | e636 | 313 | 8 | 3 | 436 | 284 | | 19 | 76 | 19 | 5 198 | 293 | 1490 | 247 | 1830 | | e652 | 313 | 7 | 8 | 425 | 64 | | 20 | 248 | 19 | | | | 1070 | 1690 | | e650 | 95 | 29 | | 309 | 63 | | | | | | | | | | | | | | | | | | 21 | 250 | 19 | | 244 | 893 | 272 | 1540 | | e649 | 90 | 29 | | 251 | 278 | | 22 | 250 | 9 | 0 215 | 230 | 785 | 1380 | 1520 | | e381 | 468 | 45 | 5 | 83 | 286 | | 23 | 251 | 8 | 2 214 | 432 | 1050 | 1350 | 1500 | | e97 | 477 | 35 | 4 | 81 | 277 | | 24 | 254 | 19 | 6 212 | 147 | 955 | 782 | 942 | | e97 | 476 | 34 | 9 | 446 | 274 | | 25 | 88 | 19 | 5 227 | 119 | 914 | 783 | 122 | | e252 | 476 | 7 | 4 | 433 | 275 | | 26 | 89 | 19 | 6 215 | 306 | 899 | 501 | 115 | | e251 | 475 | 7 | 1 | 438 | 64 | | 27 | 269 | 19 | | | | | 444 | | e552 | 96 | 40 | | 323 | 58 | | 28 | 253 | 19 | | | | | 426 | | e533 | 85 | 40 | | 265 | 322 | | 29 | 253 | 7 | | 781 | | 109 | 659 | | e531 | 308 | 40 | | 71 | 343 | | | | | | | | | | | | | | | | | | 30 | 253 | 7 | | | | 422 | 605 | | e94 | 419 | 30 | | 69 | 302 | | 31 | 256 | | - 208 | 122 | | 358 | | | e94 | | 25 | 0 | 396 | | | TOTAL | 6379 | 507 | | 8854 | 23699 | 20217 | 19564 | | 4408 | 9714 | 894 | 5 | 8788 | 6986 | | MEAN | 206 | 16 | 9 174 | 286 | 846 | 652 | 652 | | 465 | 324 | 28 | 9 | 283 | 233 | | MAX | 411 | 26 | 5 227 | 966 | 1490 | 1520 | 1830 | | 1490 | 545 | 45 | 5 | 527 | 343 | | MIN | 70 | 7 | | | | | 101 | | 94 | 85 | 7 | | 69 | 58 | | (†) | -2687 | -63 | | | | | -116 | | +630 | -1124 | -314 | | -862 | -4098 | | MEAN‡ | 119 | 14 | | | | 646 | 648 | | 485 | 286 | 18 | | 256 | 96 | | CFSM‡ | .46 | .5 | | | | | 2.50 | | 1.87 | 1.11 | .7 | | .99 | .37 | | IN.‡ | .53 | .6 | | | | 2.88 | 2.30 | | 2.16 | 1.23 | . 8 | | | .41 | | T1/ · † | .53 | . 6 | · ./2 | 2.76 | 3.70 | ∠.88 | 2.79 | | ∠.⊥0 | 1.∠3 | .8 | ی | 1.14 | .41 | | CAL YR | 1997 | TOTAL | 128629 | MEAN | 352 MAX | 1100 | MIN | 63 | MEAN‡ | 323 | CFSM‡ | 1.25 | IN.‡ | 16.93 | | WTR YR | | | 138017 | MEAN | 378 MAX | | MIN | 58 | MEAN‡ | 378 | | 1.46 | IN.‡ | 19.82 | | | | | | | | - | | | | | | | | - · · - - | [†] Total change in contents, equivalent in cubic feet per second, per month, in Philpott Lake; provided by U.S. Army Corps of Engineers. [‡] Adjusted for monthly change in contents. e Estimated. # 02072500 SMITH RIVER AT BASSETT, VA--Continued | STATISTICS OF MONTHLY MEA | N DATA FOR WATER YEA | ARS 1940 - 1950, | BY WATER YEAR (WY) | [UNREGULATED] | | |---|---|--|---|--|---| | OCT NOV MEAN 283 280 MAX 616 474 (WY) 1948 1948 MIN 103 124 (WY) 1942 1942 | DEC JAN 324 364 579 752 1949 1946 157 182 1940 1940 | FEB MAR
397 415
599 566
1946 1944
223 201
1941 1940 | APR MAY
394 423
593 764
1949 1949
183 171
1942 1941 | JUN JUL
352 403
656 1071
1949 1949
160 183
1941 1944 | AUG SEP
386 370
1262 970
1940 1945
129 133
1944 1939 | | SUMMARY STATISTICS | WATER YEARS | 3 1940 - 1950 | | | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 371
604
270
11600
82
85
26600
18.28
58
1.43
19.47
601
264 | 1949
1944
Aug 14 1940
aSep 8 1944
Sep 5 1944
Aug 14 1940
Aug 14 1940
Jan 3 1940 | | | | | STATISTICS OF MONTHLY MEA | | | BY WATER YEAR (WY) | [REGULATED, UNAI | DJUSTED] | | MEAN 281 272 MAX 944 996 (WY) 1990 1986 MIN 121 98.4 (WY) 1952 1953 | 724 655
1997 1991 | 345 421
846 1197
1998 1993 | 1474
902
1987 1978
98.6 86.7 | JUN JUL
336 285
1005 759
1992 1972
84.4 138
1964 1981 | AUG SEP 297 309 568 912 1994 1979 124 157 1953 1967 | | SUMMARY STATISTICS | | | OR 1998 WATER YEAR | WATER YI | EARS 1951 - 1998 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 1100
63
161 | Apr 29
Sep 21
Nov 15 | 138017
378
1830 Apr 19
58 Sep 27
133 May 11
3340 Apr 19
6.11 Apr 19
55 Sep 28
1.46
19.82
900
265
83 | 335
523
150
6080
44
67
17700
15.20
19
1.30
17.60 | 1987
1953
Apr 24 1992
Aug 23 1964
Oct 6 1980
Sep 7 1987
Jul 19 1956 | | 50 PERCENT EXCEEDS | 284 | | 265 | 251
76 | | a Also Sept. 9, 1944. ### 02075045 DAN RIVER AT SEWAGE TREATMENT PLANT, NEAR DANVILLE, VA LOCATION.--Lat 36°33'45", long 79°22'12", Pittsylvania County, Hydrologic Unit 03010104, on right bank at footbridge at Danville sewage treatment plant, 0.1 mi downstream from Pumpkin Creek, and 0.6 mi southeast of DRAINAGE AREA. -- 2,105 mi², approximately. PERIOD OF RECORD. -- October 1995 to current year. GAGE.--Water-stage recorder. Datum of gage is 365.19 ft above sea level. REMARKS .-- No estimated daily discharges. Records good. Diurnal fluctuation caused by mills and hydroelectric generating facility at School-field Dam 5.2 mi upstream. Since August 1950, flow regulated by Philpott Lake (station 02071900) 76.6 mi upstream. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 28,200 ft³/s, Jan. 28, gage height, 21.91 ft; minimum, 175 ft³/s, Sept. 28. | | | DISCH | ARGE, IN | CUBIC F | EET P | | ND, WATER
LY MEAN V | | CTOBI | ER 1997 T | O SEPTE | MBER 19 | 98 | | | |--------|-------|-------|----------|---------|-------|--------|------------------------|----------|-------|-----------|---------|---------|------|-------|-------| | DAY | OCT | NOV | DEC | J | AN | FEB | MAR | AP | R | MAY | JUN | JU | L | AUG | SEP | | 1 | 933 | 1220 | 1300 | 14 | 40 | 2830 | 2460 | 225 | 0 | 2920 | 1940 | 166 | 0 | 1080 | 608 | | 2 | 710 | 1160 | 1300 | 13 | 50 | 2450 | 2280 | 238 | 0 | 4140 | 1920 | 157 | 0 | 823 | 814 | | 3 | 880 | 1210 | 1190 | 12 | 70 | 2840 | 2670 | 194 | 0 | 3080 | 2320 | 137 | 0 | 613 | 878 | | 4 | 734 | 1390 | 1110 | | | 12000 | 2570 | 238 | | 2810 | 2300 | 118 | | 774 | 1100 | | 5 | 640 | 1160 | 1290 | | | 19200 | 2370 | 225 | | 3990 | 2760 | 121 | | 956 | 1060 | | | | | | | | | | | | | | | | | | | 6 | 704 | 1030 | 1270 | 15 | 70 | 9340 | 2500 | 211 | 0 | 3460 | 2540 | 117 | 0 | 953 | 850 | | 7 | 763 | 1090 | 1030 | 17 | 20 | 4830 | 2490 | 244 | 0 | 4820 | 2070 | 128 | 0 | 674 | 336 | | 8 | 785 | 1280 | 887 | 48 | 20 | 3790 | 2910 | 223 | 0 | 25100 | 1910 | 161 | 0 | 1260 | 625 | | 9 | 760 | 998 | 1020 | 70 | 50 | 3330 | 12600 | 251 | 0 | 10900 | 1900 | 171 | 0 | 1530 | 878 | | 10 | 726 | 861 | 1050 | 32 | 80 | 3040 | 10400 | 307 | 0 | 5240 | 1900 | 160 | 0 | 2100 | 823 | | | | | | | | | | | _ | | | | _ | | | | 11 | 771 | 847 | | | | 2860 | 5250 | 286 | | 4570 | 1960 | 120 | | 1850 | 802 | | 12 | 728 | 1020 | 1170 | | | 4390 | 4090 | 209 | | 4380 | 2060 | 118 | | 1710 | 751 | | 13 | 692 | 1050 | | | | 4640 | 3670 | 191 | | 3390 | 1990 | 117 | | 1450 | 756 | | 14 | 695 | 1220 | 905 | | | 3420 | 3420 | 205 | | 2870 | 1870 | 110 | | 1110 | 668 | | 15 | 889 | 1440 | 803 | 49 | 80 | 2430 | 2400 | 220 | 0 | 2570 | 1560 | 118 | U | 1090 | 387 | | 16 | 1090 | 1160 | 1020 | 145 | 00 | 2320 | 2250 | 217 | 0 | 2490 | 1740 | 109 | 0 | 1230 | 583 | | 17 | 1040 | 1040 | 1010 | 60 | 90 | 12400 | 2300 | 1620 | 0 | 2330 | 1910 | 125 | 0 | 2140 | 700 | | 18 | 989 | 1020 | 1010 | 31 | 40 | 16700 | 2210 | 2470 | 0 | 2460 | 1930 | 168 | 0 | 2510 | 895 | | 19 | 1180 | 1020 | 1010 | 24 | 50 | 6770 | 3460 | 957 | 0 | 2460 | 1700 | 136 | 0 | 1770 | 1180 | | 20 | 1290 | 1020 | 1000 | 25 | 30 | 4660 | 4680 | 1880 | 0 | 2380 | 1510 | 107 | 0 | 1570 | 440 | | | | | | | | | | | | | | | | | | | 21 | 1270 | 1080 | 610 | | | 4020 | 10900 | 1110 | | 2340 | 1490 | 105 | 0 | 1100 | 579 | | 22 | 1000 | 1570 | 1040 | 18 | 30 | 3210 | 5250 | 566 | 0 | 2200 | 1490 | 106 | 0 | 1060 | 483 | | 23 | 899 | 1370 | 1380 | 51 | 70 | 3930 | 4530 | 497 | 0 | 2270 | 1550 | 106 | 0 | 1120 | 867 | | 24 | 921 | 1200 | 1420 | 71 | 0.0 | 6300 | 3770 | 414 | 0 | 2530 | 1720 | 125 | 0 | 741 | 800 | | 25 | 918 | 1210 | 1650 | 37 | 30 | 4240 | 3190 | 356 | 0 | 2620 | 1670 | 109 | 0 | 827 | 821 | | 26 | 938 | 1030 | 1970 | 27 | 50 | 3480 | 3010 | 274 | Ω | 2420 | 1680 | 116 | Λ | 1190 | 586 | | 27 | 1310 | 1060 | 2020 | | | 3240 | 2780 | 262 | | 2650 | 1670 | 105 | | 1090 | 748 | | 28 | 1560 | 1080 | 2640 | | | 3150 | 2460 | 284 | | 3120 | 1580 | 80 | | 1110 | 453 | | 29 | 1300 | 1050 | 2210 | | | | 2070 | 255 | | 2610 | 1500 | 113 | | 876 | 408 | | 30 | 1020 | 1000 | 1840 | | | | 2050 | 278 | | 2470 | 1190 | 115 | | 755 | 510 | | 31 | 1050 | | 1680 | | | | 2100 | | | 1880 | | 111 | | 608 | TOTAL | 29185 | 33886 | 40145 | | | 155810 | 119090 | 14907 | 0 | 123470 | 55330 | 3855 | | 37670 | 21389 | | MEAN | 941 | 1130 | 1295 | | | 5565 | 3842 | 496 | | 3983 | 1844 | 124 | | 1215 | 713 | | MAX | 1560 | 1570 | 2640 | 282 | 0.0 | 19200 | 12600 | 2470 | 0 | 25100 | 2760 | 171 | 0 | 2510 | 1180 | | MIN | 640 | 847 | 610 | | | 2320 | 2050 | 191 | 0 | 1880 | 1190 | 80 | 6 | 608 | 336 | | (†) | -2687 | -630 | -343 | | | +2037 | -176 | -11 | 6 | +630 | -1124 | -314 | 6 | -862 | -4089 | | MEAN‡ | 855 | 1109 | 1284 | 52 | 59 | 5637 | 3836 | 496 | 5 | 4003 | 1807 | 114 | 2 | 1187 | 577 | | CFSM‡ | .41 | .53 | .61 | 2. | 50 | 2.68 | 1.82 | 2.3 | 6 | 1.90 | .86 | .5 | 4 | .56 | .27 | | IN.‡ | .47 | .59 | .70 | 2. | 88 | 2.79 | 2.10 | 2.6 | 3 | 2.19 | .96 | .6 | 3 | .65 | .31 | | CAL YR | 1007 | TOTAL | 840429 | MEAN | 2303 | MAX | 26900 | MIN | 423 | MEAN‡ | 2273 | CFSM‡ | 1.08 | IN.‡ | 14.78 | | WTR YR | | TOTAL | 956231 | MEAN | 2620 | MAX | 28200 | MIN | 336 | | 2619 | CFSM‡ | 1.24 | | 16.89 | | WIK IK | エフフ℧ | IUIAL | J30∠3⊥ | MEAN | 2020 | AAM | ∠0∠00 | IAI T IA | 330 | MEANI | 701A | CL DM+ | 1.24 | TN. 1 | 10.09 | [†] Total change in contents, equivalent in cubic feet per second, per month, in Philpott Lake; provided by U.S. Army Corps of Engineers. ‡ Adjusted for monthly change in contents. # 02075045 DAN RIVER AT SEWAGE TREATMENT PLANT, NEAR DANVILLE, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1996 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|-----|---| OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|------------|-----------|------|------------|-----------|------|---------|-----------|---------| | MEAN | 1689 | 1726 | 2358 | 4101 | 4119 | 3788 | 3960 | 3170 | 2458 | 1357 | 1781 | 3304 | | MAX | 2418 | 2120 | 4516 | 4924 | 5565 | 4776 | 4969 | 3983 | 3289 | 1437 | 3027 | 8158 | | (WY) | 1997 | 1996 | 1997 | 1998 | 1998 | 1997 | 1998 | 1998 | 1996 | 1996 | 1996 | 1996 | | MIN | 941 | 1130 | 1263 | 2870 | 3189 | 2746 | 2213 | 2635 | 1844 | 1244 | 1100 | 713 | | (WY) | 1998 | 1998 | 1996 | 1997 | 1996 | 1996 | 1996 | 1997 | 1998 | 1998 | 1997 | 1998 | | SUMMARY | Y STATIST | ICS | FOR I | 1997 CALEI | NDAR YEAR | F | FOR 1998 W | ATER YEAR | | WATER Y | EARS 1994 | - 1998 | | ANNUAL | TOTAL | | | 840429 | | | 956231 | | | | | | | ANNUAL | MEAN | | | 2303 | | | 2620 | | | 2808 | | | | HIGHEST | r annual i | MEAN | | | | | | | | 3035 | | 1996 | | LOWEST | ANNUAL MI | EAN | | | | | | | | 2620 | | 1998 | | HIGHEST | r DAILY M | EAN | | 26900 | Apr 29 | | 28200 | Jan 28 | | 41500 | Sep | 7 1996 | | LOWEST | DAILY ME | AN | | 423 | Sep 8 | | 336 | Sep 7 | | 311 | Oct | 2 1995 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 702 | Sep 3 | | 618 | Sep 24 | | 618 | Sep : | 24 1998 | | INSTANT | CANEOUS PI | EAK FLOW | | | | | 30500 | Jan 28 | | 47100 | Sep | 6 1996 | | INSTANT | TANEOUS PI | EAK STAGE | | | | | 21.9 | 1 Jan 28 | | 28.6 | 5 Sep | 6 1996 | | INSTANT | CANEOUS LO | OW FLOW | | | | | 175 | Sep 28 | | 70 | Oct 1 | 18 1995 | | ANNUAL | RUNOFF (| CFSM) | | 1.09 | 9 | | 1.2 | 4 | | 1.3 | 3 | | | ANNUAL | RUNOFF (| INCHES) | | 14.8 | 5 | | 16.9 | 0 | | 18.1 | 2 | | | 10 PERG | CENT EXCE | EDS | | 3840 | | | 4650 | | | 4530 | | | | 50 PERG | CENT EXCE | EDS | | 1800 | | | 1620 | | | 1970 | | | | 90 PERG | CENT EXCE | EDS | | 887 | | | 794 | | | 978 | | | | | | | | | | | | | | | | | #### 02075500 DAN RIVER AT PACES, VA LOCATION.--Lat 36°38'32", long 79°05'23", Halifax County, Hydrologic Unit 03010104, on right bank 100 ft upstream from bridge on State Highway 658, 0.5 mi southeast of Paces, 0.5 mi upstream from Big Toby Creek, 2.7 mi upstream from Birch Creek, and at mile 36.0. DRAINAGE AREA. -- 2,550 mi², approximately. PERIOD OF RECORD. -- November 1950 to current year. GAGE.--Water-stage recorder. Datum of gage is 322.48 ft above sea level. REMARKS.--Records fair. Diurnal fluctuation caused by mills 23 mi upstream at Danville. Since August 1950, flow regulated by Philpott Lake (station 02071900) 101.4 mi upstream. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, 64,800 ft³/s, from rating curve extended above 32,000 ft³/s. Minimum gage height, 1.71 ft, Sept. 4, 1956. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. Analytical results of
water samples collected for the Albemarle-Pamlico Sound NAWQA are given in the section "Analyses of Samples Collected at Water-Quality Miscellaneous Sampling sites". EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 16, 1940, reached a stage of 32.3 ft, from floodmark. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 30,300 $\mathrm{ft^3/s}$, Jan. 29, gage height, 24.71 ft ; minimum, 507 $\mathrm{ft^3/s}$, Sept. 29, gage height, 2.21 ft ; minimum daily, 574 $\mathrm{ft^3/s}$, Sept. 21. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAY | OCT | NO | V DEC | J | AN | FEB | MAR | API | Я. | MAY | JUN | JU | L | AUG | SEP | |--------|-------|-------|---------|-------|------|--------|--------|-------|-----|--------|-------|-------|------|-------|-------| | 1 | 1350 | 159 | 0 1690 | 213 | 3.0 | 4680 | 3810 | 324 |) | 3470 | 2350 | 164 | 0 | 1360 | 840 | | 2 | 1360 | 166 | | | | 3780 | 3250 | 336 | | 4730 | 2400 | 232 | | 1320 | 868 | | 3 | e1120 | 158 | | | | 3680 | 3380 | 323 | | 4640 | 2560 | 155 | | 857 | 1290 | | 4 | 1060 | 170 | | | | 11500 | 3530 | 343 | | 3540 | 2930 | 164 | | 1030 | 1190 | | 5 | 1080 | | | | | 20000 | | | | 4880 | 3340 | | | 956 | | | 5 | 1080 | 167 | 0 1/40 | 19. | 30 | 20000 | 3400 | 358 | J | 4880 | 3340 | 151 | U | 956 | 1340 | | 6 | 972 | 154 | | | | 20300 | 3030 | 309 | | 4780 | 3530 | 148 | 0 | 1220 | 1290 | | 7 | 1000 | 153 | | | 0.0 | 8750 | 3280 | 308 |) | 4820 | 3000 | 151 | 0 | 964 | 836 | | 8 | 1130 | 156 | 0 1480 | 47 | 10 | 5730 | 4040 | 315 |) | 18400 | 2440 | 159 | 0 | 1150 | 631 | | 9 | 1110 | 159 | 0 1300 | 962 | 20 | 4900 | 11000 | 371 |) | 23100 | 2360 | 208 | 0 | 1660 | 1050 | | 10 | 1110 | 137 | 0 1590 | 59 | 70 | 4390 | 15900 | 448 |) | 9340 | 2380 | 231 | 0 | 2300 | 1050 | | 11 | 1070 | 112 | 0 e1620 | 392 | 2.0 | 4050 | 8330 | 410 |) | 6060 | 2390 | 187 | 0 | 2130 | 1030 | | 12 | 1190 | 139 | | | | 5760 | 5880 | 345 | | 6150 | 2480 | 151 | | 2220 | 985 | | 13 | 995 | 141 | | | | 6910 | 5150 | 271 | | 5100 | 2570 | 150 | | 1810 | 944 | | 14 | 986 | 171 | | | | 5110 | 4780 | 265 | | 4040 | 2390 | 134 | | 1570 | 892 | | 15 | 1200 | 204 | | | | 4030 | 3940 | 300 | | 3740 | 2100 | 144 | | 1320 | 820 | | 13 | 1200 | 204 | 0 1100 | 1/: | 90 | 4030 | 3940 | 300 | J | 3/40 | 2100 | 111 | U | 1320 | 020 | | 16 | 1330 | 182 | 0 1420 | 1540 | 0.0 | 3240 | 3050 | 294 |) | 3300 | 1940 | 146 | 0 | 1330 | 650 | | 17 | 1520 | 154 | 0 1440 | 1280 | 0.0 | 12000 | 2970 | 1140 |) | 3190 | 2400 | 144 | 0 | 2130 | 820 | | 18 | 1480 | 144 | 0 1440 | 589 | 90 | 21600 | 3410 | 2290 |) | 3210 | 2340 | 161 | 0 | 3300 | 909 | | 19 | 1530 | 142 | 0 1430 | 424 | 40 | 16900 | 9540 | 2270 |) | 2940 | 2230 | 213 | 0 | 2330 | 1320 | | 20 | 1840 | 141 | | | | 7300 | 9400 | 1570 | | 3220 | 1910 | 135 | | 2110 | 1160 | | | | | | | | | | | - | | | | - | | | | 21 | 1830 | 143 | | | | 5820 | 14800 | 1890 |) | 3040 | 2110 | 132 | 0 | 1470 | 574 | | 22 | 1570 | 223 | | | | 4780 | 10600 | e855 | | 2960 | 1620 | 131 | | 1350 | 845 | | 23 | 1380 | 256 | 0 1680 | 583 | 10 | 4540 | 6920 | 687 |) | 2860 | 1880 | 132 | 0 | 1300 | 1000 | | 24 | 1200 | 195 | 0 1910 | 1080 | 0.0 | 7740 | 5750 | 587 |) | 3080 | 2200 | 133 | 0 | 1290 | 1070 | | 25 | 1400 | 172 | 0 2200 | 734 | 40 | 6260 | 4650 | 484 |) | 3460 | 2070 | 151 | 0 | 819 | 1030 | | 26 | 1160 | 162 | 0 2740 | 484 | 40 | 4960 | 4280 | 399 |) | 3270 | 2020 | 150 | 0 | 1280 | 1010 | | 27 | 1640 | 150 | 0 2960 | 503 | 30 | 4480 | 4030 | 338 |) | 4180 | 2000 | 135 | 0 | 1380 | 646 | | 28 | 2050 | 151 | 0 3940 | 2060 | 0.0 | 4300 | 3670 | 343 |) | 4220 | 1970 | 134 | 0 | 1320 | 987 | | 29 | 1750 | 150 | 0 3760 | 2940 | 0.0 | | 3070 | 320 | | 3750 | 1930 | 105 | | 1300 | 637 | | 30 | 1590 | 151 | | | | | 2870 | 320 | | 3130 | 1480 | 153 | | 952 | 684 | | 31 | 1390 | | | | | | 2860 | | | 3180 | | 140 | | 870 | TOTAL | 41393 | 4862 | | | | 217490 | 174570 | 18813 | | 159780 | 69320 | 4824 | | 46398 | 28398 | | MEAN | 1335 | 162 | 1 1892 | 673 | 34 | 7768 | 5631 | 627 | 1 | 5154 | 2311 | 155 | 6 | 1497 | 947 | | MAX | 2050 | 256 | 0 3940 | 2940 | 0.0 | 21600 | 15900 | 2290 |) | 23100 | 3530 | 232 | 0 | 3300 | 1340 | | MIN | 972 | 112 | 0 1180 | 183 | 10 | 3240 | 2860 | 265 |) | 2860 | 1480 | 105 | 0 | 819 | 574 | | (†) | -2687 | -63 | 0 -343 | +1038 | 36 | +2037 | -176 | -11 | 5 | +630 | -1124 | -314 | 6 | -862 | -4089 | | MEAN‡ | 1249 | 160 | 0 1881 | 706 | 59 | 7840 | 5626 | 626 | 7 | 5175 | 2273 | 145 | 5 | 1469 | 810 | | CFSM‡ | .49 | .6 | | 2. | 77 | 3.07 | 2.21 | 2.4 | | 2.03 | .89 | .5 | 7 | .58 | .32 | | IN.‡ | .56 | .7 | | | | 3.20 | 2.54 | 2.7 | | 2.34 | .99 | .6 | | .66 | .35 | | | | | . 55 | | - | | | | | | | | | | | | CAL YR | 1997 | TOTAL | 1102929 | MEAN | 3022 | MAX | 30000 | MIN | 736 | MEAN‡ | 2992 | CFSM‡ | 1.17 | IN.‡ | 15.93 | | WTR YR | | TOTAL | | MEAN | 3534 | MAX | 29400 | MIN | 574 | MEAN‡ | 3533 | CFSM‡ | 1.39 | | 18.81 | | | | | | | | | | | | | | T | | | | [†] Total change in contents, equivalent in cubic feet per second, per month, in Philpott Lake; provided by U.S. Army Corps of Engineers. ‡ Adjusted for monthly change in contents. e Estimated. # 02075500 DAN RIVER AT PACES, VA--Continued | STATIST | rics of M | MONTHLY MEAN | DATA | FOR WATER | YEARS 1951 | - 1998, | BY WATER | YEAR (WY) | [REGUL | ATED, UNAD | JUSTED] | | |---------|-----------|--------------|------|-------------|------------|---------|-----------|-----------|--------|------------|----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 2050 | 2088 | 2689 | 3484 | 3977 | 4574 | 4089 | 2881 | 2415 | 1882 | 1776 | 1891 | | MAX | 7253 | 6184 | 5734 | 8407 | 9141 | 11190 | 11500 | 6505 | 8987 | 5091 | 4833 | 10200 | | (WY) | 1960 | 1958 | 1997 | 1978 | 1960 | 1975 | 1987 | 1978 | 1972 | 1975 | 1985 | 1996 | | MIN | 616 | 778 | 1083 | 1015 | 1756 | 1580 | 1318 | 1184 | 860 | 788 | 647 | 452 | | (WY) | 1954 | 1954 | 1981 | 1981 | 1977 | 1981 | 1967 | 1986 | 1986 | 1977 | 1977 | 1954 | | SUMMAR | Y STATIS | rics | FOF | R 1997 CALI | ENDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER YE | ARS 1951 | - 1998 | | ANNUAL | TOTAL | | | 1102929 | | | 1289759 | | | | | | | ANNUAL | MEAN | | | 3022 | | | 3534 | | | 2810 | | | | HIGHEST | r annual | MEAN | | | | | | | | 4050 | | 1979 | | LOWEST | ANNUAL I | MEAN | | | | | | | | 1310 | | 1981 | | HIGHEST | r DAILY 1 | MEAN | | 30000 | Apr 30 | | 29400 | Jan 29 | | 63400 | Jun | 23 1972 | | LOWEST | DAILY M | EAN | | 736 | Sep 8 | | 574 | Sep 21 | | 244 | Sep | 4 1956 | | ANNUAL | SEVEN-DA | AY MINIMUM | | 1010 | Sep 3 | | 860 | Sep 12 | | 311 | Oct | 8 1954 | | INSTANT | TANEOUS I | PEAK FLOW | | | _ | | 30300 | Jan 29 | | 64800 | Jun | 23 1972 | | INSTAN | TANEOUS I | PEAK STAGE | | | | | 24.7 | 1 Jan 29 | | 33.15 | Jun | 23 1972 | | INSTANT | raneous 1 | LOW FLOW | | | | | 507 | Sep 29 | | 193 | Sep | 4 1956 | | ANNUAL | RUNOFF | (CFSM) | | 1.3 | 18 | | 1.39 | 9 | | 1.10 | _ | | | ANNUAL | RUNOFF | (INCHES) | | 16.0 | 09 | | 18.83 | 2 | | 14.97 | | | | 10 PERG | CENT EXC | EEDS | | 5100 | | | 6610 | | | 5030 | | | | 50 PERG | CENT EXC | EEDS | | 2280 | | | 2110 | | | 1910 | | | | 90 PERG | CENT EXC | EEDS | | 1210 | | | 1070 | | | 924 | | | ## 02077000 BANISTER RIVER AT HALIFAX, VA LOCATION.--Lat 36°46'35", long 78°54'58", Halifax County, Hydrologic Unit 03010105, on left bank 10 ft downstream from bridge on State Highway 360, 1,700 ft downstream from Terrible Creek, 1 mi northeast of Halifax, and 10 mi upstream from mouth DRAINAGE AREA. -- 547 mi². PERIOD OF RECORD.--September 1904 to December 1905, October 1928 to current year. Monthly discharge only for some periods, published in WSP 1303. REVISED RECORDS.--WSP 892: 1929-30, 1932-35. WSP 972: 1938(M), 1940. WSP 1112: 1943(M). WSP 2104: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 318.54 ft above sea level (levels by U.S. Army Corps of Engineers). Sept. 28, 1904, to Dec. 31, 1905, nonrecording gage at site 400 ft upstream at different datum. Dec. 9, 1928, to Sept. 20, 1950, water-stage recorder at site 400 ft upstream at present datum. REMARKS.--Records fair except for periods of doubtful or no gage-height record, Nov. 2-6, 9-14, Dec. 6-9 Jan. 9-13, 23-26, Feb. 7-11, Mar. 20-24, which are poor. Flow regulated by a reservoir and hydroelectric generating facility 0.5 mi upstream from station. Maximum discharge, 50,000 ft³/s, from rating curve extended above 13,000 ft³/s on basis of slope-area measurement of peak flow and velocity-area study. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 EXTREMES FOR CURRENT YEAR.--Maximum discharge, 9,900 ${\rm ft}^3/{\rm s}$, Jan. 29, gage height, 23.11 ft; minimum daily, 89 ${\rm ft}^3/{\rm s}$, Aug. 7. | | | 22001 | | 00210 122 | Di | AILY MEAN | VALUES | 100011 177 | . 10 02111 | | , | | |-------|------|-------|-------|-----------|-------|-----------|--------|------------|------------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 201 | 276 | 388 | 393 | 977 | 583 | 552 | 498 | 345 | 223 | 144 | 107 | | 2 | 169 | e350 | 403 | 344 | 832 | 587 | 552 | 655 | 341 | 219 | 108 | 100 | | 3 | 153 | e385 | 306 | 335 | 670 | 628 | 535 | 872 | 324 | 193 | 127 | 101 | | 4 | 155 | e310 | 296 | 358 | 2060 | 532 | 694 | 682 | 305 | 207 | 112 | 103 | | 5 | 149 | e260 | 405 | 353 | 5920 | 482 | 807 | 943 | 316 | 240 | 107 | 111 | | 6 | 140 | e240 | e305 | 366 | 4540 | 458 | 736 | 885 | 330 | 250 | 133 | 105 | | 7 | 144 | 387 | e260 | 421 | e3300 | 446 | 616 | 832 | 313 | 212 | 89 | 117 | | 8 | 136 | 408 | e240 | 1040 | e2250 | 677 | 522 | 4820 | 300 | 189 | 140 | 101 | | 9 | 153 | e295 | e235 | e1940 | e1350 | 2420 | 526 | 6640
 286 | 220 | 139 | 100 | | 10 | 131 | e260 | 255 | e1150 | e720 | 2880 | 572 | 4060 | 312 | 218 | 221 | 100 | | 11 | 143 | e240 | 275 | e600 | e650 | 1660 | 517 | 1370 | 349 | 228 | 295 | 98 | | 12 | 140 | e235 | 270 | e480 | 981 | 877 | 481 | 926 | 317 | 199 | 241 | 97 | | 13 | 147 | e260 | 256 | e460 | 1590 | 702 | 453 | 850 | 328 | 189 | 189 | 96 | | 14 | 122 | e320 | 240 | 443 | 1070 | 644 | 461 | 733 | 313 | 178 | 148 | 96 | | 15 | 204 | 346 | 233 | 795 | 757 | 570 | 466 | 653 | 285 | 188 | 146 | 96 | | 16 | 176 | 300 | 225 | 2500 | 664 | 492 | 464 | 551 | 290 | 162 | 154 | 95 | | 17 | 187 | 275 | 223 | 2790 | 2530 | 492 | 2670 | 516 | 274 | 176 | 198 | 95 | | 18 | 384 | 241 | 223 | 1460 | 6170 | 589 | 4730 | 476 | 293 | 158 | 322 | 95 | | 19 | 325 | 227 | 219 | 878 | 3860 | 3340 | 2670 | 442 | 246 | 138 | 220 | 94 | | 20 | 310 | 225 | 217 | 740 | 1450 | e4400 | 2020 | 421 | 289 | 151 | 166 | 94 | | 21 | 307 | 234 | 219 | 619 | 969 | e6000 | 2400 | 402 | 240 | 153 | 155 | 94 | | 22 | 230 | 405 | 238 | 519 | 822 | e5100 | 1270 | 379 | 243 | 153 | 138 | 101 | | 23 | 189 | 443 | 292 | e2500 | 745 | e2200 | 890 | 399 | 301 | 129 | 174 | 101 | | 24 | 188 | 343 | 338 | e2000 | 1200 | e1200 | 881 | 462 | 268 | 160 | 96 | 100 | | 25 | 194 | 292 | 387 | e1300 | 1280 | 902 | 736 | 461 | 277 | 152 | 121 | 99 | | 26 | 219 | 263 | 470 | e1250 | 901 | 812 | 657 | 436 | 244 | 135 | 119 | 98 | | 27 | 308 | 234 | 500 | 1060 | 687 | 742 | 550 | 548 | 188 | 144 | 106 | 98 | | 28 | 324 | 237 | 681 | 4930 | 603 | 700 | 505 | 432 | 211 | 164 | 127 | 98 | | 29 | 248 | 231 | 722 | 9350 | | 658 | 499 | 440 | 220 | 153 | 101 | 97 | | 30 | 222 | 245 | 518 | 6180 | | 589 | 480 | 396 | 224 | 140 | 108 | 97 | | 31 | 208 | | 455 | 1910 | | 554 | | 362 | | 119 | 100 | | | TOTAL | 6306 | 8767 | 10294 | 49464 | 49548 | 42916 | 29912 | 32542 | 8572 | 5540 | 4744 | 2984 | | MEAN | 203 | 292 | 332 | 1596 | 1770 | 1384 | 997 | 1050 | 286 | 179 | 153 | 99.5 | | MAX | 384 | 443 | 722 | 9350 | 6170 | 6000 | 4730 | 6640 | 349 | 250 | 322 | 117 | | MIN | 122 | 225 | 217 | 335 | 603 | 446 | 453 | 362 | 188 | 119 | 89 | 94 | | CFSM | .37 | .53 | .61 | 2.92 | 3.24 | 2.53 | 1.82 | 1.92 | .52 | .33 | .28 | .18 | | IN. | .43 | .60 | .70 | 3.36 | 3.37 | 2.92 | 2.03 | 2.21 | .58 | .38 | .32 | .20 | e Estimated # 02077000 BANISTER RIVER AT HALIFAX, VA--Continued | STATIST | rics of M | ONTHLY MEAN | DATA I | FOR WATER | YEARS 1905 | - 1906, | 1929 - 19 | 98, BY W. | ATER YEA | R (WY) | | | |---------|------------|-------------|--------|-----------|------------|---------|------------|-----------|----------|----------|----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 360 | 398 | 504 | 690 | 772 | 851 | 731 | 488 | 387 | 305 | 329 | 377 | | MAX | 1691 | 1431 | 1211 | 2125 | 1857 | 2738 | 2121 | 1374 | 1588 | 1065 | 2898 | 3717 | | (WY) | 1938 | 1973 | 1949 | 1937 | 1979 | 1975 | 1983 | 1978 | 1972 | 1938 | 1940 | 1944 | | MIN | 34.9 | 86.1 | 163 | 170 | 185 | 270 | 196 | 178 | 94.0 | 80.1 | 48.8 | 29.4 | | (WY) | 1931 | 1932 | 1966 | 1981 | 1934 | 1981 | 1967 | 1981 | 1970 | 1986 | 1977 | 1954 | | SUMMARY | Y STATIST | TCS | FOR | 1997 CAL | ENDAR YEAR | म | OR 1998 WA | TER YEAR | | WATER YE | ARS 1905 | - 1906 | | | | | | | | _ | | | | | | - 1998 | | ANNUAL | TOTAL | | | 158760 | | | 251589 | | | | | | | ANNUAL | MEAN | | | 435 | | | 689 | | | 516 | | | | HIGHEST | r annual i | MEAN | | | | | | | | 814 | | 1973 | | LOWEST | ANNUAL M | EAN | | | | | | | | 225 | | 1981 | | HIGHEST | r DAILY M | EAN | | 4940 | Apr 29 | | 9350 | Jan 29 | | 44700 | Sep | 20 1944 | | LOWEST | DAILY ME. | AN | | 116 | Aug 19 | | 89 | Aug 7 | | 6.0 | Aug | 30 1932 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 122 | Sep 3 | | 95 | Sep 15 | | 18 | Oct | 8 1930 | | INSTAN | TANEOUS P | EAK FLOW | | | | | 9900 | Jan 29 | | 50000 | Sep | 20 1944 | | INSTANT | TANEOUS P | EAK STAGE | | | | | 23.11 | Jan 29 | | a40.80 | Sep | 20 1944 | | INSTANT | TANEOUS L | OW FLOW | | | | | 89 | Aug 7 | | 6.0 | bAug | 19 1932 | | ANNUAL | RUNOFF (| CFSM) | | . 8 | 30 | | 1.26 | 5 | | .94 | | | | ANNUAL | RUNOFF (| INCHES) | | 10.8 | 30 | | 17.11 | L | | 12.82 | | | | 10 PERG | CENT EXCE | EDS | | 780 | | | 1400 | | | 955 | | | | 50 PERG | CENT EXCE | EDS | | 300 | | | 316 | | | 307 | | | | 90 PERG | CENT EXCE | EDS | | 140 | | | 110 | | | 113 | | | a From floodmarks. b Many days in August and September 1932. #### ROANOKE RIVER BASIN ## 02077500 HYCO RIVER NEAR DENNISTON, VA LOCATION.--Lat 36°35'16", long 78°53'56", Halifax County, Hydrologic Unit 03010104, on left bank 60 ft upstream from bridge on U.S. Highway 501, 0.8 mi upstream from Mayo Creek, 2.5 mi northeast of Denniston, and 7.3 mi south of South Boston. DRAINAGE AREA. -- 289 mi². PERIOD OF RECORD. --October 1928 to September 1934, October 1950 to current year. Monthly discharge only for some periods, published in WSP 1303. REVISED RECORDS.--WSP 1383: Drainage area, 1930. WSP 1503: 1930(M). WSP 1723: 1930(M). WDR VA-75-1: 1974. GAGE.--Water-stage recorder. Datum of gage is 315.24 ft above sea level. July 10, 1929, to Mar. 14, 1934, nonrecording gage at same site and datum. REMARKS.--Records good. Small diurnal fluctuation at low flow in some years caused by mill upstream from station. Since September 1964, flow regulated by Hyco Lake 15.7 mi upstream, capacity 75,480 acre-ft, and since Apr. 26, 1974, by Roxboro Steam-Electric Generating Plant Afterbay Reservoir, capacity 12,000 acre-ft. Maximum discharge, 10,800 ft³/s, from rating curve extended above 8,200 ft³/s. Minimum gage height, 3.58 ft, Sept. 14, 1932. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Floods in August 1928 and September 1945 reached stages of 26.4 ft and 25.6 ft, respectively, from floodmarks. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 8,850 ft³/s, Mar. 21, gage height, 20.66 ft; minimum, 6.4 ft³/s, Sept. 28, 29, gage height, 4.28 ft. | | | DISCHAF | RGE, IN C | UBIC FEET | | ND, WATER | YEAR OCT | OBER 1997 | TO SEPTEM | MBER 1998 | | | |-------|------|---------|-----------|-----------|-------|-----------|----------|-----------|-----------|-----------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 36 | 33 | 53 | 51 | 1450 | 199 | 204 | 158 | 137 | 51 | 12 | 7.9 | | 2 | 34 | 35 | 44 | 40 | 1410 | 194 | 201 | 165 | 132 | 45 | 11 | 8.4 | | 3 | 34 | 21 | 29 | 36 | 1280 | 195 | 190 | 153 | 129 | 41 | 9.6 | 8.9 | | 4 | 33 | 19 | 26 | 33 | 1530 | 185 | 297 | 153 | 134 | 40 | 10 | 40 | | 5 | 32 | 22 | 25 | 33 | 2730 | 179 | 275 | 160 | 133 | 42 | 10 | 39 | | 6 | 31 | 18 | 21 | 31 | 3870 | 174 | 224 | 150 | 128 | 46 | 9.5 | 14 | | 7 | 31 | 19 | 18 | 32 | 2620 | 172 | 206 | 151 | 126 | 44 | 9.5 | 10 | | 8 | 31 | 26 | 17 | 308 | 1530 | 524 | 195 | 493 | 71 | 44 | 9.5 | 9.9 | | 9 | 30 | 21 | 17 | 343 | 424 | 1650 | 322 | 570 | 55 | 58 | 14 | 17 | | 10 | 30 | 18 | 19 | 122 | 271 | 1910 | 632 | 222 | 58 | 65 | 22 | 13 | | 11 | 30 | 17 | 27 | 161 | 243 | 1720 | 561 | 190 | 57 | 51 | 20 | 10 | | 12 | 29 | 17 | 22 | 148 | 575 | 1530 | 500 | 179 | 55 | 45 | 15 | 9.7 | | 13 | 28 | 18 | 19 | 142 | 590 | 402 | 236 | 171 | 53 | 43 | 11 | 9.4 | | 14 | 29 | 56 | 18 | 139 | 655 | 210 | 197 | 164 | 50 | 43 | 9.8 | 8.4 | | 15 | 34 | 58 | 16 | 472 | 935 | 190 | 195 | 157 | 49 | 34 | 9.5 | 8.1 | | 16 | 41 | 30 | 16 | 1450 | 893 | 178 | 184 | 153 | 54 | 28 | 10 | 8.5 | | 17 | 31 | 23 | 16 | 1590 | 1640 | 173 | 932 | 148 | 56 | 28 | 93 | 8.2 | | 18 | 32 | 21 | 16 | 1630 | 4430 | 388 | 1660 | 146 | 50 | 27 | 50 | 8.2 | | 19 | 34 | 21 | 15 | 1270 | 4650 | 3290 | 1840 | 143 | 48 | 24 | 25 | 7.9 | | 20 | 45 | 20 | 16 | 943 | 2750 | 6840 | 1930 | 141 | 47 | 24 | 18 | 7.8 | | 21 | 34 | 21 | 14 | 817 | 1710 | 8370 | 1690 | 139 | 46 | 24 | 15 | 7.7 | | 22 | 31 | 269 | 15 | 353 | 449 | 6270 | 1460 | 137 | 45 | 18 | 13 | 8.0 | | 23 | 30 | 119 | 28 | 963 | 305 | 3180 | 1230 | 142 | 47 | 12 | 11 | 11 | | 24 | 29 | 48 | 24 | 1660 | 323 | 1550 | 261 | 171 | 48 | 12 | 9.5 | 8.2 | | 25 | 29 | 33 | 42 | 1810 | 260 | 1130 | 200 | 148 | 46 | 11 | 9.2 | 8.0 | | 26 | 30 | 27 | 51 | 1970 | 232 | 345 | 183 | 150 | 44 | 61 | 9.2 | 7.8 | | 27 | 44 | 23 | 58 | 1540 | 217 | 275 | 172 | 511 | 42 | 47 | 8.9 | 7.6 | | 28 | 35 | 19 | 164 | 2750 | 208 | 250 | 168 | 947 | 41 | 22 | 8.8 | 7.1 | | 29 | 30 | 16 | 81 | 4860 | | 231 | 162 | 215 | 42 | 18 | 8.8 | 6.6 | | 30 | 29 | 19 | 67 | 4700 | | 218 | 157 | 158 | 44 | 15 | 8.5 | 7.3 | | 31 | 29 | | 69 | 2510 | | 209 | | 145 | | 13 | 8.1 | | | TOTAL | 1005 | 1107 | 1063 | 32907 | 38180 | 42331 | 16664 | 6830 | 2067 | 1076 | 488.4 | 333.6 | | MEAN | 32.4 | 36.9 | 34.3 | 1062 | 1364 | 1366 | 555 | 220 | 68.9 | 34.7 | 15.8 | 11.1 | | MAX | 45 | 269 | 164 | 4860 | 4650 | 8370 | 1930 | 947 | 137 | 65 | 93 | 40 | | MIN | 28 | 16 | 14 | 31 | 208 | 172 | 157 | 137 | 41 | 11 | 8.1 | 6.6 | | CFSM | .11 | .13 | .12 | 3.67 | 4.72 | 4.72 | 1.92 | .76 | .24 | .12 | .05 | .04 | | IN. | .13 | .14 | .14 | 4.24 | 4.91 | 5.45 | 2.14 | .88 | .27 | .14 | .06 | .04 | # 02077500 HYCO RIVER NEAR DENNISTON, VA--Continued | STATIST | CICS OF MO | NTHLY MEAI | N DATA FO | R WATER | YEARS 1929 | - 1934, | 1951 - 19 | 64, BY WAT | ER YEAR | (WY) [UNF | REGULATED] | | |---
--|---|---|--|--|-------------------------------------|--|--|------------------------------------|---|--|---| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 131 | 182 | 268 | 383 | 537 | 532 | 456 | 216 | 134 | 81.7 | 133 | 103 | | MAX | 882 | 758 | 847 | 1113 | 1363 | 1000 | 800 | 767 | 360 | 226 | 600 | 890 | | (WY)
MIN | 1930
3.67 | 1963
8.29 | 1933 | 1113
1962
34.2 | 1960
59.6 | 1963
119 | 1934
106 | 1958
45 3 | 1934
33 8 | 1930
14 5 | 1931
5.65 | 1934
.71 | | (WY) | 1934 | 1954 | 847
1933
28.6
1934 | 1934 | 1934 | 1930 | 1963 | 1964 | 1963 | 226
1930
14.5
1932 | 1953 | 1954 | | SUMMARY | STATISTI | CS | WA | TER YEAR: | S 1929 - 1 | 934 | | | | | | | | 7 NTNTT 7 T | MEAN | | | 262 | 1951 - 1 Oct 3 1 aAug 29 1 Oct 3 1 Oct 3 1 Oct 3 1 Sep 14 1 | 964 | | | | | | | | HIGHEST | MEAN
'ANNIIAI, M | EAN | | 202
390 | 1 | 960 | | | | | | | | LOWEST | ANNUAL ME | AN | | 160 | ī | 954 | | | | | | | | HIGHEST | DAILY ME | AN | 7 | 490 | Oct 3 1 | 929 | | | | | | | | LOWEST | DAILY MEA | N | | .10 | aAug 29 1 | 932 | | | | | | | | ANNUAL | SEVEN-DAY | MINIMUM | 7 | .10 | 0ct 3 1 | 932 | | | | | | | | INSTANT | 'ANEOUS PE | AK STAGE | , | 21.88 | Oct 3 1 | 929 | | | | | | | | INSTANT | ANEOUS LO | W FLOW | | .004 | Sep 14 1 | 932 | | | | | | | | ANNUAL | RUNOFF (C | FSM) | | b.93 | | | | | | | | | | ANNUAL | RUNOFF (I | NCHES) | 1- | b12.65 | | | | | | | | | | 50 PERC | ENT EXCEE | DS
DS | ď | 748
b89 | | | | | | | | | | 90 PERC | ENT EXCEE | DS | | b14 | STATIST | CICS OF MO | NTHLY MEAI | N DATA FO | R WATER | YEARS 1965 | - 1998, | BY WATER | YEAR (WY) | [REGULA | ATED, UNADJ | JUSTED] | | | | | | | | | | | | | | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | OCT
118 | | DEC
207 | JAN
485 | | MAR
612 | APR
373 | MAY
219 | JUN
114 | JUL
134 | AUG
106 | SEP
150 | | MEAN
MAX | 118 | 128 | | | | | | | | | | | | | 118 | 128
786 | 207 | 485 | 520 | 612 | 373 | 219 | 114
647 | 134
1492 | 106 | 150 | | MAX | 118
805
1972 | 128
786 | 207
815 | 485
1692 | 520
1364 | 612
1683 | 373
1048 | 219
1332
1978
26.2 | 114
647
1982 | 134
1492
1975 | 106
420
1995
13.1 | 150
1341 | | MAX
(WY) | 118
805
1972 | 128
786
1973 | 207
815
1973 | 485
1692
1978 | 520
1364
1998 | 612
1683
1993 | 373
1048
1983 | 219
1332
1978 | 114
647
1982
17.2 | 134
1492
1975 | 106
420
1995
13.1 | 150
1341
1996 | | MAX
(WY)
MIN | 118
805
1972
11.7 | 128
786
1973
14.8 | 207
815
1973
21.1 | 485
1692
1978
28.5 | 520
1364
1998
62.1 | 612
1683
1993
44.6 | 373
1048
1983
38.7 | 219
1332
1978
26.2 | 114
647
1982 | 134
1492
1975 | 106
420
1995
13.1 | 150
1341
1996
11.1 | | MAX
(WY)
MIN
(WY) | 118
805
1972
11.7
1969 | 128
786
1973
14.8
1968 | 207
815
1973
21.1
1966 | 485
1692
1978
28.5
1966 | 520
1364
1998
62.1
1991 | 612
1683
1993
44.6
1981 | 373
1048
1983
38.7
1981 | 219
1332
1978
26.2 | 114
647
1982
17.2
1986 | 134
1492
1975 | 106
420
1995
13.1
1977 | 150
1341
1996
11.1
1998 | | MAX
(WY)
MIN
(WY) | 118
805
1972
11.7
1969 | 128
786
1973
14.8
1968 | 207
815
1973
21.1
1966 | 485
1692
1978
28.5
1966 | 520
1364
1998
62.1
1991 | 612
1683
1993
44.6
1981 | 373
1048
1983
38.7
1981 | 219
1332
1978
26.2
1986 | 114
647
1982
17.2
1986 | 134
1492
1975
15.8
1966 | 106
420
1995
13.1
1977 | 150
1341
1996
11.1
1998 | | MAX
(WY)
MIN
(WY) | 118
805
1972
11.7
1969 | 128
786
1973
14.8
1968 | 207
815
1973
21.1
1966 | 485
1692
1978
28.5
1966 | 520
1364
1998
62.1
1991 | 612
1683
1993
44.6
1981 | 373
1048
1983
38.7
1981 | 219
1332
1978
26.2
1986 | 114
647
1982
17.2
1986 | 134
1492
1975
15.8
1966 | 106
420
1995
13.1
1977 | 150
1341
1996
11.1
1998 | | MAX
(WY)
MIN
(WY)
SUMMARY
ANNUAL | 118
805
1972
11.7
1969 | 128
786
1973
14.8
1968 | 207
815
1973
21.1
1966 | 485
1692
1978
28.5
1966
997 CALE | 520
1364
1998
62.1
1991 | 612
1683
1993
44.6
1981 | 373
1048
1983
38.7
1981
OR 1998 WA | 219
1332
1978
26.2
1986 | 114
647
1982
17.2
1986 | 134
1492
1975
15.8
1966 | 106
420
1995
13.1
1977 | 150
1341
1996
11.1
1998 | | MAX
(WY)
MIN
(WY)
SUMMARY
ANNUAL
ANNUAL
HIGHEST | 118
805
1972
11.7
1969
STATISTI | 128
786
1973
14.8
1968 | 207
815
1973
21.1
1966
FOR 1 | 485
1692
1978
28.5
1966
997 CALEI
92750
254 | 520
1364
1998
62.1
1991
NDAR YEAR | 612
1683
1993
44.6
1981 | 373
1048
1983
38.7
1981
OR 1998 WA
144052.0
395 | 219
1332
1978
26.2
1986
TER YEAR | 114
647
1982
17.2
1986 | 134
1492
1975
15.8
1966
WATER YEA
263
536
37.1 | 106
420
1995
13.1
1977 | 150
1341
1996
11.1
1998 | | MAX
(WY)
MIN
(WY)
SUMMARY
ANNUAL
ANNUAL
HIGHEST
LOWEST | 118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY ME | 128
786
1973
14.8
1968
CS | 207
815
1973
21.1
1966
FOR 1 | 485
1692
1978
28.5
1966
997 CALEI
92750
254 | 520
1364
1998
62.1
1991
NDAR YEAR | 612
1683
1993
44.6
1981 | 373
1048
1983
38.7
1981
OR 1998 WA
144052.0
395 | 219
1332
1978
26.2
1986
TER YEAR | 114
647
1982
17.2
1986 | 134
1492
1975
15.8
1966
WATER YEA
263
536
37.1
10300 | 106
420
1995
13.1
1977
ARS 1965 - | 150
1341
1996
11.1
1998
1998 | | MAX
(WY)
MIN
(WY)
SUMMARY
ANNUAL
ANNUAL
HIGHEST
LOWEST | 118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY ME | 128
786
1973
14.8
1968
CS | 207
815
1973
21.1
1966
FOR 1 | 485
1692
1978
28.5
1966
997 CALEI
92750
254 | 520
1364
1998
62.1
1991
NDAR YEAR | 612
1683
1993
44.6
1981 | 373
1048
1983
38.7
1981
OR 1998 WA
144052.0
395
8370
6.6 | 219
1332
1978
26.2
1986
TER YEAR | 114
647
1982
17.2
1986 | 134
1492
1975
15.8
1966
WATER YEA
263
536
37.1
10300 | 106
420
1995
13.1
1977
ARS 1965 -
| 150
1341
1996
11.1
1998
1998 | | MAX
(WY)
MIN
(WY)
SUMMARY
ANNUAL
ANNUAL
HIGHEST
LOWEST
HIGHEST
LOWEST
ANNUAL | 118 805 1972 11.7 1969 CSTATISTI TOTAL MEAN ANNUAL MANNUAL MANNUAL ME DAILY ME DAILY MEA SEVEN-DAY | 128
786
1973
14.8
1968
CS | 207
815
1973
21.1
1966
FOR 1 | 485
1692
1978
28.5
1966
997 CALEI
92750
254 | 520
1364
1998
62.1
1991
NDAR YEAR | 612
1683
1993
44.6
1981 | 373
1048
1983
38.7
1981
OR 1998 WA
144052.0
395
8370
6.6
7.5 | 219
1332
1978
26.2
1986
TER YEAR | 114
647
1982
17.2
1986 | 134
1492
1975
15.8
1966
WATER YEA
263
536
37.1
10300 | 106
420
1995
13.1
1977
ARS 1965 -
Jul 15
Aug 10
Aug 31 | 150
1341
1996
11.1
1998
1998
1975
1981
1975
1977 | | MAX
(WY)
MIN
(WY)
SUMMARY
ANNUAL
HIGHEST
LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT | 118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL ME ANNUAL ME DAILY MEA DAILY MEA DAILY MEA CANEOUS PE | 128 786 1973 14.8 1968 CS EAN AN AN N MINIMUM AK FLOW | 207
815
1973
21.1
1966
FOR 1 | 485
1692
1978
28.5
1966
997 CALEI
92750
254 | 520
1364
1998
62.1
1991
NDAR YEAR | 612
1683
1993
44.6
1981 | 373
1048
1983
38.7
1981
OR 1998 WA
144052.0
395
8370
6.6
7.5
8850 | 219
1332
1978
26.2
1986
TER YEAR
Mar 21
Sep 29
Sep 24
Mar 21 | 114
647
1982
17.2
1986 | 134
1492
1975
15.8
1966
WATER YEA
263
536
37.1
10300
3.3
5.0
10800 | 106
420
1995
13.1
1977
ARS 1965 -
Jul 15
Aug 10
Aug 31
Jul 15 | 150
1341
1996
11.1
1998
1998
1975
1981
1975
1977
1977 | | MAX
(WY)
MIN
(WY)
SUMMARY
ANNUAL
HIGHEST
LOWEST
HIGHEST
ANNUAL
INSTANT
INSTANT | 118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL ME ANUAL ME DAILY ME DAILY MEA SEVEN-DAY 'ANEOUS PE 'ANEOUS PE | 128 786 1973 14.8 1968 CS EAN AN N MINIMUM AK FLOW AK STAGE | 207
815
1973
21.1
1966
FOR 1 | 485
1692
1978
28.5
1966
997 CALEI
92750
254
5440
14
15 | 520
1364
1998
62.1
1991
NDAR YEAR
Apr 30
Dec 21
Dec 16 | 612
1683
1993
44.6
1981 | 373
1048
1983
38.7
1981
OR 1998 WA
144052.0
395
8370
6.6
7.5
8850 | 219
1332
1978
26.2
1986
TER YEAR
Mar 21
Sep 29
Sep 24
Mar 21 | 114
647
1982
17.2
1986 | 134
1492
1975
15.8
1966
WATER YEA
263
536
37.1
10300
3.3
5.0
10800
24.27 | 106
420
1995
13.1
1977
ARS 1965 -
Jul 15
Aug 10
Aug 31
Jul 15
Jul 15 | 150
1341
1996
11.1
1998
1998
1975
1981
1975
1977
1977
1975
1975 | | MAX
(WY)
MIN
(WY)
SUMMARY
ANNUAL
HIGHEST
LOWEST
HIGHEST
ANNUAL
INSTANT
INSTANT | 118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL ME ANUAL ME DAILY ME DAILY MEA SEVEN-DAY 'ANEOUS PE 'ANEOUS PE | 128 786 1973 14.8 1968 CS EAN AN N MINIMUM AK FLOW AK STAGE | 207
815
1973
21.1
1966
FOR 1 | 485
1692
1978
28.5
1966
997 CALEI
92750
254
5440
14
15 | 520
1364
1998
62.1
1991
NDAR YEAR
Apr 30
Dec 21
Dec 16 | 612
1683
1993
44.6
1981 | 373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395 8370 6.6 7.5 8850 20.66 6.4 | 219
1332
1978
26.2
1986
TER YEAR
Mar 21
Sep 29
Sep 24
Mar 21
cSep 28 | 114
647
1982
17.2
1986 | 134
1492
1975
15.8
1966
WATER YEA
263
536
37.1
10300
3.3
5.0
10800
24.27
3.1 | 106
420
1995
13.1
1977
ARS 1965 -
Jul 15
Aug 10
Aug 31
Jul 15
Jul 15 | 150
1341
1996
11.1
1998
1998
1975
1981
1975
1977
1977
1975
1975 | | MAX
(WY)
MIN
(WY)
SUMMARY
ANNUAL
HIGHEST
LOWEST
HIGHEST
ANNUAL
INSTANT
INSTANT | 118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL ME ANUAL ME DAILY ME DAILY MEA SEVEN-DAY 'ANEOUS PE 'ANEOUS PE | 128 786 1973 14.8 1968 CS EAN AN N MINIMUM AK FLOW AK STAGE | 207
815
1973
21.1
1966
FOR 1 | 485
1692
1978
28.5
1966
997 CALEI
92750
254
5440
14
15 | 520
1364
1998
62.1
1991
NDAR YEAR
Apr 30
Dec 21
Dec 16 | 612
1683
1993
44.6
1981 | 373
1048
1983
38.7
1981
OR 1998 WA
144052.0
395
8370
6.6
7.5
8850
20.66
6.4
1.37 | 219 1332 1978 26.2 1986 TER YEAR Mar 21 Sep 29 Sep 24 Mar 21 Mar 21 cSep 28 | 114
647
1982
17.2
1986 | 134
1492
1975
15.8
1966
WATER YEA
263
536
37.1
10300
3.3
5.0
10800
24.27
3.1
.91 | 106
420
1995
13.1
1977
ARS 1965 -
Jul 15
Aug 10
Aug 31
Jul 15
Jul 15 | 150
1341
1996
11.1
1998
1998
1975
1981
1975
1977
1977
1975
1975 | | MAX
(WY)
MIN
(WY)
SUMMARY
ANNUAL
HIGHEST
LOWEST
HIGHEST
ANNUAL
INSTANT
INSTANT | 118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL ME ANUAL ME DAILY ME DAILY MEA SEVEN-DAY 'ANEOUS PE 'ANEOUS PE | 128 786 1973 14.8 1968 CS EAN AN N MINIMUM AK FLOW AK STAGE | 207
815
1973
21.1
1966
FOR 1 | 485
1692
1978
28.5
1966
997 CALEI
92750
254
5440
14
15 | 520
1364
1998
62.1
1991
NDAR YEAR
Apr 30
Dec 21
Dec 16 | 612
1683
1993
44.6
1981 | 373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395 8370 6.6 7.5 8850 20.66 6.4 1.37 18.54 | 219 1332 1978 26.2 1986 TER YEAR Mar 21 Sep 29 Sep 24 Mar 21 Mar 21 cSep 28 | 114
647
1982
17.2
1986 | 134
1492
1975
15.8
1966
WATER YEA
263
536
37.1
10300
3.3
5.0
10800
24.27
3.1
.91
12.35 | 106
420
1995
13.1
1977
ARS 1965 -
Jul 15
Aug 10
Aug 31
Jul 15
Jul 15 | 150
1341
1996
11.1
1998
1998
1975
1981
1975
1977
1977
1975
1975 | | MAX
(WY)
MIN
(WY)
SUMMARY
ANNUAL
HIGHEST
LOWEST
HIGHEST
LOWEST
HIGHEST
ANNUAL
INSTANT
INSTANT
INSTANT
ANNUAL
ANNUAL
10 PERCO | 118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL ME ANNUAL ME DAILY MEA DAILY MEA CANEOUS PE CANEOUS PE CANEOUS PE CANEOUS PE CANEOUS FE CANE | 128 786 1973 14.8 1968 CS EAN AN AN N MINIMUM AK FLOW AK STAGE W FLOW FSM) NCHES) DS | 207
815
1973
21.1
1966
FOR 1 | 485
1692
1978
28.5
1966
997 CALEI
92750
254
5440
14
15 | 520
1364
1998
62.1
1991
NDAR YEAR
Apr 30
Dec 21
Dec 16 | 612
1683
1993
44.6
1981 | 373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395 8370 6.6 7.5 8850 20.66 6.4 1.37 18.54 1450 | 219 1332 1978 26.2 1986 TER YEAR Mar 21 Sep 29 Sep 24 Mar 21 Mar 21 cSep 28 | 114
647
1982
17.2
1986 | 134
1492
1975
15.8
1966
WATER YEA
263
536
37.1
10300
3.3
5.0
10800
24.27
3.1
.91
12.35
624 | 106
420
1995
13.1
1977
ARS 1965 -
Jul 15
Aug 10
Aug 31
Jul 15
Jul 15 | 150
1341
1996
11.1
1998
1998
1975
1981
1975
1977
1977
1975
1975 | | MAX
(WY)
MIN
(WY)
SUMMARY
ANNUAL
ANNUAL
HIGHEST
LOWEST
ANNUAL
INSTANT
INSTANT
INSTANT
INSTANT
ANNUAL
ANNUAL
ANNUAL
50 PERC | 118 805 1972 11.7 1969 STATISTI TOTAL MEAN ANNUAL ME ANUAL ME DAILY ME DAILY MEA SEVEN-DAY 'ANEOUS PE 'ANEOUS PE | 128 786 1973 14.8 1968 CS EAN AN AN MINIMUM AK FLOW AK STAGE W FLOW FSM) NCHES) DS DS | 207
815
1973
21.1
1966
FOR 1 | 485
1692
1978
28.5
1966
997 CALEI
92750
254
5440
14
15 | 520
1364
1998
62.1
1991
NDAR YEAR
Apr 30
Dec 21
Dec 16 | 612
1683
1993
44.6
1981 | 373 1048 1983 38.7 1981 OR 1998 WA 144052.0 395 8370 6.6 7.5 8850 20.66 6.4 1.37 18.54 | 219 1332 1978 26.2 1986 TER YEAR Mar 21 Sep 29 Sep 24 Mar 21 Mar 21 cSep 28 | 114
647
1982
17.2
1986 | 134
1492
1975
15.8
1966
WATER YEA
263
536
37.1
10300
3.3
5.0
10800
24.27
3.1
.91
12.35 | 106
420
1995
13.1
1977
ARS 1965 -
Jul 15
Aug 10
Aug 31
Jul 15
Jul 15 | 150
1341
1996
11.1
1998
1998
1975
1981
1975
1977
1977
1975
1975 | a Also Aug. 30 to Sept. 25, 1932. b For water years 1951 to 1964 only. c Also Sept. 29, 1998. #### KANAWHA RIVER BASIN ## 03164000 NEW RIVER NEAR GALAX, VA LOCATION.--Lat 36°38'50", long 80°58'45", Grayson County, Hydrologic Unit 05050001, on left bank at upstream side of bridge on State Highway 94, 500 ft downstream from Meadow Creek, 1.2 mi southwest of Old Town, 3.1 mi southwest of Galax, and 3.6 mi downstream from Elk Creek. DRAINAGE AREA. -- 1,131 mi². PERIOD OF RECORD. --October 1929 to current year. Monthly discharge only for some periods, published in WSP 1305. REVISED RECORDS.--WSP 758: Drainage area, 1933(M). WSP 893: 1930(M), 1935(M). GAGE.--Water-stage recorder. Datum of gage is 2,208.04 ft above sea level. REMARKS.--No estimated daily values. Records good. American Electric Power gage-height transmitter at station, recorder at Roanoke. National Weather Service gage-height telemeter at station. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. Maximum discharge, 141,000 ft³/s, from rating curve extended above 32,000 ft³/s on basis of computation of peak flow over dam at Fries 6 mi downstream and slope-area measurement of peak flow. Minimum discharge, 193 ft³/s, Jan. 9, 1956, gage height, 0.52 ft, result of freezeup. Several
measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 9,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge (ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |---------|------|--------------------------------|---------------------|---------|------|-----------------------------------|------------------| | Jan. 8 | 1400 | *25,600 | *7.55 | Apr. 17 | 2000 | 9,810 | 4.13 | | Feb. 4 | 2300 | 14,600 | 5.24 | Apr. 20 | 0200 | 23,900 | 7.21 | | Feb. 18 | 0230 | 21,900 | 6.81 | May 11 | 0330 | 13,100 | 4.92 | | Mar. 20 | 2300 | 17.700 | 5.91 | Aug. 16 | 1300 | 9.220 | 3.98 | Minimum discharge, 519 ft^3/s , Oct. 11, gage height, 0.81 ft. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-------|-------|-------|-------|--------|--------|--------|--------|-------|-------|-------|-------| | 1 | 828 | 688 | 750 | 781 | 2280 | 3570 | 2590 | 3240 | 2910 | 1880 | 981 | 729 | | 2 | 700 | 860 | 876 | 809 | 2130 | 3330 | 2630 | 3980 | 2480 | 1920 | 1040 | 713 | | 3 | 656 | 1040 | 867 | 937 | 2290 | 3060 | 2380 | 3600 | 2290 | 1590 | 928 | 707 | | 4 | 628 | 945 | 843 | 1020 | 9050 | 2820 | 2580 | 4530 | 2980 | 1440 | 855 | 708 | | 5 | 617 | 816 | 877 | 1090 | 11200 | 2590 | 3320 | 5560 | 3760 | 1390 | 829 | 708 | | | | | | | | | | | | | | | | 6 | 609 | 747 | 834 | 1210 | 6440 | 2420 | 2900 | 4500 | 3980 | 1370 | 813 | 696 | | 7 | 592 | 718 | 771 | 1580 | 4780 | 2290 | 2560 | 4000 | 2910 | 1320 | 799 | 679 | | 8 | 580 | 710 | 687 | 16100 | 3970 | 2800 | 2380 | 5300 | 2450 | 1290 | 815 | 673 | | 9 | 575 | 700 | 719 | 11500 | 3710 | 5950 | 2980 | 6180 | 2270 | 1300 | 819 | 781 | | 10 | 575 | 697 | 787 | 4940 | 3630 | 6820 | 3550 | 7060 | 3790 | 1330 | 865 | 776 | | | | | | | | | | | | | | | | 11 | 563 | 685 | 877 | 3160 | 3610 | 4830 | 3100 | 11900 | 6810 | 1220 | 974 | 739 | | 12 | 575 | 671 | 864 | 2410 | 4880 | 3840 | 2870 | 8030 | 5080 | 1150 | 948 | 682 | | 13 | 580 | 680 | 809 | 2130 | 5080 | 3250 | 2650 | 5970 | 4060 | 1210 | 999 | 658 | | 14 | 572 | 736 | 761 | 1890 | 4120 | 2990 | 2500 | 4800 | 3510 | 1190 | 917 | 633 | | 15 | 576 | 829 | 724 | 2140 | 3420 | 2770 | 2420 | 4050 | 3080 | 1090 | 944 | 611 | | | | | | | | | | | | | | | | 16 | 575 | 812 | 707 | 4850 | 3320 | 2580 | 2370 | 3490 | 2840 | 1050 | 4900 | 607 | | 17 | 572 | 743 | 696 | 3840 | 12000 | 2560 | 6070 | 3120 | 2370 | 1020 | 3440 | 604 | | 18 | 575 | 706 | 688 | 2870 | 18100 | 2540 | 7690 | 2810 | 2090 | 995 | 1880 | 612 | | 19 | 602 | 680 | 697 | 2390 | 9380 | 4190 | 8750 | 2560 | 1950 | 961 | 1330 | 624 | | 20 | 670 | 674 | 708 | 2060 | 6760 | 8870 | 18300 | 2390 | 2130 | 940 | 1090 | 622 | | | | | | | | | | | | | | | | 21 | 759 | 691 | 677 | 1810 | 5600 | 14100 | 8930 | 2760 | 1820 | 918 | 967 | 633 | | 22 | 698 | 774 | 718 | 1650 | 4720 | 7890 | 6240 | 3130 | 1720 | 901 | 915 | 701 | | 23 | 617 | 854 | 864 | 2370 | 4810 | 5440 | 5130 | 2890 | 1850 | 909 | 889 | 745 | | 24 | 598 | 789 | 902 | 3310 | 5360 | 4420 | 4350 | 3730 | 2400 | 886 | 890 | 718 | | 25 | 631 | 733 | 1230 | 3180 | 4430 | 3790 | 3780 | 3440 | 1950 | 954 | 867 | 662 | | | | | | | | | | | | | | | | 26 | 717 | 701 | 1480 | 2640 | 3730 | 3420 | 3390 | 3320 | 1880 | 1130 | 851 | 625 | | 27 | 956 | 684 | 1260 | 2380 | 3490 | 3110 | 3180 | 4780 | 1640 | 1070 | 862 | 619 | | 28 | 1100 | 672 | 1230 | 2540 | 3560 | 2910 | 3230 | 6240 | 1540 | 1160 | 804 | 600 | | 29 | 851 | 664 | 1150 | 2590 | | 2760 | 2960 | 4290 | 1470 | 1030 | 768 | 587 | | 30 | 722 | 680 | 1030 | 2530 | | 2640 | 2770 | 3280 | 1480 | 920 | 752 | 624 | | 31 | 673 | | 946 | 2500 | | 2510 | | 3490 | | 928 | 743 | | | | | | | | | | | | | | | | | TOTAL | 20542 | 22379 | 27029 | 95207 | 155850 | 127060 | 128550 | 138420 | 81490 | 36462 | 35474 | 20076 | | MEAN | 663 | 746 | 872 | 3071 | 5566 | 4099 | 4285 | 4465 | 2716 | 1176 | 1144 | 669 | | MAX | 1100 | 1040 | 1480 | 16100 | 18100 | 14100 | 18300 | 11900 | 6810 | 1920 | 4900 | 781 | | MIN | 563 | 664 | 677 | 781 | 2130 | 2290 | 2370 | 2390 | 1470 | 886 | 743 | 587 | | CFSM | .59 | .66 | .77 | 2.72 | 4.92 | 3.62 | 3.79 | 3.95 | 2.40 | 1.04 | 1.01 | .59 | | IN. | .68 | .74 | .89 | 3.13 | 5.13 | 4.18 | 4.23 | 4.55 | 2.68 | 1.20 | 1.17 | .66 | | | | | | | | | | | | | | | # 03164000 NEW RIVER NEAR GALAX, VA--Continued | STATIST | CICS OF | MONTHLY | MEAN DATA | A FOR WATE | R YEARS | 1930 | - 1998, | BY WATE | R YEAR (W | Υ) | | | | |---------|----------|-----------|-----------|------------|----------|------|---------|---------|------------|------|--------|------------|----------| | | OCT | NOV | DE | JAN | FE | В | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 1408 | 1643 | 183 | 2250 | 262 | 9 | 2931 | 2659 | 2164 | 1719 | 1381 | 1383 | 1244 | | MAX | 3625 | 7189 | 400 | 5 5744 | 556 | 6 | 5827 | 6345 | 4469 | 5280 | 4017 | 8148 | 4827 | | (WY) | 1977 | 1978 | 196: | 1995 | 199 | 8 | 1993 | 1987 | 1973 | 1992 | 1949 | 1940 | 1989 | | MIN | 435 | 504 | 59: | 568 | 63 | 1 | 958 | 1017 | 811 | 614 | 426 | 453 | 381 | | (WY) | 1954 | 1954 | 195 | 1956 | 193 | 4 | 1988 | 1942 | 1941 | 1988 | 1930 | 1988 | 1954 | | | | | | | | | | | | | | | | | SUMMARY | STATIS | STICS | F | OR 1997 CA | LENDAR Y | EAR | F | OR 1998 | WATER YEAR | R | WATER | YEARS 1930 |) - 1998 | | ANNUAL | TOTAL | | | 646187 | | | | 888539 | | | | | | | ANNUAL | MEAN | | | 1770 | | | | 2434 | | | 1933 | | | | HIGHEST | ANNUA | L MEAN | | | | | | | | | 2807 | | 1958 | | LOWEST | ANNUAL | MEAN | | | | | | | | | 1034 | | 1988 | | HIGHEST | DAILY | MEAN | | 8060 | Mar | 4 | | 18300 | Apr 2 | 0 | 86200 | Aug | 14 1940 | | LOWEST | DAILY N | MEAN | | 484 | Sep | 8 | | 563 | Oct 1 | 1 | 265 | Sep | 19 1954 | | ANNUAL | SEVEN-I | DAY MINIM | UM | 524 | Sep | 4 | | 573 | Oct 1 | 1 | 304 | Sep | 13 1954 | | INSTANT | CANEOUS | PEAK FLO | W | | | | | 25600 | Jan | 8 | 141000 | Aug | 14 1940 | | INSTANT | CANEOUS | PEAK STA | GE | | | | | 7. | 55 Jan | 8 | a25. | .7 Aug | 14 1940 | | INSTANT | CANEOUS | LOW FLOW | | | | | | 519 | Oct 1 | 1 | b193 | Jan | 9 1956 | | ANNUAL | RUNOFF | (CFSM) | | 1 | .57 | | | 2. | 15 | | 1. | .71 | | | ANNUAL | RUNOFF | (INCHES) | | 21 | .25 | | | 29. | 23 | | 23. | .22 | | | 10 PERC | CENT EXC | CEEDS | | 3420 | | | | 4920 | | | 3480 | | | | 50 PERC | CENT EXC | CEEDS | | 1400 | | | | 1440 | | | 1470 | | | | 90 PERC | CENT EXC | CEEDS | | 609 | | | | 668 | | | 676 | | | a From floodmark. b Result of freezeup. #### 03165000 CHESTNUT CREEK AT GALAX, VA LOCATION.--Lat 36°38'45", long 80°55'10", Galax City, Hydrologic Unit 05050001, on right bank 200 ft upstream from bridge on State Highway 89 and 1.7 mi downstream from Wards Mill Branch. DRAINAGE AREA. -- 39.4 mi². PERIOD OF RECORD. -- September 1944 to current year. REVISED RECORDS.--WSP 1385: 1953. GAGE.--Water-stage recorder. Concrete control since Aug. 30, 1979. Datum of gage is 2,344.17 ft above sea level. Prior to June 25, 1948, nonrecording gage, and June 25, 1948, to May 28, 1953, water-stage recorder, at site 200 ft upstream at datum 0.86 ft higher. REMARKS.--Records good except for period with ice effect, Jan. 1-3, which is fair. Maximum discharge, 6,980 ${\rm ft}^3/{\rm s}$, from rating curve extended above 2,200 ${\rm ft}^3/{\rm s}$ on basis of two slope-area and one contracted-opening measurements at gage heights 9.5 ft, 14.4 ft, and 17.4 ft, respectively, site and datum then in use. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 14, 1940, reached a stage of 17.4 ft, at site and datum used 1944-53, discharge, $11,000 \text{ ft}^3/\text{s}$, by contracted-opening measurement. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 850 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|------------------| | Jan. 8 | 0500 | *2,870 | *7.32 | Mar. 20 | 1515 | 1,540 | 4.70 | | Feb. 4 | 1445 | 938 | 3.40 | Apr. 19 | 1900 | 1,000 | 3.53 | | Feb. 17 | 1430 | 1.240 | 4.03 | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 20 ft^3/s , Dec. 18, 19, gage height, 1.27 ft. | | DAILY MEAN VALUES | | | | | | | | | | | | | |-------|-------------------|------|------|------|------|------|------|------|------|------|------|------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 23 | 32 | 33 | e34 | 68 | 80 | 104 | 117 | 67 | 55 | 40 | 35 | | | 2 | 23 | 56 | 29 | e35 | 63 | 77 | 91 | 99 | 64 | 50 | 35 | 35 | | | 3 | 23 | 36 | 28 | e41 | 104 | 74 | 88 | 84 | 67 | 48 | 33 | 34 | | | 4 | 23 | 30 | 33 | 44 | 637 | 72 | 103 | 128 | 153 | 47 | 32 | 36 | | | 5 | 23 | 28 | 30 | 47 | 245 | 70 | 89 | 108 | 108 | 47 | 31 | 34 | | | 6 | 23 | 28 | 27 | 53 | 147 | 68 | 84 | 87 | 87 | 45 | 30 | 33 | | | 7 | 23 | 27 | 26 | 244 | 126 | 68 | 82 | 101 | 77 | 46 | 29 | 33 | | | 8 | 22 | 27 | 26 | 1290 | 118 | 159 | 81 | 172 | 71 | 52 | 57 | 35 | | | 9 | 22 | 27 | 28 | 169 | 112 | 315 | 141 | 106 | 73 | 51 | 58 | 34 | | | 10 | 22 | 26 | 29 | 92 | 101 | 140 | 100 | 197 | 134 | 45 | 52 | 33 | | | 11 | 22 | 26 | 29 | 71 | 107 | 103 | 90 | 199 | 132 | 43 | 45 | 33 | | | 12 | 22 | 26 | 27 | 65 | 120 | 90 | 84 | 122 | 112 | 42 | 40 | 35 | | | 13 | 23 | 28 | 27 | 62 | 98 | 85 | 81 | 100 | 88 | 46 | 88 | 35 | | | 14 | 23 | 36 | 26 | 53 | 86 | 83 | 83 | 91 |
77 | 42 | 51 | 36 | | | 15 | 23 | 30 | 26 | 138 | 77 | 78 | 81 | 86 | 81 | 41 | 51 | 37 | | | 16 | 22 | 27 | 29 | 115 | 180 | 78 | 85 | 81 | 72 | 39 | 219 | 38 | | | 17 | 23 | 26 | 28 | 76 | 800 | 78 | 271 | 77 | 68 | 42 | 122 | 38 | | | 18 | 25 | 26 | 26 | 63 | 296 | 87 | 126 | 73 | 64 | 38 | 64 | 40 | | | 19 | 25 | 26 | 25 | 59 | 154 | 154 | 380 | 71 | 65 | 38 | 50 | 42 | | | 20 | 25 | 26 | 25 | 56 | 130 | 629 | 208 | 69 | 63 | 36 | 44 | 43 | | | 21 | 23 | 29 | 25 | 51 | 110 | 243 | 114 | 79 | 59 | 35 | 41 | 49 | | | 22 | 23 | 38 | 37 | 53 | 98 | 154 | 95 | 75 | 59 | 35 | 41 | 60 | | | 23 | 23 | 31 | 35 | 136 | 176 | 130 | 88 | 106 | 59 | 34 | 40 | 53 | | | 24 | 24 | 28 | 36 | 92 | 122 | 118 | 84 | 118 | 56 | 34 | 52 | 48 | | | 25 | 32 | 27 | 60 | 74 | 101 | 113 | 76 | 85 | 55 | 41 | 42 | 47 | | | 26 | 39 | 27 | 38 | 63 | 92 | 108 | 73 | 80 | 54 | 40 | 39 | 48 | | | 27 | 41 | 27 | 43 | 60 | 90 | 104 | 75 | 138 | 52 | 39 | 37 | 45 | | | 28 | 28 | 26 | 42 | 96 | 86 | 100 | 75 | 93 | 51 | 39 | 37 | 44 | | | 29 | 26 | 26 | 37 | 91 | | 97 | 69 | 80 | 50 | 35 | 36 | 42 | | | 30 | 25 | 29 | 36 | 86 | | 94 | 71 | 74 | 54 | 35 | 36 | 63 | | | 31 | 25 | | 35 | 77 | | 93 | | 74 | | 46 | 36 | | | | TOTAL | 769 | 882 | 981 | 3686 | 4644 | 3942 | 3272 | 3170 | 2272 | 1306 | 1608 | 1218 | | | MEAN | 24.8 | 29.4 | 31.6 | 119 | 166 | 127 | 109 | 102 | 75.7 | 42.1 | 51.9 | 40.6 | | | MAX | 41 | 56 | 60 | 1290 | 800 | 629 | 380 | 199 | 153 | 55 | 219 | 63 | | | MIN | 22 | 26 | 25 | 34 | 63 | 68 | 69 | 69 | 50 | 34 | 29 | 33 | | | CFSM | .63 | .75 | .80 | 3.02 | 4.21 | 3.23 | 2.77 | 2.60 | 1.92 | 1.07 | 1.32 | 1.03 | | | IN. | .73 | .83 | .93 | 3.48 | 4.38 | 3.72 | 3.09 | 2.99 | 2.15 | 1.23 | 1.52 | 1.15 | | e Estimated. ### 03165000 CHESTNUT CREEK AT GALAX, VA--Continued | STATISTICS OF MOD | NTHLY MEAN | DATA F | FOR WATER | YEARS | 1945 - | 1998. | BY WA | TER YEAR | (WY) | |-------------------|------------|--------|-----------|-------|--------|-------|-------|----------|------| | MEAN 59.2 63.5 65.3 72.1 83.0 95.4 91.6 76.3 67.7 52.4 49.9 MAX 197 157 112 161 166 301 233 160 172 150 150 150 | 254
1989
18.6 | |--|---------------------| | | 18.6 | | (WY) 1948 1980 1958 1995 1998 1993 1983 1973 1992 1989 1949 MIN 19.8 27.3 25.8 23.9 35.9 38.1 37.4 34.2 25.5 20.7 15.0 | 1954 | | (WY) 1964 1982 1964 1956 1989 1988 1989 1956 1988 1986 1988 | | | SUMMARY STATISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEARS 1 | 45 - 1998 | | ANNUAL TOTAL 18370 27750 | | | ANNUAL MEAN 50.3 76.0 69.1 | | | HIGHEST ANNUAL MEAN 107 | 1993 | | LOWEST ANNUAL MEAN 37.3 | 1981 | | HIGHEST DAILY MEAN 358 Mar 14 1290 Jan 8 2050 Ap | r 21 1992 | | LOWEST DAILY MEAN 18 Sep 8 22 aOct 8 12 A | g 26 1981 | | ANNUAL SEVEN-DAY MINIMUM 19 Sep 3 22 Oct 6 13 A | g 23 1981 | | INSTANTANEOUS PEAK FLOW 2870 Jan 8 6980 O | t 17 1947 | | INSTANTANEOUS PEAK STAGE 7.32 Jan 8 bl4.40 00 | t 17 1947 | | INSTANTANEOUS LOW FLOW 20 cDec 18 12 dAy | g 25 1981 | | ANNUAL RUNOFF (CFSM) 1.28 1.93 1.75 | | | ANNUAL RUNOFF (INCHES) 17.34 26.20 23.82 | | | 10 PERCENT EXCEEDS 82 126 110 | | | 50 PERCENT EXCEEDS 42 53 52 | | | 90 PERCENT EXCEEDS 23 26 28 | | a Also Oct. 9-12, 16, 1997. b From floodmark, site and datum then in use. c Also Dec. 19, 1997. d Also part or all of each day Aug. 26-30, 1981. #### 03165500 NEW RIVER AT IVANHOE, VA LOCATION.--Lat 36°50'05", long 80°57'10", Wythe County, Hydrologic Unit 05050001, on left bank at Ivanhoe, 2.1 mi downstream from Big Branch, and 2.3 mi upstream from Cripple Creek. DRAINAGE AREA. -- 1,340 mi². PERIOD OF RECORD.--August to December 1927, October 1929 to September 1978, October 1978 to September 1982 (annual maximum only), February 1996 to present. Monthly discharge only for some periods, published in WSP 1305. Gageheight records collected in vicinity, October 1916 to July 1943, are contained in reports of the National Weather Service. REVISED RECORDS. -- WSP 783: Drainage area, 1933(M). GAGE.--Water-stage recorder. Datum of gage is 1,943.09 ft above sea level. REMARKS.--Records good except those for periods of no gage-height record May 4 to June 3, June 12-14, June 25 to Aug. 7, and Aug. 18-26, which are fair. Large diurnal fluctuation and some regulation caused by powerplants at Buck 2.8 mi upstream and at Byllesby 5.5 mi upstream. Maximum discharge, 155,000 ft³/s, from rating curve extended above 32,000 ft³/s on basis of flood records for other stations on New River. Minimum gage height, 0.59 ft, Oct. 11, 1965. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in July 1916 reached a stage of 34.8 ft, from floodmark, discharge, 132,000 ft³/s, from rating curve extended as explained above. Flood in September 1878 was about 5 ft lower than flood in July 1916 and was the highest known from 1840 to 1916. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 13,500 ft³/s and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1345 | *27,600 | *13.73 | Mar. 21 | 0045 | 20,200 | 11.28 | | Feb. 5 | 0115 | 17,200 | 10.09 | Apr. 20 | 0515 | 24,900 | 12.94 | | Feb. 18 | 0715 | 23,200 | 12.40 | | | | | Minimum discharge, 389 ft³/s, Sept. 9, gage height, 1.46 ft. | | | | | | | DAILY MEA | N VALUES | | | | | | |-------------|-------|-------|-------|--------|--------|-----------|----------|--------|-------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1020 | 999 | 868 | 867 | 2380 | 3790 | 2740 | 3620 | e3450 | e2100 | e1200 | 860 | | 2 | 863 | 1030 | 955 | 844 | 2270 | 3600 | 2890 | 4380 | e3060 | e2300 | e1260 | 807 | | 3 | 745 | 1210 | 1070 | 955 | 2350 | 3330 | 2720 | 4300 | e2870 | e2100 | e1150 | 812 | | 3
4
5 | 757 | 1230 | 1030 | 1200 | 9150 | 3150 | 2780 | e4760 | 3580 | e1900 | e1050 | 795 | | 5 | 751 | 1040 | 1020 | 1250 | 13900 | 2830 | 3210 | e5840 | 3770 | e1750 | e960 | 811 | | 6 | 743 | 934 | 1020 | 1320 | 7540 | 2710 | 3050 | e4720 | 3880 | e1700 | e920 | 784 | | 7 | 761 | 875 | 936 | 1700 | 5240 | 2650 | 2750 | e4200 | 3170 | e1650 | e1300 | 794 | | 8 | 648 | 829 | 862 | 17500 | 4210 | 2970 | 2600 | e5560 | 2770 | e1620 | 1240 | 790 | | 9 | 686 | 821 | 818 | 14600 | 3970 | 5740 | 2820 | e6610 | 2630 | e1600 | 1040 | 755 | | 10 | 685 | 806 | 913 | 5730 | 3820 | 8130 | 3750 | e7770 | 3160 | e1650 | 1060 | 890 | | 11 | 680 | 813 | 996 | 3560 | 3900 | 5530 | 3240 | e14000 | 6180 | e1550 | 1260 | 822 | | 12 | 670 | 786 | 1080 | 2800 | 4860 | 4090 | 2980 | e8990 | e5330 | e1400 | 1180 | 798 | | 13 | 705 | 798 | 953 | 2460 | 5500 | 3620 | 2770 | e6580 | e4260 | e1500 | 1510 | 738 | | 14 | 712 | 854 | 922 | 2220 | 4420 | 3300 | 2710 | e5290 | e3690 | e1500 | 1350 | 717 | | 15 | 688 | 933 | 836 | 2380 | 3770 | 2950 | 2640 | e4520 | 3190 | e1400 | 1140 | 674 | | 16 | 697 | 963 | 791 | 4420 | 3480 | 2790 | 2500 | e4010 | 3020 | e1320 | 3930 | 686 | | 17 | 692 | 889 | 798 | 4420 | 12600 | 2730 | 5430 | e3660 | 2870 | e1450 | 4150 | 677 | | 18 | 684 | 838 | 816 | 3250 | 20200 | 2770 | 9480 | e3360 | 2470 | e1350 | e1800 | 697 | | 19 | 700 | 794 | 844 | 2650 | 11200 | 4090 | 8640 | e3120 | 2330 | e1260 | e1500 | 687 | | 20 | 739 | 770 | 821 | 2300 | 7800 | 9400 | 20800 | e2960 | 2280 | e1200 | e1220 | 714 | | 21 | 853 | 782 | 829 | 2080 | 6050 | 16700 | 11200 | e3310 | 2290 | e1170 | e1100 | 706 | | 22 | 893 | 888 | 889 | 1970 | 5080 | 9270 | 7240 | e3660 | 2100 | e1150 | e1050 | 816 | | 23 | 753 | 998 | 992 | 2470 | 4890 | 6510 | 5660 | e3430 | 2140 | e1120 | e1070 | 868 | | 24 | 729 | 958 | 1130 | 3460 | 5840 | 4890 | 4980 | e4220 | 2580 | e1100 | e1100 | 813 | | 25 | 747 | 935 | 1280 | 3430 | 4850 | 4110 | 4290 | e3960 | e2700 | e1150 | e1130 | 765 | | 26 | 848 | 822 | 1770 | 2470 | 4080 | 3720 | 3880 | e3850 | e2300 | e1400 | e1050 | 720 | | 27 | 1030 | 815 | 1480 | 2340 | 3890 | 3460 | 3700 | e5190 | e2100 | e1350 | 1010 | 712 | | 28 | 1310 | 798 | 1360 | 2570 | 3740 | 3200 | 3600 | e6570 | e2000 | e1450 | 942 | 681 | | 29 | 1140 | 791 | 1300 | 2850 | | 3020 | 3570 | e4740 | e1900 | e1300 | 904 | 684 | | 30 | 864 | 808 | 1210 | 2600 | | 2860 | 3440 | e3810 | e1800 | e1180 | 873 | 697 | | 31 | 1360 | | 1040 | 2530 | | 2720 | | e4000 | | e1160 | 838 | | | TOTAL | 25153 | 26807 | 31629 | 105196 | 170980 | 140630 | 142060 | 154990 | 89870 | 45830 | 41287 | 22770 | | MEAN | 811 | 894 | 1020 | 3393 | 6106 | 4536 | 4735 | 5000 | 2996 | 1478 | 1332 | 759 | | MAX | 1360 | 1230 | 1770 | 17500 | 20200 | 16700 | 20800 | 14000 | 6180 | 2300 | 4150 | 890 | | MIN | 648 | 770 | 791 | 844 | 2270 | 2650 | 2500 | 2960 | 1800 | 1100 | 838 | 674 | | CFSM | .61 | .67 | .76 | 2.53 | 4.56 | 3.39 | 3.53 | 3.73 | 2.24 | 1.10 | .99 | .57 | | IN. | .70 | .74 | .88 | 2.92 | 4.75 | 3.90 | 3.94 | 4.30 | 2.49 | 1.27 | 1.15 | .63 | e Estimated. # 03165500 NEW RIVER AT IVANHOE, VA--Continued | STATISTICS C | JF. | MONTHI.Y | MEAN | $D\Delta T\Delta$ | FOR | WATER | VEARS | 1930-1978 | 1996** | 1997-1998 | BY MATER | VEVE | (WV) | |--------------|-----|----------|------|-------------------|-----|-------|-------|-----------|--------|-----------|----------|------|------| | | | | | | | | | | | | | | | | STATIST | rics of | MONTHLY MEAN | DATA | FOR WATER | YEARS 1 | 930-19 | 978, | 1996**, 19 | 97-1998 | 3, BY | WATER | YEAR (WY) | | | |---------|----------|--------------|------
-------------|----------|--------|------|-------------|---------|-------|-------|-----------|-----------|--------| | | OCT | NOV | DEC | JAN | FEB | 3 | MAR | APR | MA | Z | JUN | JUL | AUG | SEP | | MEAN | 1644 | 1817 | 2052 | 2503 | 2961 | . 3 | 3231 | 2936 | 2399 | 9 | 1911 | 1554 | 1613 | 1369 | | MAX | 4200 | 7149 | 4248 | 5052 | 6106 | 6 | 5266 | 5993 | 5000 |) | 4511 | 4440 | 8953 | 4499 | | (WY) | 1930 | 1978 | 1962 | 1937 | 1998 | 1 | L975 | 1960 | 1998 | 3 | 1976 | 1949 | 1940 | 1945 | | MIN | 491 | 578 | 703 | 678 | 693 | 1 | L450 | 1289 | 991 | L | 817 | 485 | 606 | 433 | | (WY) | 1931 | 1932 | 1940 | 1940 | 1934 | . 1 | 1931 | 1942 | 194 | L | 1930 | 1930 | 1956 | 1954 | | | | | | | | | | | | | | | | | | SUMMARY | Y STATIS | TICS | FOF | R 1997 CALI | ENDAR YE | AR | | FOR 1998 W. | ATER Y | EAR | | WATER Y | EARS 1930 | - 1978 | | | | | | | | | | | | | | | 1996* | * | | | | | | | | | | | | | | | 1997 | - 1998 | | ANNUAL | TOTAT | | | 718637 | | | | 997202 | | | | | | | | ANNUAL | | | | 1969 | | | | 2732 | | | | 2156 | | | | | r ANNUAL | MEAN | | 1000 | | | | 2752 | | | | 3188 | | 1978 | | | ANNUAL | | | | | | | | | | | 1285 | | 1934 | | | r DAILY | | | 9660 | Mar | 4 | | 20800 | Apr | 20 | | 87600 | Aug 1 | 4 1940 | | LOWEST | DAILY M | EAN | | 590 | Sep | 9 | | 648 | Oct | 8 | | 184 | | 8 1930 | | ANNUAL | SEVEN-D | AY MINIMUM | | 665 | Sep | 3 | | 684 | Oct | 8 | | 343 | Aug 2 | 6 1932 | | INSTANT | TANEOUS | PEAK FLOW | | | - | | | 27600 | Jan | 8 | | 155000 | Aug 1 | 4 1940 | | INSTANT | TANEOUS | PEAK STAGE | | | | | | 13.7 | 3 Jan | 8 | | a38.1 | Aug 1 | 4 1940 | | INSTANT | TANEOUS | LOW FLOW | | | | | | 389 | Sep | 9 | | 44 | Oct 1 | 1 1965 | | ANNUAL | RUNOFF | (CFSM) | | 1.4 | 47 | | | 2.0 | 4 | | | 1.6 | 1 | | | ANNUAL | RUNOFF | (INCHES) | | 19.9 | 95 | | | 27.6 | 8 | | | 21.8 | 6 | | | 10 PERG | CENT EXC | EEDS | | 3650 | | | | 5370 | | | | 3830 | | | | 50 PERG | CENT EXC | EEDS | | 1600 | | | | 1750 | | | | 1710 | | | | 90 PERG | CENT EXC | EEDS | | 746 | | | | 763 | | | | 748 | | | ^{**} Partial water year. a From floodmark. ### 03168000 NEW RIVER AT ALLISONIA, VA LOCATION.--Lat 36°56'15", long 80°44'45", Pulaski County, Hydrologic Unit 05050001, on left bank on State Highway 653, 0.2 mi downstream from Big Reed Island Creek, and 0.5 mi upstream from Allisonia. DRAINAGE AREA. -- 2,202 mi². PERIOD OF RECORD. -- September 1929 to current year. REVISED RECORDS.--WSP 783: Drainage area. WSP 823: 1936. WSP 1305: 1933(M). GAGE.--Water-stage recorder. Datum of gage is 1,848.36 ft above sea level. REMARKS.--Records good except those for period of doubtful gage-height record, June 14-17, and period of no gage-height record, Aug. 4-5, which are fair. Large diurnal fluctuation and some regulation by powerplant 25 mi upstream from station. U.S. Army Corps of Engineers satellite gage-height telemeter at station. American Electric Power gage-height transmitter at station. Maximum discharge, 185,000 ft³/s, from rating curve extended above 52,000 ft³/s on basis of flood records for other stations on New River. Minimum gage height, 0.47 ft, Sept. 7, 1930. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1645 | 38,200 | 8.72 | Mar. 21 | 0330 | 32,500 | 7.88 | | Feb. 5 | 0400 | 26,000 | 6.88 | Apr. 20 | 0600 | *38,900 | *8.82 | | Feb. 18 | 0845 | 32,700 | 7.92 | May 11 | 1300 | 19,400 | 5.86 | Minimum discharge, 739 ft^3/s , Oct. 8, gage height, 1.03 ft . | | DAILY MEAN VALUES | | | | | | | | | | | | |-------|-------------------|-------|-------|--------|--------|--------|--------|--------|--------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1350 | 1690 | 1150 | 1110 | 4080 | 5460 | 4300 | 4590 | 4850 | 2560 | 1540 | 1120 | | 2 | 1130 | 1460 | 1230 | 1040 | 3710 | 5180 | 4290 | 6600 | 4390 | 2980 | 1590 | 1090 | | 3 | 1020 | 1730 | 1390 | 1270 | 3710 | 4710 | 4070 | 6280 | 4370 | 2670 | 1580 | 1060 | | 4 | 976 | 1600 | 1350 | 1530 | 12200 | 4460 | 4100 | 8330 | 4470 | 2300 | e1380 | 1060 | | 5 | 952 | 1410 | 1340 | 1670 | 21900 | 4190 | 4530 | 10300 | 5560 | 2280 | e1300 | 1060 | | 6 | 934 | 1210 | 1320 | 1970 | 12400 | 3870 | 4490 | 8250 | 5490 | 2180 | 1230 | 1040 | | 7 | 1010 | 1160 | 1200 | 2510 | 8820 | 3780 | 4100 | 6770 | 4650 | 2130 | 1180 | 1050 | | 8 | 823 | 1130 | 1130 | 26700 | 7100 | 3940 | 3860 | 7710 | 4350 | 2110 | 1730 | 1030 | | 9 | 898 | 1100 | 1080 | 21000 | 6530 | 7490 | 4260 | 9550 | 4250 | 2150 | 1660 | 1010 | | 10 | 901 | 1080 | 1150 | 8350 | 6420 | 11000 | 5480 | 9310 | 4490 | 2190 | 1470 | 1110 | | 11 | 902 | 1080 | 1260 | 5210 | 6280 | 8080 | 4900 | 16900 | 8060 | 1970 | 1740 | 1060 | | 12 | 896 | 1050 | 1350 | 4070 | 7740 | 5970 | 4440 | 13600 | 7380 | 1870 | 1700 | 1040 | | 13 | 897 | 1060 | 1260 | 3490 | 8740 | 5040 | 4240 | 9780 | 5740 | 1860 | 1810 | 989 | | 14 | 897 | 1130 | 1190 | 3110 | 7080 | 4570 | 4050 | 7720 | e5000 | 1940 | 1990 | 945 | | 15 | 891 | 1200 | 1080 | 3310 | 5750 | 4340 | 3870 | 6580 | e4500 | 1840 | 1590 | 922 | | 16 | 892 | 1260 | 1010 | 6380 | 5110 | 4260 | 3720 | 5770 | e4200 | 1710 | 4290 | 934 | | 17 | 906 | 1180 | 999 | 6510 | 14900 | 4000 | 7380 | 5210 | e4000 | 1940 | 6620 | 879 | | 18 | 925 | 1110 | 1050 | 4710 | 29500 | 4020 | 13200 | 4670 | 3450 | 1760 | 3760 | 983 | | 19 | 938 | 1070 | 1060 | 3870 | 16400 | 6690 | 12700 | 4410 | 3200 | 1640 | 2300 | 1010 | | 20 | 967 | 1060 | 1070 | 3410 | 11400 | 14700 | 32900 | 4390 | 3120 | 1570 | 1860 | 971 | | 21 | 1020 | 1040 | 1090 | 3030 | 9250 | 26800 | 16500 | 4280 | 3030 | 1490 | 1610 | 993 | | 22 | 1130 | 1200 | 1140 | 2720 | 7760 | 14500 | 10800 | 4740 | 2860 | 1500 | 1460 | 1100 | | 23 | 1050 | 1320 | 1330 | 3620 | 7250 | 10100 | 8420 | 4760 | 2760 | 1450 | 1380 | 1150 | | 24 | 957 | 1310 | 1460 | 5190 | 8560 | 7620 | 7090 | 6350 | 3200 | 1460 | 1420 | 1120 | | 25 | 995 | 1230 | 1640 | 5120 | 7440 | 6390 | 6030 | 6390 | 3100 | 1470 | 1460 | 1030 | | 26 | 1100 | 1120 | 2220 | 4170 | 6220 | 5680 | 5440 | 5510 | 2930 | 1710 | 1340 | 992 | | 27 | 1370 | 1070 | 2030 | 3120 | 5700 | 5080 | 4950 | 6930 | 2620 | 1840 | 1270 | 962 | | 28 | 1640 | 1060 | 1870 | 4050 | 5510 | 4780 | 4840 | 9330 | 2510 | 1700 | 1270 | 941 | | 29 | 1520 | 1050 | 1750 | 4740 | | 4510 | 4660 | 7290 | 2410 | 1830 | 1200 | 924 | | 30 | 1170 | 1070 | 1600 | 4540 | | 4390 | 4480 | 5690 | 2360 | 1520 | 1150 | 951 | | 31 | 1210 | | 1460 | 4330 | | 4370 | | 5020 | | 1490 | 1110 | | | TOTAL | 32267 | 36240 | 41259 | 155850 | 257460 | 209970 | 208090 | 223010 | 123300 | 59110 | 56990 | 30526 | | MEAN | 1041 | 1208 | 1331 | 5027 | 9195 | 6773 | 6936 | 7194 | 4110 | 1907 | 1838 | 1018 | | MAX | 1640 | 1730 | 2220 | 26700 | 29500 | 26800 | 32900 | 16900 | 8060 | 2980 | 6620 | 1150 | | MIN | 823 | 1040 | 999 | 1040 | 3710 | 3780 | 3720 | 4280 | 2360 | 1450 | 1110 | 879 | | CFSM | . 47 | .55 | .60 | 2.28 | 4.18 | 3.08 | 3.15 | 3.27 | 1.87 | .87 | .83 | .46 | | IN. | .55 | .61 | .70 | 2.63 | 4.35 | 3.55 | 3.52 | 3.77 | 2.08 | 1.00 | .96 | .52 | e Estimated. ## 03168000 NEW RIVER AT ALLISONIA, VA--Continued | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 19 | 1930 - | - 1998, | BY | WATER | YEAR | (WY) | |--|--------|---------|----|-------|------|------| |--|--------|---------|----|-------|------|------| | F MONIALI | MEAN DAIA | FOR WAILE | I CARS I | 930 - 19 | 70, DI WAI | ER IE. | HIC (WI | . / | | | | |-------------
---|--|---|---|---|--|---|--|--------|---
---| | T NOV | DEC | JAN | FEB | MA | R APR | | MAY | JUN | JUL | AUG | SEP | | 5 2621 | 3014 | 3820 | 4518 | 508 | 4603 | | 3755 | 2891 | 2275 | 2213 | 2010 | | 1 9597 | 6125 | 8600 | 9195 | 1087 | 11880 | | 7736 | 8552 | 6230 | 11570 | 8448 | | 0 1978 | 1962 | 1995 | 1998 | 199 | 3 1987 | | 1973 | 1992 | 1949 | 1940 | 1989 | | 6 853 | 1007 | 1018 | 1041 | 155 | 1685 | | 1406 | 1067 | 744 | 850 | 743 | | 1 1932 | 1966 | 1956 | 1934 | 198 | 3 1942 | | 1941 | 1988 | 1930 | 1988 | 1930 | | | | | | | | | | | | | | | ISTICS | FOR | 1997 CAL | ENDAR YE | AR | FOR 1998 | WATE | R YEAR | ! | WATER | YEARS 1930 | 0 - 1998 | | ı | | 1039484 | | | 1434072 | | | | | | | | | | 2848 | | | 3929 | | | | 3252 | | | | AL MEAN | | | | | | | | | 4761 | | 1978 | | L MEAN | | | | | | | | | 1681 | | 1988 | | Y MEAN | | 16000 | Mar | 4 | 32900 | | Apr 20 | 1 | 95000 | Aug | 14 1940 | | MEAN | | 823 | Oct | 8 | 823 | | Oct 8 | 1. | 453 | Sep | 6 1930 | | MINIM YAC-I | JM | 888 | Oct | 8 | 888 | | Oct 8 | : | 555 | Sep | 3 1930 | | S PEAK FLOW | V | | | | 38900 | | Apr 20 | 1 | 185000 | Aug | 14 1940 | | S PEAK STAC | ΞE | | | | 8 | .82 | Apr 20 | 1 | 23. | .42 Aug | 14 1940 | | S LOW FLOW | | | | | 739 | | Oct 8 | : | 412 | Sep | 7 1930 | | F (CFSM) | | 1.3 | 29 | | 1 | .78 | | | 1. | .48 | | | F (INCHES) | | 17. | 56 | | 24 | .23 | | | 20. | .07 | | | XCEEDS | | 5530 | | | 7880 | | | | 5860 | | | | XCEEDS | | 2140 | | | 2300 | | | | 2440 | | | | XCEEDS | | 993 | | | 1020 | | | | 1110 | | | | | 25 2621
26 29597
20 1978
26 853
21 1932
21STICS
21AL MEAN
31 MEAN
32 MEAN
33 MEAN
34 MEAN
35 MEAN
36 MEAN
37 MEAN
38 M | ET NOV DEC 15 2621 3014 11 9597 6125 10 1978 1962 16 853 1007 11 1932 1966 EISTICS FOR WAL MEAN LL MEAN LL MEAN LL MEAN LY MEAN THEAN T | T NOV DEC JAN 15 2621 3014 3820 161 9597 6125 8600 10 1978 1962 1995 166 853 1007 1018 161 1932 1966 1956 TISTICS FOR 1997 CALI 1039484 2848 VAL MEAN 1 MEAN 1 MEAN 1 MEAN 1 MEAN 1 MEAN 1 DAY MINIMUM 1S PEAK FLOW IS PEAK STAGE IS LOW FLOW 1 (CFSM) 1 (1) 1 | T NOV DEC JAN FEB 15 2621 3014 3820 4518 16 9597 6125 8600 9195 10 1978 1962 1995 1998 16 853 1007 1018 1041 11 1932 1966 1956 1934 TISTICS FOR 1997 CALENDAR YE 1039484 2848 VAL MEAN LI MEAN LY MEAN 16000 Mar T MEAN 823 Oct 1-DAY MINIMUM 888 Oct IS PEAK FLOW IS PEAK STAGE IS LOW FLOW IF (CPSM) 1.29 17.56 1XCEEDS 5530 1XCEEDS 5530 1XCEEDS 5530 12140 | TO NOV DEC JAN FEB MAI 15 2621 3014 3820 4518 5086 16 9597 6125 8600 9195 10876 10 1978 1962 1995 1998 1998 16 853 1007 1018 1041 1556 11 1932 1966 1956 1934 1988 TISTICS FOR 1997 CALENDAR YEAR 1039484 2848 VAL MEAN 11 MEAN 12 MEAN 13 MEAN 14 MEAN 15 MEAN 16 MEAN 16 MEAN 17 MEAN 18 B88 Oct 8 18 PEAK FLOW 18 PEAK FLOW 18 PEAK STAGE 18 LOW FLOW 17 (FFM) 1 1.29 17 1.56 18 MEEDS 15 5530 18 MEEDS 15 140 | TO NOV DEC JAN FEB MAR APR 15 2621 3014 3820 4518 5080 4603 161 9597 6125 8600 9195 10870 11880 17 10 1978 1962 1995 1998 1993 1987 186 853 1007 1018 1041 1554 1685 181 1932 1966 1956 1934 1988 1942 TISTICS FOR 1997 CALENDAR YEAR FOR 1998 10 1039484 1434072 2848 3929 TAL MEAN 11 MEAN 12 MEAN 13 MEAN 14 MEAN 15 MEAN 823 Oct 8 823 15 DAY MINIMUM 888 Oct 8 888 15 PEAK FLOW 15 PEAK STAGE 885 1085 1295 17.56 15 LOW FLOW 16 (CFSM) 1.29 17.56 17 T.56 24 17 T.56 226 18 SECEEDS 5530 7880 18 SECEEDS 5530 7880 | TO NOV DEC JAN FEB MAR APR 15 2621 3014 3820 4518 5080 4603 161 9597 6125 8600 9195 10870 11880 17 10 1978 1962 1995 1998 1993 1987 186 853 1007 1018 1041 1554 1685 181 1932 1966 1956 1934 1988 1942 TISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATE 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | TO NOV DEC JAN FEB MAR APR MAY 15 2621 3014 3820 4518 5080 4603 3755 16 9597 6125 8600 9195 10870 11880 7736 10 1978 1962 1995 1998 1993 1987 1973 16 853 1007 1018 1041 1554 1685 1406 11 1932 1966 1956 1934 1988 1942 1941 TISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR 1039484 1434072 2848 3929 VAL MEAN LI MEAN LY MEAN 16000 Mar 4 32900 Apr 20 T MEAN 823 Oct 8 823 Oct 8 T DAY MINIMUM 888 Oct 8 888 Oct 8 IS PEAK FLOW IS PEAK STAGE IS LOW FLOW 739 Oct 8 IS LOW FLOW 739 Oct 8 T (F) (INCHES) 17.56 24.23 EXCEEDS 5530 7880 EXCEEDS 5530 7880 EXCEEDS 5530 7880 EXCEEDS 5530 7880 | S | TO NOV DEC JAN FEB MAR APR MAY JUN JUL 15 2621 3014 3820 4518 5080 4603 3755 2891 2275 161 9597 6125 8600 9195 10870 11880 7736 8552 6230 10 1978 1962 1995 1998 1993 1987 1973 1992 1949 166 853 1007 1018 1041 1554 1685 1406 1067 744 11 1932 1966 1956 1934 1988 1942 1941 1988 1930 1930 1932 1966 1956 1934 1988 1942 1941 1988 1930 1930 1930 1930 1930 1930 1930 1930 | TO NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 15 2621 3014 3820 4518 5080 4603 3755 2891 2275 2213 10 9597 6125 8600 9195 10870 11880 7736 8552 6230 11570 10 1978 1962 1995 1998 1993 1987 1973 1992 1949 1940 16 853 1007 1018 1041 1554 1685 1406 1067 744 850 11 1932 1966 1956 1934 1988 1942 1941 1988 1930 1988 TISTICS FOR 1997 CALENDAR YEAR FOR 1998 WATER YEAR WATER YEARS 1930 AL MEAN 1039484 1434072 2848 3929 3252 VAL MEAN 4761 LL MEAN 1681 LY MEAN 16000 Mar 4 32900 Apr 20 95000 Aug MEAN 823 Oct 8 823 Oct 8 453 Sep I-DAY MINIMUM 888 Oct 8 888 Oct 8 555 Sep SEPEAK FLOW 38900 Apr 20 185000 Aug SES PEAK FLOW 38900 Apr 20 185000 Aug SES PEAK STAGE 882 Apr 20 23.42 Aug SES PEAK STAGE 882 Apr 20 23.42 Aug SES LOW FLOW 739 Oct 8 412 Sep FF (INCHES) 17.56 24.23 20.07 EXCEEDS 5530 7880 5860 EXCEEDS 5530 7880 5860 EXCEEDS 5530 7880 5860 EXCEEDS 5530 7880 5860 | ### 03170000 LITTLE RIVER AT GRAYSONTOWN, VA LOCATION.--Lat 37°02'15", long 80°33'25", Pulaski County, Hydrologic Unit 05050001, on left bank at upstream side of bridge on State Highway 693 at Snowville, 0.5 mi southeast of Graysontown, 7 mi south of Radford, and at mile 8.6. DRAINAGE AREA. -- 300 mi². PERIOD OF RECORD. --October 1928 to current year. Published as "at Graysonton" prior to October 1990. REVISED RECORDS.--WSP 823: 1929-36. WSP 1143: 1945. WSP 1305: 1929(M). WSP 1555: Drainage area (at site used 1928-41). WSP 1625: 1951(M). WSP 1725: 1936(M). GAGE.--Water-stage recorder. Datum of gage is 1,816.04 ft above sea level. Prior to Nov. 20, 1931, nonrecording gage at bridge 1.0 mi downstream at datum 17.99 ft lower. Nov. 20, 1931, to Nov. 12, 1941, water-stage recorder 1.2 mi downstream at datum 20.58 ft lower. REMARKS.--Records good except for period with ice effect, Dec. 31 to Jan. 1, which is fair. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, 22,800 ft³/s, from rating curve extended above 16,000 ft³/s on basis of slope-area measurements at gage heights 12.76 ft and 13.40 ft. Minimum discharge, 21 ft³/s, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|-------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 0600 | *6,880 | *6.42 | Mar. 21 | 0130 | 6,100 | 5.99 | | Feb. 4 | 2200 | 4,820 | 5.25 | Apr. 20 | 0330 | 3,990 | 4.74 | | Feb. 18 | 0.030 | 4.130 | 4.83 | = | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES Minimum discharge, 70 ft^3/s , Dec. 16, gage height, 0.77 ft . | | | | | | DA | ALLY MEAN | VALUES | | | | | |
-------|------|------|------|-------|-------|-----------|--------|-------|-------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 132 | 142 | 147 | e100 | 520 | 546 | 467 | 471 | 384 | 251 | 159 | 134 | | 2 | 117 | 226 | 144 | 144 | 470 | 513 | 478 | 616 | 345 | 241 | 156 | 131 | | 3 | 114 | 315 | 136 | 185 | 455 | 486 | 444 | 528 | 356 | 236 | 137 | 130 | | 4 | 116 | 189 | 143 | 203 | 2110 | 458 | 510 | 619 | 430 | 227 | 126 | 130 | | 5 | 114 | 158 | 151 | 219 | 2920 | 438 | 665 | 719 | 432 | 231 | 120 | 138 | | 6 | 109 | 145 | 144 | 308 | 1550 | 422 | 536 | 625 | 412 | 247 | 117 | 129 | | | | | | 384 | | | | | | | | | | 7 | 107 | 142 | 128 | | 1230 | 408 | 480 | 541 | 364 | 220 | 113 | 123 | | 8 | 105 | 146 | 120 | 3670 | 974 | 433 | 455 | 585 | 327 | 225 | 517 | 120 | | 9 | 105 | 149 | 139 | 1260 | 902 | 781 | 492 | 583 | 310 | 261 | 792 | 112 | | 10 | 105 | 149 | 150 | 610 | 822 | 889 | 598 | 514 | 354 | 234 | 294 | 109 | | 11 | 105 | 140 | 162 | 412 | 793 | 591 | 509 | 809 | 450 | 213 | 308 | 110 | | 12 | 105 | 136 | 158 | 345 | 1090 | 505 | 464 | 871 | 600 | 198 | 230 | 110 | | 13 | 106 | 136 | 143 | 354 | 1080 | 471 | 432 | 655 | 492 | 197 | 182 | 108 | | 14 | 106 | 148 | 136 | 339 | 834 | 464 | 414 | 563 | 378 | 196 | 167 | 104 | | 15 | 110 | 171 | 115 | 429 | 686 | 449 | 409 | 510 | 361 | 190 | 164 | 101 | | 16 | 110 | 163 | 106 | 1040 | 604 | 424 | 405 | 468 | 371 | 180 | 215 | 100 | | 17 | 114 | 143 | 121 | 671 | 1760 | 420 | 736 | 459 | 395 | 199 | 553 | 108 | | 18 | 123 | 133 | 143 | 503 | 2580 | 426 | 984 | 426 | 347 | 221 | 363 | 114 | | 19 | 132 | 129 | 141 | 416 | 1250 | 802 | 1240 | 385 | 314 | 176 | 252 | 111 | | 20 | 127 | 136 | 140 | 377 | 961 | 1740 | 2730 | 364 | 325 | 165 | 216 | 115 | | 20 | 127 | 150 | 110 | 5,,, | 201 | 1710 | 2750 | 501 | 323 | 103 | 210 | 115 | | 21 | 123 | 143 | 142 | 334 | 832 | 3760 | 1210 | 360 | 290 | 160 | 192 | 122 | | 22 | 115 | 177 | 150 | 303 | 699 | 1510 | 864 | 362 | 278 | 223 | 183 | 163 | | 23 | 113 | 208 | 196 | 372 | 765 | 1010 | 720 | 394 | 270 | 200 | 175 | 182 | | 24 | 113 | 165 | 187 | 636 | 1030 | 797 | 645 | 598 | 263 | 177 | 169 | 132 | | 25 | 123 | 146 | 206 | 561 | 781 | 682 | 578 | 605 | 287 | 164 | 163 | 121 | | 26 | 146 | 139 | 243 | 459 | 666 | 617 | 526 | 503 | 270 | 163 | 160 | 119 | | 27 | 178 | 138 | 195 | 408 | 607 | 579 | 499 | 551 | 249 | 163 | 153 | 118 | | 28 | 178 | 136 | 192 | 436 | 578 | 547 | 480 | 777 | 237 | 164 | 148 | 113 | | 29 | 136 | 135 | 144 | 745 | | 521 | 457 | 559 | 255 | 162 | 146 | 108 | | 30 | 127 | 140 | 108 | 690 | | 498 | 442 | 463 | 274 | 145 | 140 | 112 | | 31 | 124 | | e105 | 596 | | 479 | | 412 | | 141 | 136 | | | | | | | | | | | | | | | | | TOTAL | 3738 | 4723 | 4635 | 17509 | 29549 | 22666 | 19869 | 16895 | 10420 | 6170 | 6946 | 3627 | | MEAN | 121 | 157 | 150 | 565 | 1055 | 731 | 662 | 545 | 347 | 199 | 224 | 121 | | MAX | 178 | 315 | 243 | 3670 | 2920 | 3760 | 2730 | 871 | 600 | 261 | 792 | 182 | | MIN | 105 | 129 | 105 | 100 | 455 | 408 | 405 | 360 | 237 | 141 | 113 | 100 | | CFSM | .40 | .52 | .50 | 1.88 | 3.52 | 2.44 | 2.21 | 1.82 | 1.16 | .66 | .75 | .40 | | IN. | .46 | .59 | .57 | 2.17 | 3.66 | 2.81 | 2.46 | 2.09 | 1.29 | .77 | .86 | .45 | e Estimated. #### KANAWHA RIVER BASIN ## 03170000 LITTLE RIVER AT GRAYSONTOWN, VA--Continued | STATISTICS | OF | MONTHI.V | ME AN | בדבת | FOR | WATER | VEARS | 1929 | - 1998 | BY WATER | VEAR | (WV) | |------------|----|----------|-------|------|-----|-------|-------|------|--------|----------|------|------| | | OCT | NOV | DEC | JAN | FEB | i | MAR | APR | | MAY | JUN | JUL | AUG | SEP | |----------|-----------|-----------|-------|------------|---------|----|------|----------|------|---------|------|---------|-----------|---------| | MEAN | 299 | 302 | 336 | 409 | 483 | | 549 | 510 | | 412 | 337 | 268 | 256 | 251 | | MAX | 1458 | 916 | 860 | 1050 | 1055 | | 1213 | 1445 | | 810 | 942 | 945 | 1584 | 988 | | (WY) | 1930 | 1986 | 1949 | 1937 | 1998 | | 1993 | 1987 | | 1958 | 1972 | 1949 | 1940 | 1989 | | MIN | 86.7 | 107 | 115 | 108 | 113 | | 220 | 146 | | 168 | 137 | 108 | 88.3 | 76.9 | | (WY) | 1954 | 1932 | 1966 | 1966 | 1934 | | 1940 | 1942 | | 1941 | 1964 | 1930 | 1981 | 1932 | | SUMMARY | STATIST | ICS | FOR I | 1997 CALEN | IDAR YE | AR | | FOR 1998 | WATI | ER YEAR | | WATER Y | EARS 1929 | - 1998 | | | | | | | | | | | | | | | | | | ANNUAL T | TOTAL | | | 119933 | | | | 146747 | | | | | | | | ANNUAL M | /IEAN | | | 329 | | | | 402 | | | | 367 | | | | HIGHEST | ANNUAL I | MEAN | | | | | | | | | | 631 | | 1949 | | LOWEST A | ANNUAL MI | EAN | | | | | | | | | | 191 | | 1981 | | HIGHEST | DAILY M | EAN | | 1710 | Mar | 4 | | 3760 | | Mar 21 | | 13200 | Oct | 2 1929 | | LOWEST I | DAILY ME | AN | | 95 | Sep | 8 | | 100 | ä | aJan 1 | | 50 | Sep | 21 1932 | | ANNUAL S | SEVEN-DA | Y MINIMUM | | 103 | Sep | 3 | | 105 | | Oct 8 | | 57 | Jul | 23 1966 | | INSTANTA | ANEOUS PI | EAK FLOW | | | | | | 6880 | | Jan 8 | | 22800 | Jun | 21 1972 | | INSTANTA | ANEOUS PI | EAK STAGE | | | | | | 6 | .42 | Jan 8 | | 13.4 | 0 Jun | 21 1972 | | INSTANTA | ANEOUS LO | OW FLOW | | | | | | 70 | | Dec 16 | | b21 | Feb | 22 1942 | | ANNUAL F | RUNOFF (| CFSM) | | 1.10 |) | | | 1 | .34 | | | 1.2 | 2 | | | ANNUAL F | RUNOFF (| INCHES) | | 14.87 | 7 | | | 18 | .20 | | | 16.6 | 1 | | | 10 PERCE | ENT EXCE | EDS | | 609 | | | | 781 | | | | 622 | | | | 50 PERCE | ENT EXCE | EDS | | 261 | | | | 252 | | | | 270 | | | | 90 PERCE | ENT EXCE | EDS | | 116 | | | | 115 | | | | 128 | | | a Also Sept. 16, 1998. b Result of freezeup. #### 03170000 LITTLE RIVER AT GRAYSONTOWN, VA LOCATION.--Lat 37°02′15", long 80°33′25", Pulaski County, Hydrologic Unit 05050001, on left bank at upstream side of bridge on State Highway 693 at Snowville, 0.5 mi southeast of Graysontown, 7 mi south of Radford, and at mile 8.6. DRAINAGE AREA.-- 300 mi². PERIOD OF RECORD.--October 1996 to September 1998, discontinued. | | | | DIS- | ann. | PH | | | BARO- | | OXYGEN, | |-----------|-------|---------|------------------|---------------|----------------|------------|---------|-----------------|---------|----------------| | | | | CHARGE,
INST. | SPE-
CIFIC | WATER
WHOLE | | | METRIC
PRES- | | DIS-
SOLVED | | | | | CUBIC | CON- | FIELD | TEMPER- | TEMPER- | SURE | OXYGEN, | (PER- | | | | GAGE | FEET | DUCT- | (STAND- | ATURE | ATURE | (MM | DIS- | CENT | | DATE | TIME | HEIGHT | PER | ANCE | ARD | AIR | WATER | OF | SOLVED | SATUR- | | | | (FEET) | SECOND | (µS/CM) | UNITS) | (DEG C) | (DEG C) | HG) | (MG/L) | ATION) | | | | (00065) | (00061) | (00095) | (00400) | (00020) | (00010) | (00025) | (00300) | (00301) | | OCT 1997 | | | | | | | | | | | | 09 | 0905 | .91 | 106 | 87 | 7.4 | 13.5 | 16.3 | 719 | 8.8 | 95 | | NOV | | | | | | | | | | | | 05 | 0830 | 1.08 | 160 | 85 | 7.3 | -1.0 | 5.8 | 720 | 11.5 | 98 | | DEC | | | | | | | | | | | | 11 | 0845 | 1.09 | 163 | 75 | 7.2 | 2.5 | 3.2 | 708 | 9.8 | 79 | | JAN 1998 | | | | | | | | | | | | 08 | 1345 | 5.38 | 5050 | 64 | 6.8 | 18.0 | 11.8 | E714 | 8.3 | | | 13 | 1000 | 1.47 | 342 | 77 | 7.4 | 12.0 | 5.2 | 713 | 10.8 | 91 | | 16 | 0825 | 2.56 | 1170 | 74 | 7.2 | 6.8 | 3.8 | 700 | 12.4 | 102 | | FEB | 1000 | 4 0 4 | 0040 | | | | 2 1 | 600 | 10 5 | 100 | | 05 | 1000 | 4.04 | 2940 | 58
72 | 6.9 | 6.0
1.5 | 3.1 | 699 | 12.7 | 103 | | 10
MAR | 0945 | 2.17 | 829 | 12 | 7.2 | 1.5 | 3.9 | 715 | 12.7 | 103 | | 10 | 0900 | 2.28 | 922 | 65 | 7.8 | -1.0 | 7.3 | 700 | 10.8 | 97 | | APR | 0900 | 2.20 | 922 | 0.5 | 7.0 | -1.0 | 7.3 | 700 | 10.0 | 91 | | 14 | 0910 | 1.59 | 415 | 70 | 7.5 | 13.0 | 12.3 | 709 | 9.6 | 97 | | MAY | 0,010 | 1.35 | 113 | 70 | ,.5 | 13.0 | 12.5 | 705 | 5.0 | , | | 05 | 0915 | 2.02 | 711 | 63 | 7.5 | 15.5 | 12.9 | 708 | 9.0 | 92 | | JUN | | | | | | | | | | | | 02 | 0915 | 1.48 | 348 | 79 | 7.4 | 23.0 | 20.9 | 700 | 8.1 | 99 | | JUL | | | | | | | | | | | | 17 | 0845 | 1.13 | 179 | 85 | 7.4 | 23.0 | 24.6 | 711 | 7.5 | 97 | | AUG | | | | | | | | | | | | 04 | 0830 | .97 | 123 | 87 | 7.4 | 15.5 | 20.0 | 717 | 8.9 | 104 | | SEP | | | | | | | | | | | | 04 | 0845 | .98 | 126 | 91 | 7.5 | 20.0 | 20.4 | 708 | 8.4 | 100 | | | | | | | | | | | | | 03170000 LITTLE RIVER AT GRAYSONTOWN, VA--Continued | DATE | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | |---|--|--|---|---|---|--|--|--
---|---| | OCT 1997
09 | 62 | 60 | 38 | | 7.7 | 4.4 | 3.0 | 14 | . 2 | 1.8 | | NOV
05 | 160 | 140 | 32 | | 6.9 | 3.6 | 2.9 | 15 | . 2 | 2.9 | | DEC
11
JAN 1998 | 120 | 88 | 31 | | 7.0 | 3.3 | 2.9 | 16 | .2 | 1.3 | | 08 | | | 19 | 2 | 4.3 | 1.9 | 3.0 | 22 | .3 | 3.4 | | 13 | 150 | 230 | 29
25 | 7
3 | 6.4
5.5 | 3.3 | 3.0 | 17
24 | .2 | 1.7 | | 16
FEB | 3200 | 3000 | | 3 | | | 3.9 | | | 2.2 | | 05
10 | 2300
120 | 3400
100 | 18
25 | | 4.1
5.6 | 2.0 | 2.7 | 22
19 | .3 | 1.9
1.6 | | MAR | | | | | | | | | | | | 10
APR | >6000 | 5700 | 24 | 7 | 5.4 | 2.5 | 2.8 | 19 | . 2 | 1.7 | | 14
MAY | 44 | 46 | 28 | 3 | 6.1 | 3.0 | 2.7 | 17 | . 2 | 1.2 | | 05
JUN | 930 | 580 | 31 | 9 | 9.3 | 1.8 | 1.0 | 7 | .1 | 1.1 | | 02 | 150 | 150 | 31 | 1 | 6.9 | 3.4 | 2.9 | 16 | .2 | 1.5 | | JUL
17 | 150 | 120 | 34 | 3 | 7.3 | 3.8 | 3.0 | 15 | . 2 | 1.6 | | AUG
04 | 110 | 100 | 34 | 2 | 7.4 | 3.8 | 2.9 | 15 | . 2 | 1.2 | | SEP
04 | 67 | 53 | 38 | 5 | 8.0 | 4.4 | 3.0 | 14 | .2 | 1.6 | | | | | | | | | | | | | | DATE | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | | OCT 1997 | BONATE WATER DIS IT FIELD MG/L AS HCO3 | BONATE WATER DIS IT FIELD MG/L AS CO3 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | | OCT 1997
09
NOV | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | BONATE WATER DIS IT FIELD MG/L AS CO3 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | | OCT 1997
09
NOV
05
DEC | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | BONATE WATER DIS IT FIELD MG/L AS CO3 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | | OCT 1997
09
NOV
05
DEC
11 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | BONATE WATER DIS IT FIELD MG/L AS CO3 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | | OCT 1997
09
NOV
05
DEC
11
JAN 1998
08 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) < < < < < < < < | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
2.6
3.3
2.9 | RIDE,
DIS-
SOLVED (MG/L
AS CL)
(00940)
4.1
5.0
3.9
5.5 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
8.9
10
11 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
56
64
55 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
56
56
52 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.08
.09
.07 | | OCT 1997
09
NOV
05
DEC
11
JAN 1998
08
13 | BONATE WATER DIS IT FIELD MG/L AS HC03 (00453) | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) < < < < < < < < | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
2.6
3.3
2.9
5.0
4.1 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
4.1
5.0
3.9
5.5
5.2 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.10
<.10
<.10 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
8.9
10
11
6.9 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
56
64
55
52
63 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
56
56
52
43
52 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.08
.09
.07 | | OCT 1997
09
NOV
05
DEC
11
JAN 1998
08 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) < < < < < < < < | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
2.6
3.3
2.9 | RIDE,
DIS-
SOLVED (MG/L
AS CL)
(00940)
4.1
5.0
3.9
5.5 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
8.9
10
11 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
56
64
55 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
56
56
52 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.08
.09
.07 | | OCT 1997
09
NOV
05
DEC
11
JAN 1998
08
13
16
FEB | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 20 27 27 24 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 <1 <1 <1 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 20 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
2.6
3.3
2.9
5.0
4.1
4.5 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
4.1
5.0
3.9
5.5
5.2
6.9 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
8.9
10
11
6.9
12
10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
56
64
55
52
63
39
45 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
56
56
52
43
52
52
52 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.08
.09
.07
.07
.09
.05 | | OCT 1997
09
NOV
05
DEC
11
JAN 1998
08
13
16
FEB
05 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 20 27 27 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 <1 <1 <1 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 | DIS-
SOLVED (MG/L
AS SO4) (00945)
2.6
3.3
2.9
5.0
4.1
4.5 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
4.1
5.0
3.9
5.5
5.2
6.9 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
8.9
10
11
6.9
12 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
56
64
55
52
63
39 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
56
56
52
43
52
52 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.08
.09
.07 | | OCT 1997
09
NOV
05
DEC
11
JAN 1998
08
13
16
FEB
05
10 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 20 27 27 24 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 <1 <1 <1 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 20 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
2.6
3.3
2.9
5.0
4.1
4.5 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
4.1
5.0
3.9
5.5
5.2
6.9 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
8.9
10
11
6.9
12
10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
56
64
55
52
63
39
45 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
56
56
52
43
52
52
52 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.08
.09
.07
.07
.09
.05 | | OCT 1997
09
NOV
05
DEC
111
JAN 1998
08
13
16
FEB
05
10
MAR
10 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 20 27 27 24 35 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) < < < < < < < < | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 20 29 | DIS-
SOLVED (MG/L
AS SO4) (00945) 2.6 3.3 2.9 5.0 4.1 4.5 5.2 4.9 | RIDE,
DIS-
SOLVED (MG/L
AS
CL) (00940)
4.1
5.0
3.9
5.5
5.2
6.9
4.8
5.1 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
8.9
10
11
6.9
12
10
5.9
9.7 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
56
64
55
52
63
39
45
47 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
56
56
52
43
52
52
52
41
53 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.08
.09
.07
.07
.09
.05 | | OCT 1997 09 NOV 05 DEC 11 JAN 1998 08 13 16 FEB 05 10 MAR 10 APR 14 MAY 05 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 20 27 27 24 35 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 <1 <1 <1 <1 <1 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 20 29 17 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
2.6
3.3
2.9
5.0
4.1
4.5
5.2
4.9 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
4.1
5.0
3.9
5.5
5.2
6.9
4.8
5.1 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.10
<.10
<.10
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
8.9
10
11
6.9
12
10
5.9
9.7 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
56
64
55
52
63
39
45
47 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
56
56
52
43
52
52
52
41
53 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.08
.09
.07
.07
.09
.05
.06
.06 | | OCT 1997
09
NOV
05
DEC
11
JAN 1998
08
13
16
FEB
05
10
MAR
10
APR
14 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 20 27 27 24 35 21 30 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) < < < < < < < < | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 20 29 17 24 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
2.6
3.3
2.9
5.0
4.1
4.5
5.2
4.9
3.5
3.1 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
4.1
5.0
3.9
5.5
5.2
6.9
4.8
5.1
4.4 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.10
<.10
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
8.9
10
11
6.9
12
10
5.9
9.7
8.6
8.4 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
56
64
55
52
63
39
45
47
48
50 | SUM OF
CONSTITUENTS,
DIS-
SOLVED
(MG/L)
(70301)
56
56
52
43
52
52
52
41
53
42 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.08
.09
.07
.07
.09
.05
.06
.06 | | OCT 1997 09 NOV 05 DEC 11 JAN 1998 08 13 16 FEB 05 10 MAR 10 APR 14 MAY 05 JUN 02 JUL 17 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 20 27 27 24 35 21 30 27 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 <1 <1 <1 <1 <1 <1 <1 <1 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 20 29 17 24 22 | DIS-
SOLVED (MG/L
AS SO4) (00945) 2.6 3.3 2.9 5.0 4.1 4.5 5.2 4.9 3.5 3.1 5.2 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
4.1
5.0
3.9
5.5
5.2
6.9
4.8
5.1
4.4
3.9 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.10
<.10
<.10
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
8.9
10
11
6.9
12
10
5.9
9.7
8.6
8.4
5.3 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
56
64
55
52
63
39
45
47
48
50 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
56
56
52
43
52
52
52
41
53
42
44 | DIS-
SOLVED (TONS
PER
AC-FT) (70303)
.08
.09
.07
.07
.09
.05
.06
.06 | | OCT 1997 09 NOV 05 DEC 11 JAN 1998 08 13 16 FEB 05 10 MAR 10 APR 14 MAY 05 JUN 02 JUL | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) < < < < < < < < | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 16 22 22 20 29 17 24 22 31 | DIS-
SOLVED (MG/L
AS SO4) (00945) 2.6 3.3 2.9 5.0 4.1 4.5 5.2 4.9 3.5 3.1 5.2 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
4.1
5.0
3.9
5.5
5.2
6.9
4.8
5.1
4.4
3.9 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
<.10
<.10
<.10
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
8.9
10
11
6.9
12
10
5.9
9.7
8.6
8.4
5.3 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
56
64
55
52
63
39
45
47
48
50
49 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
56
56
52
43
52
52
52
41
53
42
44
40 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.08
.09
.07
.07
.09
.05
.06
.06
.07
.07 | ## 03170000 LITTLE RIVER AT GRAYSONTOWN, VA--Continued | | | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | | | | | |----------------|-------------|----------------|--------------|---------------|------------|-------------|------------|---------|---------------|----------------| | | SOLIDS, | GEN, | GEN, | GEN, | GEN,AM- | GEN, AM- | | NITRO- | | PHOS- | | | DIS- | NITRITE | NO2+NO3 | AMMONIA | MONIA + | MONIA + | NITRO- | GEN | PHOS- | PHORUS | | | SOLVED | DIS- | DIS- | DIS- | ORGANIC | ORGANIC | GEN, | DIS- | PHORUS | DIS- | | | (TONS | SOLVED | SOLVED | SOLVED | TOTAL | DIS. | TOTAL | SOLVED | TOTAL | SOLVED | | DATE | PER | (MG/L | | DAY) | AS N) P) | AS P) | | | (70302) | (00613) | (00631) | (00608) | (00625) | (00623) | (00600) | (00602) | (00665) | (00666) | | OGT 1005 | | | | | | | | | | | | OCT 1997
09 | 16.1 | <.010 | .095 | <.015 | <.20 | <.20 | | | <.050 | <.050 | | NOV | 10.1 | <.010 | .095 | <.015 | <.20 | <.20 | | | <.050 | <.050 | | | 27.6 | 0.07 | 252 | - 000 | 20 | . 23 | 10 | . 49 | п 022 | . 050 | | 05
DEC | 27.6 | .027 | .253 | <.020 | .20 | . 43 | .46 | . 49 | E.033 | <.050 | | 11 | 24.3 | <.010 | .309 | <.020 | <.10 | <.10 | | | <.050 | <.050 | | JAN 1998 | 24.3 | <.010 | .309 | <.020 | <.10 | <.10 | | | <.050 | <.050 | | | 700 | - 010 | 620 | 110 | 0 3 | F1 | 0 0 | 1 1 | 1 (5 | . 050 | | 08 | 709 | <.010 | .628 | .110
<.020 | 9.3 | .51 | 9.9 | 1.1 | 1.65
<.050 | <.050 | | 13
16 | 58.2
124 | <.010
<.010 | .668
.622 | <.020 | .14
.91 | <.10
.19 | .81
1.5 | .81 | .186 | <.050
<.050 | | | 124 | <.010 | .022 | <.020 | .91 | .19 | 1.5 | .81 | .186 | <.050 | | FEB
05 | 357 | <.010 | .517 | .069 | 1.6 | . 25 | 2.1 | .76 | .414 | <.050 | | 10 | 105 | <.010 | .682 | <.020 | .12 | .13 | .80 | .76 | <.050 | <.050 | | MAR | 105 | <.010 | .002 | <.020 | .12 | .13 | .00 | .01 | <.050 | <.050 | | MAR
10 | 120 | <.010 | . 463 | .044 | .49 | .31 | .96 | .77 | .084 | <.050 | | APR | 120 | <.010 | .403 | .044 | .49 | . 31 | .96 | . / / | .084 | <.050 | | 14 | 56.1 | .011 | .236 | .030 | <.10 | <.10 | | | <.050 | <.050 | | MAY | 30.1 | .011 | .230 | .030 | <.10 | <.10 | | | <.050 | <.050 | | 05 | 94.0 | <.010 | .353 | .027 | <.10 | <.10 | | | <.050 | <.050 | | JUN | 94.0 | <.010 | . 3 3 3 | .027 | <.10 | <.±0 | | | <.030 | <.030 | | 02 | 55.4 | .018 | .407 | .022 | .17 | .11 | .57 | .51 | <.050 | <.050 | | JUL | 55.4 | .010 | .407 | .022 | . 1 / | . 11 | .57 | .51 | <.050 | <.050 | | 17 | 26.5 | <.010 | .182 | .024 | .18 | .15 | .36 | .33 | <.050 | <.050 | | AUG | 20.5 | <.010 | .102 | .024 | .10 | .15 | . 30 | . 33 | <.050 | <.050 | | 04 | 18.9 | .012 | .244 | <.020 | .15 | .10 | .40 | .35 | <.050 | <.050 | | SEP | 10.9 | .012 | .477 | \. ∪∠∪ | .13 | . 10 | .40 | . 33 | ·.030 | ~.050 | | 04 | 21.4 | .013 | .097 | .077 | .19 | <.10 | . 28 | | <.050 | <.050 | | 04 | 21.4 | .013 | . 0 2 / | .077 | . 1 2 | ×.±0 | . 40 | | ×.050 | ×.030 | 03170000 LITTLE RIVER AT GRAYSONTOWN, VA--Continued | DATE | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | CARBON,
ORGANIC
SUS-
PENDED
TOTAL
(MG/L
AS C)
(00689) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | ANCE
DATA
INDICA-
TOR | |-----------|--|--|---|---|---|--|---|---|--|--------------------------------| | OCT 1997 | | | | | | | | | | | | 09
NOV | <.010 | 13 | 95 | 7.4 | 1.7 | .50 | 5 | 1.4 | 65 | 1 | | 05
DEC | .012 | 14 | 120 | 3.5 | 2.7 | .20 | 5 | 2.2 | 92 | 1 | | 11 | .012 | <5.0 | 82 | 5.9 | 1.3 | .20 | 1 | .44 | 14 | 10 | | JAN 1998 | | | | | | | | | | | | 08 | .021 | 100 | 320 | 11 | 6.3 | >17 | 6 | 82 | 79 | 1 | | 13 | <.010 | 14 | 58 | <4.0 | 2.6 | .30 | 1 | .92 | 43 | 1 | | 16
FEB | .016 | 25 | 91 | 4.4 | 2.6 | 1.0 | 125 | 396 | 83 | 1 | | 05 | .025 | 54 | 120 | 10 | 3.5 | 4.7 | 191 | 1520 | 73 | 10 | | 10 | .019 | 15 | 52 | 4.6 | 1.9 | <.20 | 9 | 20 | 69 | 1 | | MAR | | | | | | | | | | | | 10 | .024 | 68 | 140 | <4.0 | 3.3 | 3.8 | 106 | 264 | 90 | 1 | |
APR | 010 | 1.0 | | 4 0 | 1 0 | 0.0 | 2 | 2.4 | 0.0 | | | 14 | <.010 | 10 | 63 | <4.0 | 1.2 | .20 | 3 | 3.4 | 82 | 1 | | MAY
05 | <.010 | 18 | 48 | 7.6 | 1.7 | .30 | 13 | 25 | 83 | 1 | | JUN | <.010 | 18 | 48 | 7.0 | 1./ | .30 | 1.3 | 25 | 83 | Τ. | | 02 | .016 | 18 | 110 | 11 | 1.5 | .40 | 12 | 11 | 97 | 10 | | JUL | .010 | 10 | 110 | 11 | 1.5 | .40 | 12 | 11 | 91 | 10 | | 17 | <.010 | 17 | 110 | 7.7 | 1.5 | .40 | 5 | 2.4 | 86 | 1 | | AUG | | ± ' | 110 | | 2.5 | | 3 | 2.1 | 0.0 | - | | 04 | .013 | 13 | 110 | 6.6 | 1.5 | .40 | 5 | 1.7 | 79 | 1 | | SEP | | | | | | | | | | | | 04 | .013 | 16 | 110 | 7.7 | 1.6 | .30 | 2 | .68 | 72 | 30 | | | | | | | | | | | | | ^{*} The values listed under parameter code 99111 indicate the type of quality-assurance sample associated with each environmental sample, where 1 denotes none, 10 denotes a blank sample, and 30 denotes a replicate sample. #### 03171000 NEW RIVER AT RADFORD, VA LOCATION.--Lat 37°08'30", long 80°34'10", Pulaski County, Hydrologic Unit 05050001, on left bank 2,000 ft downstream from bridge on U.S. Highway 11 at Radford, 5 mi downstream from Little River, and 5.5 mi downstream from Claytor Dam. DRAINAGE AREA. -- 2,748 mi². PERIOD OF RECORD.--October 1907 to September 1915, August 1939 to current year. Records for August 1898 to September 1907, published in WSP 27, 36, 48, 65, 83, 98, 128, 169, 205, 243, and 536, are unreliable and should not be used. Gage-height records collected at same site since 1895 are contained in reports of the National Weather Service. REVISED RECORDS.--WSP 873: Drainage area. WSP 953: 1940-41. WSP 1305: 1908-12. See also PERIOD OF RECORD. GAGE.--Water-stage recorder. Datum of gage is 1,712.16 ft above sea level. Prior to Aug. 30, 1939, nonrecording gage at highway bridge 2,000 ft upstream at datum 0.85 ft lower. REMARKS.--Records good except for period of no gage-height record, Jan. 19-21, which is fair. Flow regulated since 1939 by Claytor Reservoir (station 03169000). Some additional regulation at low flow by dam and powerplant on Little River. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. National Weather Service gage-height telemeter at station. Maximum discharge, 218,000 ft³/s, from rating curve extended above 76,000 ft³/s on basis of records for other stations on New River and flow over Claytor Dam, computed by Appalachian Power Company. Minimum gage height, 1.08 ft, Aug. 25, 27, 1944. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 16, 1916, reached a stage of 35.7 ft, discharge, $200,000 \text{ ft}^3/\text{s}$, at site and datum used by Geological Survey 1907-15, from reports of the National Weather Service. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 43,400 ft³/s, Apr. 20, gage height, 12.89 ft; minimum, 730 ft³/s, Jan. 2, gage height, 1.77 ft; minimum daily, 845 ft³/s, Dec. 7. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY FEB OCT NOV DEC JAN MAR APR MAY JUN JUL AUG SEP 7 e5000 e3500 2.3 2.8 TOTAL MEAN MAX MIN -1613-11495+11999 -1109 -50+706 +302+1109 +151-302-151+454MEAN ‡ CFSM‡ .48 .55 .58 2.11 3.85 2.86 2.87 2.98 1.90 . 93 . 91 .47 TN. ± . 55 .62 . 67 2.43 4.01 3.29 3.20 3.44 2.12 1.07 1.04 . 52 CAL YR 1997 TOTAL MEAN MAX MTN MEAN± CFSM‡ 1.30 TN. ± 17.64 † Total change in contents, equivalent in cubic feet per second, per month, in Claytor Reservoir; provided by American Electric Power. MIN MEAN‡ 4651 CFSM‡ 1.69 IN. \$ 22.98 TOTAL 1697693 MEAN MAX WTR YR 1998 [‡] Adjusted for monthly change in contents. e Estimated # 03171000 NEW RIVER AT RADFORD, VA--Continued | STATISTI | ICS OF MO | NTHLY MEAN | DATA | FOR WATE | R YEARS 190 | 8 - 1915, | BY WATER | YEAR (WY) | [UNRE | GULATED] | | | |--|--|---|--|---|---|--|--|---|---|--|--|--| | MEAN
MAX
(WY)
MIN
(WY) | OCT
2778
5958
1909
1666
1913 | 2549 | DEC
4070
8505
1915
1801
1913 | JAN
5088
8679
1915
2826
1912 | 5655 | MAR
6047
9332
1913
3442
1910 | APR
5261
7463
1911
2774
1910 | MAY
4676
8512
1909
2544
1914 | JUN
3964
6834
1910
1557
1914 | JUL
2774
4479
1908
1618
1911 | AUG
2334
4446
1908
1480
1914 | SEP
2550
4571
1915
1327
1914 | | | | | | | YEARS 1908 | | | | | | | | | ANNUAL M
HIGHEST
LOWEST I
HIGHEST
LOWEST I
ANNUAL S
INSTANTA
INSTANTA
ANNUAL F
ANNUAL F
10 PERCE
50 PERCE
90 PERCE | MEAN ANNUAL MANNUAL ME DAILY ME DAILY ME DAILY ME ANEOUS PE ANEOUS PE ANEOUS LC RUNOFF (C RUNOFF (C RUNOFF (C ENT EXCEE ENT EXCEE | MEAN AN AN AN MINIMUM AK FLOW AK STAGE W FLOW FFSM) NCHES) EDS EDS | |
3971
5522
2913
38400
550
729
a46200
a15.
(c)
1.
19.
7360
2930
1500 | Jan 1
Aug 2
Aug 2
bMay 2
0 bMay 2
45 | 1908
1914
2 1908
2 1911
0 1911
1 1909
1 1909 | STATISTI | ICS OF MO | NTHLY MEAN | DATA | FOR WATE | R YEARS 194 | 0 - 1998, | BY WATER | YEAR (WY) | [REGU | LATED, UNA | DJUSTED] | | | MEAN
MAX
(WY)
MIN
(WY) | OCT
2708
7619
1990 | NOV
3077
10300
1978
1156 | DEC
3642
7426
1962
1144
1940 | JAN
4431
9459
1995
1064
1940 | FEB
5474
10590
1998
2437 | MAR
6126
13130
1993 | APR
5567
14490
1987
2203
1942 | MAY
4559
8875
1973
1721
1941 | JUN
3642 | JUL
2789 | AUG
2709
14170
1940
1081
1956 | SEP
2484
9855
1989
1126
1968 | | MEAN
MAX
(WY)
MIN
(WY) | OCT
2708
7619
1990
1068
1989 | NOV
3077
10300
1978
1156
1940 | DEC
3642
7426
1962
1144
1940 | JAN
4431
9459
1995
1064 | FEB
5474
10590
1998
2437
1941 | MAR
6126
13130
1993
2016
1988 | APR
5567
14490
1987
2203
1942 | MAY
4559
8875
1973
1721
1941 | JUN
3642
9627
1992
1244
1941 | JUL
2789
7545
1949
1208 | AUG
2709
14170
1940
1081 | 2484
9855
1989
1126
1968 | | MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL TANNUAL MIGHEST | OCT
2708
7619
1990
1068
1989
STATISTI
FOTAL
MEAN
ANNUAL M | NOV
3077
10300
1978
1156
1940 | DEC
3642
7426
1962
1144
1940
FOF | JAN
4431
9459
1995
1064
1940
1997 CA | FEB
5474
10590
1998
2437
1941
LENDAR YEAR | MAR
6126
13130
1993
2016
1988 | APR
5567
14490
1987
2203
1942
FOR 1998 WA
1697693
4651 | MAY
4559
8875
1973
1721
1941
TER YEAR | JUN
3642
9627
1992
1244
1941 | JUL
2789
7545
1949
1208
1988
WATER Y | AUG
2709
14170
1940
1081
1956
EARS 1940 - | 2484
9855
1989
1126
1968
1998 | | MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL TANNUAL MIGHEST | OCT
2708
7619
1990
1068
1989
STATISTI
FOTAL
MEAN
ANNUAL M | NOV
3077
10300
1978
1156
1940 | DEC
3642
7426
1962
1144
1940
FOF | JAN
4431
9459
1995
1064
1940
1997 CA | FEB
5474
10590
1998
2437
1941
LENDAR YEAR | MAR
6126
13130
1993
2016
1988 | APR
5567
14490
1987
2203
1942
FOR 1998 WA
1697693
4651 | MAY
4559
8875
1973
1721
1941
TER YEAR | JUN
3642
9627
1992
1244
1941 | JUL
2789
7545
1949
1208
1988
WATER Y
3925
5471
2151
105000 | AUG
2709
14170
1940
1081
1956
EARS 1940 - | 2484
9855
1989
1126
1968
1998 | | MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL TANNUAL MIGHEST | OCT
2708
7619
1990
1068
1989
STATISTI
FOTAL
MEAN
ANNUAL M | NOV
3077
10300
1978
1156
1940 | DEC
3642
7426
1962
1144
1940
FOF | JAN
4431
9459
1995
1064
1940
1997 CA | FEB
5474
10590
1998
2437
1941
LENDAR YEAR | MAR
6126
13130
1993
2016
1988 | APR
5567
14490
1987
2203
1942
OR 1998 WA
1697693
4651
37300
845 | MAY
4559
8875
1973
1721
1941
TER YEAR | JUN
3642
9627
1992
1244
1941 | JUL
2789
7545
1949
1208
1988
WATER Y
3925
5471
2151
105000 | AUG
2709
14170
1940
1081
1956
EARS 1940 - | 2484
9855
1989
1126
1968
1998
1978
1988
1940
1967 | | MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL TANNUAL MIGHEST LOWEST AHIGHEST LOWEST IANNUAL S | OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL MEANUAL MEA | NOV
3077
10300
1978
1156
1940
CCS | DEC
3642
7426
1962
1144
1940
FOF | JAN
4431
9459
1995
1064
1940
1997 CA | FEB
5474
10590
1998
2437
1941
LENDAR YEAR | MAR
6126
13130
1993
2016
1988 | APR
5567
14490
1987
2203
1942
FOR 1998 WA
1697693
4651
37300
845
926 | MAY
4559
8875
1973
1721
1941
TER YEAR
Apr 20
Dec 7
Dec 16 | JUN
3642
9627
1992
1244
1941 | JUL
2789
7545
1949
1208
1988
WATER Y
3925
5471
2151
105000
627
813 | AUG 2709 14170 1940 1081 1956 EARS 1940 - | 2484
9855
1989
1126
1968
1998
1978
1988
1940
1967
1988 | | MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL T ANNUAL M HIGHEST LOWEST A HIGHEST LOWEST LOWES | OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY MEA DAILY MEA SEVEN-DAY | NOV
3077
10300
1978
1156
1940 | DEC
3642
7426
1962
1144
1940
FOF | JAN
4431
9459
1995
1064
1940
1997 CA | FEB
5474
10590
1998
2437
1941
LENDAR YEAR | MAR
6126
13130
1993
2016
1988 | APR
5567
14490
1987
2203
1942
FOR 1998 WA
1697693
4651
37300
845
926 | MAY
4559
8875
1973
1721
1941
TER YEAR
Apr 20
Dec 7
Dec 16 | JUN
3642
9627
1992
1244
1941 | JUL
2789
7545
1949
1208
1988
WATER Y
3925
5471
2151
105000
627
813 | AUG 2709 14170 1940 1081 1956 EARS 1940 - | 2484
9855
1989
1126
1968
1998
1978
1988
1940
1967
1988
1940 | | MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL T ANNUAL M HIGHEST LOWEST A HIGHEST LOWEST I ANNUAL S INSTANTA | OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY MEA SEVEN-DAY ANEOUS PEANEOUS PE | NOV
3077
10300
1978
1156
1940
CCS | DEC
3642
7426
1962
1144
1940
FOF | JAN
4431
9459
1995
1064
1940
1303147
3570
13600
845
926 | FEB
5474
10590
1998
2437
1941
LENDAR YEAR
Mar 4
Dec 7
Dec 16 | MAR
6126
13130
1993
2016
1988 | APR
5567
14490
1987
2203
1942
FOR 1998 WA
1697693
4651
37300
845
926
43400
12.89
730 | MAY
4559
8875
1973
1721
1941
TER YEAR
Apr 20
Dec 7
Dec 16
Apr 20
Apr 20
Apr 20
Jan 2 | JUN
3642
9627
1992
1244
1941 | JUL
2789
7545
1949
1208
1988
WATER Y
3925
5471
2151
105000 | AUG 2709 14170 1940 1081 1956 EARS 1940 - | 2484
9855
1989
1126
1968
1998
1978
1988
1940
1967
1988
1940 | | MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL T ANNUAL M HIGHEST LOWEST A HIGHEST LOWEST I ANNUAL S INSTANTA | OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY MEA SEVEN-DAY ANEOUS PEANEOUS PE | NOV
3077
10300
1978
1156
1940
CCS | DEC
3642
7426
1962
1144
1940
FOF | JAN
4431
9459
1995
1064
1940
1303147
3570
13600
845
926 | FEB
5474
10590
1998
2437
1941
LENDAR YEAR
Mar 4
Dec 7
Dec 16 | MAR
6126
13130
1993
2016
1988 | APR
5567
14490
1987
2203
1942
OR 1998 WA
1697693
4651
37300
845
926
43400
12.89
730
1.69 | MAY
4559
8875
1973
1721
1941
TER YEAR
Apr 20
Dec 7
Dec 16
Apr 20
Apr 20
Jan 2 | JUN
3642
9627
1992
1244
1941 | JUL
2789
7545
1949
1208
1988
WATER Y
3925
5471
2151
105000
627
813
218000
35.9
165
1.4 | AUG 2709 14170 1940 1081 1956 EARS 1940 - Aug 14 Nov 19 Jul 6 Aug 14 Aug 25 3 | 2484
9855
1989
1126
1968
1998
1978
1988
1940
1967
1988
1940 | | MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL T ANNUAL M HIGHEST LOWEST A HIGHEST LOWEST I ANNUAL S INSTANTA | OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY MEA SEVEN-DAY ANEOUS PEANEOUS PE | NOV
3077
10300
1978
1156
1940
CCS | DEC
3642
7426
1962
1144
1940
FOF | JAN
4431
9459
1995
1064
1940
1303147
3570
13600
845
926 | FEB
5474
10590
1998
2437
1941
LENDAR YEAR
Mar 4
Dec 7
Dec 16 | MAR
6126
13130
1993
2016
1988 | APR
5567
14490
1987
2203
1942
OR 1998 WA
1697693
4651
37300
845
926
43400
12.89
730
1.69
22.98 | MAY
4559
8875
1973
1721
1941
TER YEAR
Apr 20
Dec 7
Dec 16
Apr 20
Apr 20
Jan 2 | JUN
3642
9627
1992
1244
1941 | JUL
2789
7545
1949
1208
1988
WATER Y
3925
5471
2151
105000
627
813
218000
35.9
165
1.4
19.4 | AUG 2709 14170 1940 1081 1956 EARS 1940 - Aug 14 Nov 19 Jul 6 Aug 14 Aug 25 3 | 2484
9855
1989
1126
1968
1998
1978
1988
1940
1967
1988
1940 | | MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL T ANNUAL M HIGHEST LOWEST A HIGHEST LOWEST I ANNUAL S INSTANTA | OCT 2708 7619 1990 1068 1989 STATISTI FOTAL MEAN ANNUAL MEAN ANNUAL MEAN DAILY MEA SEVEN-DAY ANEOUS PEANEOUS PE | NOV
3077
10300
1978
1156
1940
CCS
MEAN
CAN
CAN
CAN
CAN
CAN
CAN
CAN
CAN
CAN
C | DEC
3642
7426
1962
1144
1940
FOF | JAN
4431
9459
1995
1064
1940
1303147
3570
13600
845
926 | FEB
5474
10590
1998
2437
1941
LENDAR YEAR
Mar 4
Dec 7
Dec 16 | MAR
6126
13130
1993
2016
1988 | APR
5567
14490
1987
2203
1942
OR 1998 WA
1697693
4651
37300
845
926
43400
12.89
730
1.69 | MAY
4559
8875
1973
1721
1941
TER YEAR
Apr 20
Dec 7
Dec 16
Apr 20
Apr
20
Jan 2 | JUN
3642
9627
1992
1244
1941 | JUL
2789
7545
1949
1208
1988
WATER Y
3925
5471
2151
105000
627
813
218000
35.9
165
1.4 | AUG 2709 14170 1940 1081 1956 EARS 1940 - Aug 14 Nov 19 Jul 6 Aug 14 Aug 25 3 | 2484
9855
1989
1126
1968
1998
1978
1988
1940
1967
1988
1940 | a Site and datum then in use. b Also Mar. 27, 1913. c Not determined. 1070 90 PERCENT EXCEEDS 1030 1180 ### 03173000 WALKER CREEK AT BANE, VA LOCATION.--Lat $37^{\circ}16^{\circ}05^{\circ}$, long $80^{\circ}42^{\circ}35^{\circ}$, Giles County, Hydrologic Unit 05050002, on left bank at Bane, 0.2 mi downstream from bridge on State Highway 100, 0.2 mi downstream from Sugar Run, and at mile 7.9. DRAINAGE AREA. -- 305 mi². PERIOD OF RECORD. -- March 1938 to current year. REVISED RECORDS.--WSP 1143: 1939(M), 1940, 1944, 1946. WSP 1305: 1938(M). GAGE.--Water-stage recorder. Datum of gage is 1,665.92 ft above sea level. Prior to Aug. 1, 1938, nonrecording gage at same site and datum. REMARKS.--Records good except for period with ice effect Dec. 30 to Jan. 1, which is fair. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, 25,000 ft³/s, from rating curve extended above 7,200 ft³/s on basis of slope-area measurements at gage heights 16.50 ft and 19.28 ft. Minimum discharge, 15 ft³/s, Dec. 21, 1958, gage height, 2.42 ft, result of freezeup. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in September 1878 reached a stage of about 23.5 ft, discharge, 40,400 ft³/s, from rating curve extended as explained above. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 4,000 ft³/s and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|------------------| | Feb. 5 | 0100 | 4,010 | 9.13 | Apr. 17 | 1630 | 4,190 | 9.27 | | Feb. 18 | 0400 | 4,670 | 9.63 | Apr. 20 | 0130 | *7,570 | *11.59 | | Mar. 21 | 0230 | 5.470 | 10.22 | | | | | Minimum discharge, 31 ft³/s, Oct. 16, gage height, 2.79 ft. | | | | | | Di | AILY MEAN | VALUES | | | | | | |-------|------|------|------|-------|-------|-----------|--------|-------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 42 | 49 | 50 | e59 | 576 | 630 | 311 | 391 | 463 | 116 | 57 | 42 | | 2 | 38 | 53 | 51 | 57 | 489 | 551 | 295 | 1250 | 381 | 115 | 58 | 42 | | 3 | 36 | 54 | 55 | 64 | 502 | 468 | 265 | 922 | 322 | 104 | 56 | 41 | | 4 | 36 | 58 | 57 | 71 | 2430 | 404 | 314 | 1170 | 305 | 98 | 53 | 41 | | 5 | 36 | 59 | 54 | 92 | 2980 | 351 | 358 | 1390 | 324 | 97 | 51 | 40 | | 6 | 36 | 55 | 52 | 141 | 1650 | 310 | 330 | 1030 | 301 | 91 | 51 | 40 | | 7 | 35 | 52 | 51 | 195 | 1160 | 278 | 314 | 837 | 262 | 90 | 50 | 40 | | 8 | 35 | 51 | 50 | 2100 | 985 | 313 | 295 | 977 | 229 | 92 | 80 | 40 | | 9 | 35 | 50 | 49 | 1090 | 973 | 838 | 583 | 1120 | 212 | 88 | 70 | 39 | | 10 | 34 | 50 | 50 | 561 | 983 | 1140 | 1350 | 946 | 241 | 97 | 76 | 38 | | 11 | 33 | 50 | 52 | 366 | 987 | 827 | 905 | 1030 | 326 | 89 | 81 | 38 | | 12 | 33 | 49 | 55 | 278 | 1140 | 652 | 690 | 968 | 284 | 83 | 86 | 38 | | 13 | 32 | 48 | 58 | 254 | 1220 | 524 | 562 | 820 | 253 | 80 | 70 | 38 | | 14 | 33 | 52 | 55 | 231 | 955 | 465 | 479 | 686 | 228 | 77 | 61 | 37 | | 15 | 32 | 53 | 51 | 231 | 752 | 406 | 424 | 579 | 246 | 75 | 60 | 37 | | 16 | 32 | 54 | 49 | 527 | 644 | 354 | 374 | 488 | 345 | 75 | 70 | 37 | | 17 | 33 | 55 | 47 | 651 | 1110 | 319 | 1960 | 423 | 267 | 72 | 75 | 37 | | 18 | 35 | 52 | 48 | 471 | 3380 | 314 | 1790 | 363 | 229 | 69 | 80 | 37 | | 19 | 36 | 50 | 48 | 363 | 1730 | 1570 | 2660 | 317 | 208 | 67 | 78 | 37 | | 20 | 36 | 48 | 48 | 308 | 1260 | 2110 | 4810 | 283 | 218 | 65 | 64 | 37 | | 21 | 36 | 51 | 47 | 260 | 1030 | 3610 | 1970 | 273 | 199 | 63 | 58 | 41 | | 22 | 36 | 61 | 54 | 230 | 846 | 1710 | 1260 | 280 | 177 | 62 | 54 | 64 | | 23 | 36 | 67 | 60 | 391 | 772 | 1130 | 962 | 319 | 165 | 65 | 52 | 65 | | 24 | 37 | 65 | 76 | 801 | 881 | 866 | 788 | 1100 | 151 | 66 | 51 | 62 | | 25 | 45 | 59 | 87 | 669 | 814 | 700 | 647 | 1200 | 141 | 66 | 49 | 50 | | 26 | 49 | 53 | 102 | 504 | 716 | 589 | 544 | 813 | 131 | 67 | 48 | 46 | | 27 | 63 | 50 | 97 | 427 | 669 | 507 | 471 | 1090 | 122 | 65 | 47 | 44 | | 28 | 57 | 49 | 87 | 739 | 653 | 448 | 419 | 1350 | 115 | 64 | 46 | 43 | | 29 | 56 | 48 | 80 | 961 | | 403 | 368 | 851 | 111 | 61 | 44 | 42 | | 30 | 51 | 49 | e70 | 894 | | 361 | 334 | 639 | 109 | 59 | 43 | 46 | | 31 | 47 | | e62 | 732 | | 327 | | 560 | | 58 | 40 | | | TOTAL | 1211 | 1594 | 1852 | 14718 | 32287 | 23475 | 26832 | 24465 | 7065 | 2436 | 1859 | 1279 | | MEAN | 39.1 | 53.1 | 59.7 | 475 | 1153 | 757 | 894 | 789 | 236 | 78.6 | 60.0 | 42.6 | | MAX | 63 | 67 | 102 | 2100 | 3380 | 3610 | 4810 | 1390 | 463 | 116 | 86 | 65 | | MIN | 32 | 48 | 47 | 57 | 489 | 278 | 265 | 273 | 109 | 58 | 40 | 37 | | CFSM | .13 | .17 | .20 | 1.56 | 3.78 | 2.48 | 2.93 | 2.59 | . 77 | . 26 | .20 | .14 | | IN. | .15 | .19 | . 23 | 1.80 | 3.94 | 2.86 | 3.27 | 2.98 | .86 | .30 | .23 | .16 | e Estimated. # 03173000 WALKER CREEK AT BANE, VA--Continued | STATISTICS OF MON | THLY MEAN | DATA FO | OR WATER | YEARS | 1938 - | 1998. | BY V | JATER | YEAR | (WY) | |-------------------|-----------|---------|----------|-------|--------|-------|------|-------|------|------| 38 | | | | | | | , | | (, | | | | | |---------|-----------|------------|------|-----------|-----------|------|---------|------------|------|----------|----------|--------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 129 | 186 | 318 | 450 | 607 | 702 | 550 | 421 | 242 | 141 | 129 | 98.8 | | MAX | 721 | 737 | 941 | 1191 | 1577 | 1800 | 1806 | 1044 | 1125 | 735 | 759 | 639 | | (WY) | 1990 | 1980 | 1973 | 1996 | 1957 | 1955 | 1987 | 1971 | 1992 | 1938 | 1949 | 1989 | | MIN | 34.7 | 43.2 | 44.9 | 44.8 | 95.6 | 108 | 126 | 115 | 60.6 | 41.6 | 33.7 | 35.6 | | (WY) | 1964 | 1956 | 1956 | 1956 | 1942 | 1988 | 1986 | 1941 | 1988 | 1988 | 1988 | 1955 | | | | | | | | | | | | | | | | SUMMARY | 7 STATIST | rics | FOR | 1997 CALE | NDAR YEAR | F | OR 1998 | WATER YEAR | | WATER YE | ARS 1938 | - 1998 | | ANNUAL | TOTAL | | | 86785 | | | 139073 | | | | | | | ANNUAL | MEAN | | | 238 | | | 381 | | | 329 | | | | HIGHEST | C ANNUAL | MEAN | | | | | | | | 553 | | 1949 | | LOWEST | ANNUAL N | /IEAN | | | | | | | | 135 | | 1988 | | HIGHEST | DAILY N | 1EAN | | 4060 | Mar 4 | | 4810 | Apr 20 | | 14100 | Jun | 5 1992 | | LOWEST | DAILY ME | EAN | | 29 | Sep 23 | | 32 | a0ct 13 | | 24 | bSep 2 | 7 1964 | | ANNUAL | SEVEN-DA | MUMINIM YA | | 33 | Oct 11 | | 33 | Oct 11 | | 28 | Sep 2 | 2 1964 | | INSTANT | CANEOUS E | PEAK FLOW | | | | | 7570 | Apr 20 | | 25000 | Jun | 5 1992 | | INSTANT | TANEOUS E | PEAK STAGE | | | | | 11. | .59 Apr 20 | | 19.28 | Jun | 5 1992 | | INSTANT | CANEOUS I | LOW FLOW | | | | | 31 | Oct 16 | | c15 | Dec 2 | 1 1958 | | ANNUAL | RUNOFF (| (CFSM) | | .7 | 8 | | 1. | . 25 | | 1.08 | | | | ANNUAL | RUNOFF (| (INCHES) | | 10.5 | 8 | | 16. | . 96 | | 14.65 | | | | 10 PERC | CENT EXC | EEDS | | 585 | | | 1000 | | | 737 | | | | 50 PERC | CENT EXCE | EEDS | | 113 | | | 97 | | | 163 | | | 40 49 90 PERCENT EXCEEDS a Also Oct. 15, 16, 1997. b Also Sept. 28, 1964. c Result of freezeup. ### 03175500 WOLF CREEK NEAR NARROWS, VA LOCATION.--Lat 37°18'20", long 80°51'00", Giles County, Hydrologic Unit 05050002, on right bank at downstream side of bridge on State Highway 724, 2.8 mi southwest of Narrows, and at mile 3.5. DRAINAGE AREA. -- 223 mi². PERIOD OF RECORD.--July 1908 to September 1916, March 1938 to September 1995 (discontinued as a continuous-record station; converted to a crest-stage partial-record station), 1997. REVISED RECORDS.--WSP 973: 1940-41(M). WSP 1235: 1912-13, 1915-16. WSP 1505: 1940, monthly and yearly runoff. WSP 1725: 1913(M), 1915-16(M), 1941 calendar year runoff. GAGE.--Water-stage recorder. Datum of gage is 1,583.83 ft above sea level. July 22, 1908, to Sept. 30, 1916, and Mar. 31 to Nov. 7, 1938, nonrecording gage at same site and datum. REMARKS.--Records good except those for period with ice effect Dec. 31, and period of no gage-height record, Sept. 4-10, which are fair. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, 12,900 ft³/s, from rating curve extended above 5,700 ft³/s on basis of contracted-opening measurement of peak flow. Minimum discharge, 8.8 ft³/s, result of freezeup. Minimum gage height, 2.19 ft, Dec. 24, 1943. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,200 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 8 | 1000 | 3,230 | 7.64 | Mar. 21 | 1030 | 3,330 | 7.73 | | Feb. 4 | 2000 | 2,370 | 6.84 | Apr. 17 | 1300 | 3,570 | 7.93 | | Feb. 18 | 0530 | *4,070 | *8.34 | Apr. 20 | 0030 | 2,780 | 7.23 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 24 ft³/s, Oct. 8-16, gage height, 2.48 ft. | | | | · | | Di | AILY MEAN | VALUES | | | | | | |-------|------|------|------|-------|-------|-----------|--------|-------|------|------|------
------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 30 | 35 | 39 | 49 | 341 | 844 | 321 | 305 | 442 | 143 | 63 | 36 | | 2 | 28 | 37 | 45 | 47 | 317 | 677 | 322 | 536 | 361 | 117 | 68 | 35 | | 3 | 27 | 42 | 49 | 56 | 425 | 563 | 284 | 502 | 307 | 101 | 60 | 34 | | 4 | 26 | 48 | 48 | 63 | 1780 | 470 | 340 | 532 | 322 | 91 | 54 | 33 | | 5 | 26 | 48 | 47 | 88 | 1690 | 400 | 418 | 632 | 355 | 87 | 51 | e33 | | 6 | 26 | 44 | 46 | 174 | 1030 | 355 | 424 | 542 | 336 | 84 | 48 | e33 | | 7 | 25 | 41 | 43 | 237 | 772 | 320 | 399 | 479 | 289 | 78 | 46 | e32 | | 8 | 25 | 40 | 38 | 1810 | 666 | 447 | 369 | 554 | 255 | 77 | 57 | e34 | | 9 | 24 | 38 | 40 | 985 | 709 | 1140 | 918 | 709 | 236 | 104 | 99 | e40 | | 10 | 24 | 38 | 41 | 569 | 810 | 1150 | 1560 | 655 | 366 | 97 | 123 | 45 | | 11 | 24 | 38 | 45 | 387 | 893 | 827 | 1150 | 747 | 566 | 79 | 207 | 47 | | 12 | 25 | 38 | 55 | 295 | 1240 | 650 | 868 | 712 | 490 | 71 | 128 | 45 | | 13 | 24 | 38 | 54 | 274 | 1270 | 536 | 689 | 613 | 438 | 67 | 86 | 44 | | 14 | 24 | 39 | 49 | 240 | 970 | 471 | 585 | 516 | 378 | 66 | 69 | 43 | | 15 | 24 | 40 | 43 | 226 | 754 | 409 | 509 | 438 | 389 | 63 | 64 | 38 | | 16 | 25 | 43 | 36 | 425 | 655 | 363 | 449 | 371 | 358 | 59 | 83 | 37 | | 17 | 25 | 43 | 37 | 449 | 1360 | 333 | 2190 | 324 | 293 | 57 | 133 | 37 | | 18 | 25 | 40 | 38 | 371 | 3410 | 328 | 1730 | 280 | 255 | 57 | 141 | 37 | | 19 | 26 | 37 | 37 | 308 | 2030 | 1290 | 1490 | 245 | 312 | 55 | 113 | 41 | | 20 | 26 | 36 | 36 | 275 | 1520 | 1510 | 2280 | 215 | 342 | 56 | 91 | 50 | | 21 | 26 | 39 | 36 | 229 | 1240 | 2970 | 1390 | 233 | 268 | 55 | 79 | 49 | | 22 | 26 | 43 | 46 | 199 | 1010 | 1800 | 1000 | 246 | 236 | 57 | 70 | 56 | | 23 | 26 | 48 | 66 | 287 | 923 | 1130 | 785 | 444 | 220 | 60 | 63 | 67 | | 24 | 27 | 48 | 70 | 473 | 998 | 847 | 637 | 1190 | 204 | 68 | 58 | 61 | | 25 | 30 | 46 | 70 | 442 | 851 | 670 | 526 | 1090 | 172 | 69 | 54 | 56 | | 26 | 36 | 40 | 76 | 362 | 778 | 570 | 450 | 812 | 149 | 66 | 50 | 52 | | 27 | 46 | 38 | 76 | 318 | 783 | 498 | 395 | 1020 | 133 | 62 | 47 | 49 | | 28 | 48 | 38 | 72 | 397 | 904 | 452 | 351 | 1050 | 121 | 60 | 42 | 47 | | 29 | 42 | 37 | 64 | 416 | | 404 | 310 | 754 | 114 | 58 | 40 | 43 | | 30 | 37 | 37 | 53 | 431 | | 368 | 286 | 589 | 112 | 56 | 38 | 52 | | 31 | 35 | | e50 | 390 | | 335 | | 584 | | 58 | 36 | | | TOTAL | 888 | 1217 | 1545 | 11272 | 30129 | 23127 | 23425 | 17919 | 8819 | 2278 | 2361 | 1306 | | MEAN | 28.6 | 40.6 | 49.8 | 364 | 1076 | 746 | 781 | 578 | 294 | 73.5 | 76.2 | 43.5 | | MAX | 48 | 48 | 76 | 1810 | 3410 | 2970 | 2280 | 1190 | 566 | 143 | 207 | 67 | | MIN | 24 | 35 | 36 | 47 | 317 | 320 | 284 | 215 | 112 | 55 | 36 | 32 | | CFSM | .13 | .18 | .22 | 1.63 | 4.83 | 3.35 | 3.50 | 2.59 | 1.32 | .33 | .34 | .20 | | IN. | .15 | .20 | .26 | 1.88 | 5.03 | 3.86 | 3.91 | 2.99 | 1.47 | .38 | .39 | .22 | e Estimated. ## 03175500 WOLF CREEK NEAR NARROWS, VA--Continued | | STATISTICS OF MONTHLY | MEAN DATA FOR | WATER YEARS | 1908-1916, 1938-1995 | . 1997-1998. | BY WATER YEAR | (WY) | |--|-----------------------|---------------|-------------|----------------------|--------------|---------------|------| |--|-----------------------|---------------|-------------|----------------------|--------------|---------------|------| | | | | | | | | | • | - | - | | | |---------|------------|-----------|-------|-----------|---------|-----|----------|---------|--------|---------|-----------|---------| | | OCT | NOV | DEC | JAN | FEB | MA | R APR | MA | Y JUN | JUL | AUG | SEP | | MEAN | 111 | 164 | 309 | 440 | 561 | 65 | 5 490 | 37 | 2 209 | 136 | 113 | 78.2 | | MAX | 621 | 754 | 850 | 1128 | 1469 | 178 | 1728 | 105 | 9 748 | 964 | 512 | 576 | | (WY) | 1990 | 1978 | 1973 | 1957 | 1957 | 195 | 1987 | 197 | 1 1992 | 1916 | 1916 | 1989 | | MIN | 21.4 | 28.6 | 31.1 | 50.0 | 122 | 11 | 3 120 | 99. | 4 49.3 | 32.9 | 26.8 | 27.4 | | (WY) | 1964 | 1940 | 1940 | 1940 | 1942 | 198 | 1995 | 194 | 1 1914 | 1988 | 1988 | 1964 | | | | | | | | | | | | | | | | SUMMARY | STATIST: | ICS | FOR 1 | L997 CALE | NDAR YE | AR | FOR 1998 | WATER Y | EAR | WATER Y | EARS 1908 | | | | | | | | | | | | | | | - 1995 | | | | | | | | | | | | | 1997 | - 1998 | | ANNUAL | TOTAL | | | 81800 | | | 124286 | | | | | | | ANNUAL | MEAN | | | 224 | | | 341 | | | 301 | | | | HIGHEST | C ANNUAL N | MEAN | | | | | | | | 475 | | 1972 | | LOWEST | ANNUAL M | EAN | | | | | | | | 126 | | 1988 | | HIGHEST | DAILY M | EAN | | 2950 | Mar | 4 | 3410 | Feb | 18 | 8380 | Apr | 5 1977 | | LOWEST | DAILY MEA | AN | | 20 | aSep | 6 | 24 | b0ct | 9 | 14 | cAug : | 25 1995 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 21 | Sep | 3 | 24 | Oct | 9 | 17 | Sep : | 13 1964 | | INSTANT | CANEOUS PI | EAK FLOW | | | | | 4070 | Feb | 18 | 12900 | Jan : | 29 1957 | | INSTANT | TANEOUS PI | EAK STAGE | | | | | 8 | .34 Feb | 18 | d12.5 | 5 Jan : | 29 1957 | | INSTANT | CANEOUS LO | OW FLOW | | | | | 24 | fOct | . 8 | g8.8 | Dec : | 25 1953 | | ANNUAL | RUNOFF (| CFSM) | | 1.0 | 0 | | 1 | .53 | | 1.3 | 5 | | | ANNUAL | RUNOFF (| INCHES) | | 13.6 | 5 | | 20 | .73 | | 18.3 | 6 | | | 10 PERC | CENT EXCE | EDS | | 507 | | | 910 | | | 689 | | | | 50 PERC | CENT EXCE | EDS | | 129 | | | 113 | | | 155 | | | | 90 PERC | CENT EXCE | EDS | | 26 | | | 36 | | | 39 | | | a Also Sept. 7, 8, 1997. b Also Oct. 10, 11, 13-15, 1997. c Also Aug. 26, 1995. d From floodmark in well; floodmark on downstream side of bridge was 13.8 ft. f Also Oct. 9-16, 1997. g Result of freezeup. ### 03176500 NEW RIVER AT GLEN LYN, VA LOCATION.--Lat 37°22'22", long 80°51'39", Giles County, Hydrologic Unit 05050002, on right bank 90 ft upstream from bridge on U.S. Highway 460 at Glen Lyn, 0.3 mi upstream from East River, and 6.3 mi downstream from Wolf Creek. DRAINAGE AREA. -- 3,768 mi². PERIOD OF RECORD. -- August 1927 to current year. REVISED RECORDS.--WSP 758: Drainage area. WSP 1305: 1928(M), 1930(M). GAGE.--Water-stage recorder. Datum of gage is 1,490.11 ft above sea level. Aug. 11, 1927, to Oct. 16, 1934, on left bank opposite present site at same datum, and Oct. 17, 1934, to June 16, 1939, on left bank at site 200 ft upstream at same datum. REMARKS.--No estimated daily discharges. Records good. Flow regulated since 1939 by Claytor Reservoir (station 03169000) 55 mi upstream from station. Water withdrawn by American Electric Power at gage. U.S. Army Corps of Engineers satellite gage-height telemeter at station. Maximum discharge, 226,000 $\rm ft^3/s$, from rating curve extended above 89,000 $\rm ft^3/s$ on basis of slope-area measurement of peak flow. Minimum gage height, 2.10 ft, Sept. 8, 1930. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Maximum discharge, $56,700 \text{ ft}^3/\text{s}$, Apr. 20, gage height, 12.93 ft; minimum, $789 \text{ ft}^3/\text{s}$, Sept. 16, gage height, 2.49 ft; minimum daily, $868 \text{ ft}^3/\text{s}$, Sept. 16. | | | DIS | CHARGE, CU | BIC FEET | PER S | | WATER
Y MEAN | | | R 1997 TO | SEPTEMI | BER 1998 | | | |-------------------------------|-----------------------------|-----------------------------|--------------------|-------------|--------------|------------------------------|--------------------------------|------------|------------------------|--------------------------------|-------------------------------|---------------------------------|-----------------------------|-----------------------------| | DAY | OCT | NOV | 7 DEC | JA | N | FEB | MAR | i | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3 | 1800
1910
1890 | 2900
1440 | 1120 | 114 | 0 | 6920
9110
1400 | 7850
8090
8810 | 6 | 390
540
460 | 8300
9210
9570 | 7720
6640
7120 | 3320
3530
5080 | 2150
2060
2100 | 962
1000
1160 | | 4
5 | 1550
1200 | 1280
2730
2670 | 1070 | 119 | 0 1 | 5200
5400 | 7220
7030 | 83 | 350
550 | 12600
15000 | 6820
9870 | 3560
2510 | 2030
1790 | 1670
1380 | | 6
7
8 | 1290
1350
1270 | 2670
5390
5150 | 1020 | 321 | 0 1 | 4100
8300
5800 | 7250
6090
7420 | 8: | 350
220
990 | 15300
13100
12500 | 8920
4220
6030 | 3070
3070
2930 | 1670
1550
1740 | 1310
961
943 | | 9
10 | 1320
1300 | 1730
1530 | 1050 | 3510 | 0 1 | 4800
2500 | 7460
15900 | 7 | 440
000 | 15400
13800 | 6040
5960 | 2930
2930
2890 | 4990
3320 | 870
918 | | 11
12
13 | 1280
1180
1230 | 1580
1500
1850 | 1150 | 674 | 0 1 | 4300
3100
2600 | 14800
9410
9910 | 10 | 380
500
060 | 15800
18700
16100 | 10700
10700
9430 | 2850
2670
2380 | 3020
2670
2580 | 1190
1430
950 | | 14
15 | 1330
1480 | 1530
1640 | 1110 | 666 | 0 1 | 3300
4200 | 8790
5310 | 78 | 310
080 | 15100
15100
12500 | 6870
6120 | 2540
2530 | 2180
2530 | 956
942 | | 16
17
18 | 1210
1110
1100 | 1860
5620
2930 | 1030 | 866 | 0 1 | 0900
4200
2800 | 4180
6950
7310 | 119 | 220
900
300 | 8720
7330
7770 | 7720
6890
6280 | 2500
2320
2520 | 2630
9520
6620 | 868
884
905 | | 19
20 | 1120
1150 | 1660
1430 | 1010 | 445 | 0 3 | 0200
9900 | 13200
19200 | 20: | 300
700 | 6330
6030 | 5530
5580 | 2480
2170 | 4160
2760 | 1590
1520 | | 21
22
23 | 1240
1600
1180 | 1450
1670
1880 | 1090 | 448 | 0 1 | 7200
6100
5700 | 43300
30000
19400 | 19! | 900
500
500 | 5760
5750
7030 | 5230
4920
4480 | 1930
1870
2100 | 2360
2070
1810 | 930
1030
1610 | | 24
25 | 1610
1260 | 1850
1260 | 1160 | 499 | 0 1 | 4000
2300 | 16400
12700 | 124 | 400
500 | 10100
13500 | 3250
3820 | 2000
2050 | 1970
1940 | 1730
1130 | | 26
27
28 | 1170
1950
1790 | 1100
1060
990 | 1780 | 901 | 0 |
0500
9910
9950 | 10900
9700
8630 | 70 | 500
060
710 | 10700
10600
15500 | 4390
4400
3620 | 2280
1960
2440 | 2800
1700
1580 | 1150
1090
941 | | 29
30
31 | 2250
1980
1860 | 1070
1050
 | 2380
2760 | 935
898 | 0 |
 | 7810
5860
8540 | 7 (
6 ! | 900
 | 13100
9340
7300 | 3550
3270
 | 2500
2400
2260 | 1530
1530
1010
916 | 870
934 | | TOTAL
MEAN | 44960
1450 | 62470
2082 | 1305 | 793 | 8 1 | 4690
5520 | 355420
11470 | | 590 | 347840
11220 | 186090
6203 | 81640
2634 | 81756
2637 | 33824
1127 | | MAX
MIN
(†) | 2250
1100
-1613 | 5620
990
-11495 | 962
+11999 | 114
-110 | 0
9 | 2800
6920
-50 | 43300
4180
+706 | 4: | 700
350
302 | 18700
5750
+1109 | 10700
3250
+151 | 5080
1870
-302 | 9520
916
-151 | 1730
868
+454 | | (‡)
MEAN≠
CFSM≠
IN.≠ | 13593
1837
.49
.56 | 10043
2034
.54
.60 | 1 2125
.56 | | 7 1
L 4 | 9022
5845
1.21
1.38 | 13522
11924
3.16
3.65 | 120 | 312
031
19
56 | 12950
11674
3.10
3.57 | 12976
6641
1.76
1.97 | 16585
3159
.84
.97 | 16745
3173
.84
.97 | 16042
1677
.45
.50 | | CAL YR
WTR YR | 1997 | TOTAL
TOTAL | 1521313
2263032 | MEAN | 4168
6200 | MAX
MAX | 25800
48700 | MIN
MIN | 885
868 | 3.57
MEAN≠
MEAN≠ | 4584 | .97
CFSM≠ 1.22
CFSM≠ 1.76 | IN.≠ | 16.52
23.93 | [†] Total change in contents, equivalent in cubic feet per second, per month, in Claytor Reservoir; provided by American Electric Power American Electric Power. ‡ Total water withdrawal, equivalent in cubic feet per second, per month, by power plant; provided by American Electric Power. $[\]neq$ Adjusted for monthly change in contents and water withdrawal. ## 03176500 NEW RIVER AT GLEN LYN, VA--Continued | | 002/0000 1 | | 0. | | , ,,,,, | | | | | |--|---|--|------------------------------|---------------------------------------|--------------------------------------|---------|-----------------|---------|----------| | STATISTICS OF MONTHLY MEA | N DATA FOR WATER | YEARS 1928 | - 1938, | BY WATER | YEAR (WY) | [UNREGU | JLATED] | | | | OCT NOV | DEC JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN 4319 4112 | 4543 6919 | 6141 | 7665 | 7007 | 5225 | 3920 | 3322 | 3436 | 3343 | | MAX 11250 9016 | 7798 13770 | 10980 | 13050 | 11390 | 7093 | 8351 | 7956 | 8211 | 10840 | | MEAN 4319 4112
MAX 11250 9016
(WY) 1938 1930
MIN 1094 1249
(WY) 1931 1932 | 1928 1937
1685 1795
1934 1934 | 1936
1494 | 1936
3307 | 7007
11390
1936
3899
1930 | 5225
7093
1933
2491
1934 | 1929 | 1938 | 1928 | 1928 | | MIN 1094 1249 | 1685 1795 | | 3307 | 3899 | 2491 | 1908 | 1206 | 1330 | 1145 | | (WY) 1931 1932 | 1934 1934 | 1934 | 1931 | 1930 | 1934 | 1930 | 1930 | 1930 | 1932 | | SUMMARY STATISTICS | WATER | YEARS 1928 - | 1938 | | | | | | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 4992
6859
3208
57600
820
914
99000
16.
770
1.
17.
9340
3800
1520 | Oct 3
Sep 8
Sep 17
Oct 3
75 Oct 3
Sep 8 | 1930
1932
1929
1929 | | | | | | | | STATISTICS OF MONTHLY MEA | | | - 1998, | BY WATER | YEAR (WY) | [REGULA | ATED, UNADJ | USTED] | | | OCT NOV | DEC JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN 3228 3761 | 4724 6016 | 7565 | 8485 | 7486 | 6020 | 4517 | 3285 | 3199 | 2861 | | | 10910 13290 | | | | | 12860 | 9784 | 16410 | 11500 | | (WY) 1990 1978 | 1949 1996
1305 1489 | 1957
3304 | 1993 | 1987 | 1984 | 1992 | 1949 | 1940 | 1989 | | MIN 1204 1258 | 1305 1489 | 3304 | 2407 | 2673 | 2397 | 1741 | 1390 | 1267 | 1127 | | (WY) 1989 1982 | 1998 1966 | | | 1986 | 1941 | 1988 | 1988 | 1981 | 1998 | | SUMMARY STATISTICS | FOR 1997 CA | LENDAR YEAR | | FOR 1998 V | WATER YEAR | | WATER YE | ARS 193 | 9 - 1998 | | ANNUAL TOTAL | 1521313 | | | 2263032 | | | | | | | ANNUAL MEAN | 4168 | | | 6200 | | | 5082 | | | | HIGHEST ANNUAL MEAN | | | | | | | 7424 | | 1949 | | LOWEST ANNUAL MEAN | | | | | | | 2626 | | 1988 | | HIGHEST DAILY MEAN | 25800 | Mar 4 | | 48700 | Apr 20 | | 126000 | Αιια | 15 1940 | | LOWEST DAILY MEAN | 005 | Aug 28 | | 868 | Sep 16 | | 787 | | 8 1988 | | ANNUAL SEVEN-DAY MINIMUM | | Aug 28
Dec 3 | | 991 | Sep 12 | | 837 | | 5 1988 | | INSTANTANEOUS PEAK FLOW | 2000 | 200 3 | | 56700 | Apr 20 | | 226000 | Διια | 14 1940 | | | | | | | 93 Apr 20 | | 226000
27.50 | Aug | 14 1940 | | INSTANTANEOUS FEAR STAGE | | | | 789 | Sep 16 | | 697 | .Tul | 5 1988 | | ANNITAL PUNCES (CECM) | 1 | 11 | | 1.6 | <u>-</u> - | | 1.35 | | 3 1700 | | ANNITAL DINOFF (CFSM) | 15 | 0.2 | | 20 3 | 3.4 | | 18.32 | | | | 10 DERCENT EXCEEDS | 9020 | .02 | | 22.3
14500 | <i>J</i> 1 | | 9760 | | | | 50 DEPOENT EXCEEDS | 2020 | | | 3400 | | | 3710 | | | | INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 1120 | | | 1070 | | | 1560 | | | | JO IENCENI ENCEEDS | 1120 | | | 10,0 | | | 1300 | | | ## 03176500 NEW RIVER AT GLEN LYN, VA LOCATION.--Lat $37^{\circ}22^{\circ}22^{\circ}$, long $80^{\circ}51^{\circ}39^{\circ}$, Giles County, Hydrologic Unit 05050002, on right bank 90 ft upstream from bridge on U.S. Highway 460 at Glen Lyn, 0.3 mi upstream from East River, and 6.3 mi downstream from Wolf Creek. DRAINAGE AREA.--3,768 mi². REMARKS.--Analyzed for pesticide schedules A and B, only detected compounds reported. PERIOD OF RECORD.--Water years 1931, 1950, 1952, 1955-56, 1965-1995, 1997-98, discontinued. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1968 to September 1988. WATER TEMPERATURE: October 1964 to September 1988. | DATE | TIME | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | |-----------|------|-------------------------------------|---|---|---|---|---|---|--|---|---|--| | OCT 1997 | | | | | | | | | | | | | | 06 | 0930 | 2.83 | 1360 | 192 | 8.2 | 20.0 | 19.9 | 728 | 8.1 | 93 | K7 | 20 | | NOV
12 | 1145 | 3.04 | 1780 | 189 | 8.0 | 8.5 | 9.5 | 724 | 10.4 | 96 | | к3 | | DEC | 1113 | 3.01 | 1700 | 100 | 0.0 | 0.5 | 5.5 | 721 | 10.1 | 50 | | 105 | | 08 | 1200 | 2.58 | 995 | 234 | 8.5 | 5.5 | 3.3 | 725 | 13.6 | 107 | K1 | K3 | | JAN 1998 | | | | | | | | | | | | | | 05 | 1115 | 2.88 | 1450 | 193 | 8.0 | 9.0 | 4.6 | 727 | 10.4 | 84 | 24 | K18 | | 08 | 1515 | 8.50 | 24800 | 111 | 7.5 | 11.5 | 8.9 | 702 | 9.3 | 87 | >600 | >800 | | FEB | 1145 | 0 01 | 00000 | | | | | | 10.0 | 100 | 420 | 200 | | 06 | 1145 | 8.31 | 23700 | 116 | 7.4 | 7.5 | 4.4 | 715 | 12.2 | 100 | 430 | 390 | | 19 | 1200 | 9.24 | 29200 | 107 | 7.4 | 11.5 | 5.8 | 715 | 11.4 | 97 | 250 | K120 | | 26
MAR | 1245 | 5.30 | 8830 | 112 | 7.6 | 12.0 | 7.1 | 722 | 10.2 | 89 | 83 | K41 | | 24 | 0945 | 6.86 | 16200 | 116 | 7.6 | 7.0 | 6.4 | 724 | 9.2 | 79 | 73 | 93 | | APR | 0943 | 0.00 | 10200 | 110 | 7.0 | 7.0 | 0.4 | 724 | 9.2 | 19 | 73 | 93 | | 22 | 0845 | 7.64 | 20200 | 122 | 7.3 | 15.5 | 12.6 | 719 | 9.6 | 96 | 1000 | 770 | | 30 | 1015 | 4.66 | 6080 | 129 | 7.9 | 19.5 | 14.4 | 722 | 8.7 | 90 | 43 | K18 | | MAY | | | | | | | | | | | | | | 13 | 0845 | 6.82 | 16000 | 115 | 7.6 | 15.5 | 15.4 | 721 | 7.9 | 84 | 220 | 200 | | JUN | | | | | | | | | | | | | | 09 | 0845 | 4.78 | 6560 | 140 | 7.9 | 15.5 | 18.8 | 715 | 9.3 | 106 | 120 | 160 | | JUL | | | | | | | | | | | | | | 16 | 1000 | 3.51 | 2700 | 159 | 8.1 | 26.0 | 25.4 | 720 | 8.3 | 108 | K63 | K45 | | AUG | | | | | | | | | | | | | | 05 | 0915 | 3.13 | 1950 | 167 | 8.6 | 21.5 | 24.3 | 726 | 8.5 | 107 | 16 | 45 | | SEP
08 | 0845 | 2.51 | 910 | 188 | 8.3 | 21.0 | 23.7 | 715 | 8.0 | 101 | 23 | 26 | | 08 | 0845 | ∠.51 | 910 | T 8 8 | 8.3 | Z1.U | 43.7 | /15 | 8.0 | 101 | 23 | 26 | K Results based on colony count outside the acceptance range (non-ideal colony count). 03176500 NEW RIVER AT GLEN LYN, VA--Continued | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) |
MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | |---|--|--|---|--|---|--|--|---|--|--|--|---| | OCT 1997 | 7
78 | 18 | 17 | 8.5 | 6.5 | 15 | .3 | 1.9 | 73 | <1 | 60 | 20 | | NOV
12 | 76 | 17 | 17 | 8.1 | 6.8 | 16 | .3 | 1.9 | 72 | <1 | 60 | 20 | | DEC
08 | 92 | 29 | 22 | 9.1 | 8.3 | 16 | . 4 | 2.0 | 78 | | 65 | 32 | | JAN 1998 | 8 | | | | | | | | | <1 | | | | 05
08 | 77
49 | 13
9 | 17
13 | 8.1
4.1 | 7.5
4.8 | 17
17 | . 4 | 1.6
1.8 | 78
49 | <1
<1 | 64
40 | 18
10 | | FEB
06 | 42 | 5 | 11 | 3.7 | 4.4 | 18 | .3 | 1.5 | 45 | <1 | 37 | 8.1 | | 19 | 42 | 7 | 11 | 3.8 | 4.0 | 16 | .3 | 1.3 | 43 | <1 | 35 | 6.8 | | 26 | 46 | 11 | 11 | 4.1 | 3.6 | 14 | . 2 | 1.3 | 42 | <1 | 35 | 7.7 | | MAR
24 | 49 | 9 | 12 | 4.3 | 3.2 | 12 | .2 | 1.1 | 48 | <1 | 42 | 6.6 | | APR
22 | 52 | 5 | 13 | 4.5 | 3.1 | 11 | . 2 | 1.2 | 56 | <1 | 46 | 6.8 | | 30
MAY | 56 | 9 | 14 | 5.1 | 3.2 | 11 | . 2 | 1.4 | 57 | <1 | 47 | 8.6 | | 13
JUN | 49 | 7 | 13 | 4.4 | 2.9 | 11 | .2 | 1.2 | 52 | <1 | 43 | 5.7 | | 09
JUL | 55 | 7 | 13 | 5.4 | 3.3 | 11 | . 2 | 1.3 | 59 | <1 | 49 | 8.1 | | 16
AUG | 64 | 13 | 15 | 6.6 | 3.9 | 11 | . 2 | 1.5 | 63 | <1 | 52 | 9.8 | | 05
SEP | 68 | 15 | 15 | 7.2 | 4.9 | 13 | .3 | 1.5 | 65 | <1 | 53 | 12 | | 08 | 76 | 16 | 17 | 8.0 | 5.5 | 13 | .3 | 1.8 | 73 | <1 | 60 | 16 | | | | | | | | | | | | | | | | DATE | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | | DATE
OCT 199 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(TONS
PER
AC-FT) | DIS-
SOLVED
(TONS
PER
DAY) | GEN, NITRITE DIS- SOLVED (MG/L AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | | | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(TONS
PER
AC-FT) | DIS-
SOLVED
(TONS
PER
DAY) | GEN, NITRITE DIS- SOLVED (MG/L AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | | OCT 1997 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | | OCT 199°
06
NOV
12
DEC
08 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
7
6.3
6.1 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | | OCT 1997
06
NOV
12
DEC
08
JAN 1998 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
7
6.3
6.1 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
417 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 | | OCT 1997
06
NOV
12
DEC
08
JAN 1998
05
08
FEB | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
7
6.3
6.1
6.9
8
9.0
5.9 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.11
.12
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
4.9
6.3
3.8
3.7
5.5 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
114
117
133
109
77 | SUM OF
CONSTITUENTS,
DIS-
SOLVED
(MG/L)
(70301)
104
105
129
106
71 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.16
.16
.18 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
417
561
357
427
5160 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 | GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 | | OCT 1997 06 NOV 12 DEC 08 JAN 1998 05 08 FEB 06 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
7
6.3
6.1
6.9
8
9.0
5.9
6.8 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.11
.12
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
4.9
6.3
3.8
3.7
5.5 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
114
117
133
109
77 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
104
105
129
106
71 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.16
.16
.18
.15
.10 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
417
561
357
427
5160 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 | GEN,AM- MONIA +
ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.15 .17 | | OCT 199° 06 NOV 12 DEC 08 JAN 1998 05 08 FEB 06 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
7
6.3
6.1
6.9
8
9.0
5.9
6.8
6.4 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.11
.12
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
4.9
6.3
3.8
3.7
5.5 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
114
117
133
109
77
71
67 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
104
105
129
106
71
68
64 | DIS-
SOLVED (TONS
PER AC-FT) (70303)
.16
.16
.18
.15
.10 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
417
561
357
427
5160
4550
5280 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 | GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 .17 .13 | | OCT 199° 06 NOV 12 DEC 08 JAN 1998 05 8 FEB 06 19 26 MAR | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
7
6.3
6.1
6.9
8
9.0
5.9
6.8
6.4
5.4 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.11
.12
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
4.9
6.3
3.8
3.7
5.5
6.7
6.9
6.6 | RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 117 133 109 77 71 67 76 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
104
105
129
106
71
68
64
64 | DIS-
SOLVED (TONS
PER
AC-FT) (70303)
.16
.16
.18
.15
.10 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
417
561
357
427
5160
4550
5280
1810 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 .038 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 | GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 .17 .13 <.10 | | OCT 199° 06 NOV 12 DEC 08 JAN 1998 05 19 26 MAR 24 APR | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
7
6.3
6.1
6.9
8
9.0
5.9
6.8
6.4
5.4 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.11
.12
<.10
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
4.9
6.3
3.8
3.7
5.5
6.7
6.9
6.6 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
114
117
133
109
77
71
67
76 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
104
105
129
106
71
68
64
64
64 | DIS-
SOLVED (TONS
PER AC-FT) (70303) .16 .16 .18 .15 .10 .10 .09 .10 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
417
561
357
427
5160
4550
5280
1810
3060 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 <.010 .015 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.581
.810
1.51
.419
.543
.811
.682
.724 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 .038 <.020 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 .14 | GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.11 .15 .17 .13 <.10 <.10 <.10 | | OCT 1997 06 NOV 12 DEC 08 JAN 1998 05 FEB 06 19 26 MAR 24 APR 22 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
7
6.3
6.1
6.9
8
9.0
5.9
6.8
6.4
5.4
4.7
3.9 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.11
.12
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
4.9
6.3
3.8
3.7
5.5
6.7
6.9
6.6
7.0 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
114
117
133
109
77
71
67
76
70
73 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
104
105
129
106
71
68
64
64
64
66
70 | DIS-
SOLVED (TONS
PER AC-FT) (70303) .16 .16 .18 .15 .10 .10 .10 .10 | DIS-
SOLVED
(TONS)
PER
DAY)
(70302)
417
561
357
427
5160
4550
5280
1810
3060
3980 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 .015 .015 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724 .749 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 <.020 .066 .027 .038 <.020 .067 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 .14 .28 | GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 .17 .13 <.10 <.10 .11 | | OCT 1997 06 NOV 12 DEC 08 JAN 1998 05 08 FEB 06 19 26 MAR 24 APR 22 30 MAY | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
7
6.3
6.1
6.9
8
9.0
5.9
6.8
6.4
5.4
4.7 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.11
.12
<.10
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
4.9
6.3
3.8
3.7
5.5
6.7
6.9
6.6 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
114
117
133
109
77
71
67
76
70
73
81 | SUM OF
CONSTITUENTS,
DIS-
SOLVED
(MG/L)
(70301)
104
105
129
106
71
68
64
64
64 | DIS-
SOLVED (TONS PER AC-FT) (70303) .16 .16 .18 .15 .10 .10 .10 .10 .10 .11 | DIS-
SOLVED (TONS PER DAY) (70302) 417 561 357 427 5160 4550 5280 1810 3060 3980 1330 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 .015 .015 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724 .749 .627 .717 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 .038 <.020 .067 .038 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 .14 .28 .16 | GEN,AM- MONIA + ORGANIC DISI. (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 .17 .13 <.10 <.10 .11 | | OCT 199° 06 NOV 12 DEC 08 JAN 1998 05 08 FEB 06 19 26 MAR 24 APR 22 30 MAY 13 JUN | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
7
6.3
6.1
6.9
8
9.0
5.9
6.8
6.4
5.4
4.7
3.9
4.8 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.11
.12
<.10
<.10
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
4.9
6.3
3.8
3.7
5.5
6.7
6.9
6.6
7.0
6.9
6.6 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
114
117
133
109
77
71
67
76
70
73
81
66 | SUM OF
CONSTITUENTS,
DIS-
SOLVED
(MG/L)
(70301)
104
105
129
106
71
68
64
64
66
70
75
66 | DIS-
SOLVED (TOMS PER AC-FT) (70303) .16 .16 .18 .15 .10 .10 .09 .10 .10 .10 .10 .10 .10 .10 .10 | DIS-
SOLVED
(TONS)
PER
DAY)
(70302)
417
561
357
427
5160
4550
5280
1810
3060
3980
1330
2850 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 .015 .012 .026 .011 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724 .749 .627 .717 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 .038 <.020 .067 .038 .036 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 .14 .28 .16 .19 | GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.11 .15 .17 .13 <.10 <.10 .15 .17 | | OCT 199' 06 NOV 12 DEC 08 JAN 1998 05 8 FEB 06 19 26 MAR 24 APR 22 30 MAY 13 JUN 09 JUL | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
7
6.3
6.1
6.9
8
9.0
5.9
6.8
6.4
5.4
4.7
3.9
4.8
4.0 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.11
.12
<.10
<.10
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
4.9
6.3
3.8
3.7
5.5
6.7
6.9
6.6
7.0
6.9
6.6 | RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 117 133 109 77 71 67 76 70 73 81 66 81 | SUM OF CONSTITUENTS, DIS-SOLVED (MG/L) (70301) 104 105 129 106 71 68 64 64 66 70 75 66 | DIS-
SOLVED (TONS PER AC-FT) (70303) .16 .16 .18 .15 .10 .10 .09 .10 .10 .10 .11 .09 .11 | DIS-
SOLVED (TONS PER DAY) (70302) 417 561 357 427 5160 4550 5280 1810 3060 3980 1330 2850 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 .015 .015 .012 .026 .011 .010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724 .749 .627 .717 .585 .603 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 .038 <.020 .067 .038 .036 .026 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 .14 .28 .16 .19 .14 | GEN,AM- MONIA + ORGANIC DIS: (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 .17 .13 <.10 <.10 .11 .11 .12 .12 | | OCT 199° 06 NOV 12 DEC 08 JAN 1998 05 19 26 MAR 24 APR 22 30 MAY 13 JUN 09 JUN 16 AUG | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
7
6.3
6.1
6.9
8
9.0
5.9
6.8
6.4
5.4
4.7
3.9
4.8
4.0
4.3 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.11
.12
<.10
<.10
<.10
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
4.9
6.3
3.8
3.7
5.5
6.7
6.9
6.6
7.0
6.9
6.6
7.1 | RESIDUE
AT 180
DEG.
C
DIS-
SOLVED
(MG/L)
(70300)
114
117
133
109
77
71
67
76
70
73
81
66
81 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
104
105
129
106
71
68
64
64
66
70
75
66
75
82 | DIS-
SOLVED (TOMS
PER AC-FT) (70303) .16 .16 .18 .15 .10 .10 .09 .10 .10 .10 .11 .09 .11 .13 | DIS-
SOLVED (TOMS PER DAY) (70302) 417 561 357 427 5160 4550 5280 1810 3060 3980 1330 2850 1430 672 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 <.010 .015 .012 .026 .011 .010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724 .749 .627 .717 .585 .603 .599 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 .038 <.020 .067 .038 .036 .026 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 .14 .28 .16 .19 .14 .13 | GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 .17 .13 <.10 <.10 .15 .17 .13 <.10 <.110 .15 | | OCT 1997 06 NOV 12 DEC 08 JAN 1998 05 08 FEB 06 19 26 MAR 24 APR 22 30 MAY 13 JUN 09 JUL 16 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
7
6.3
6.1
6.9
8
9.0
5.9
6.8
6.4
5.4
4.7
3.9
4.8
4.0 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.11
.12
<.10
<.10
<.10
<.10
<.10
<.10
<.10 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
4.9
6.3
3.8
3.7
5.5
6.7
6.9
6.6
7.0
6.9
6.6 | RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 117 133 109 77 71 67 76 70 73 81 66 81 | SUM OF CONSTITUENTS, DIS-SOLVED (MG/L) (70301) 104 105 129 106 71 68 64 64 66 70 75 66 | DIS-
SOLVED (TONS PER AC-FT) (70303) .16 .16 .18 .15 .10 .10 .09 .10 .10 .10 .11 .09 .11 | DIS-
SOLVED (TONS PER DAY) (70302) 417 561 357 427 5160 4550 5280 1810 3060 3980 1330 2850 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 .014 <.010 <.010 <.010 <.010 .015 .015 .012 .026 .011 .010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .581 .810 1.51 .419 .543 .811 .682 .724 .749 .627 .717 .585 .603 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 <.020 <.020 <.020 .066 .027 .038 <.020 .067 .038 .036 .026 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .21 .15 <.10 .12 1.2 .36 .25 .18 .14 .28 .16 .19 .14 | GEN,AM- MONIA + ORGANIC DIS: (MG/L AS N) (00623) <.20 .13 <.10 <.10 .15 .17 .13 <.10 <.10 .11 .12 .12 | 03176500 NEW RIVER AT GLEN LYN, VA--Continued | DATE | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | |-----------|--|--|---|--|--|--|--|--|---|---|--|---| | OCT 1997 | 7 | | | | | | | | | | | | | 06 | .79 | | <.050 | <.050 | .015 | .05 | 11 | <0.1 | <0.1 | 21 | <1 | <1 | | NOV | | | | | | | | | | | | | | 12 | .96 | .94 | <.050 | E.043 | .060 | .18 | 7.6 | <0.1 | <0.1 | 31 | <1 | <1 | | DEC
08 | | | E.031 | <.050 | .032 | .10 | 11 | <0.1 | 0.1 | 37 | <1 | <1 | | JAN 1998 | | | E.031 | 1.050 | .032 | .10 | 1,1 | VO.1 | 0.1 | 37 | ~1 | ~± | | 05 | .54 | | <.050 | <.050 | .020 | .06 | 10 | <0.1 | <0.1 | 23 | <1 | <1 | | 08 | 1.7 | .70 | .296 | <.050 | .020 | .06 | 22 | | | 47 | | | | FEB | | | | | | | | | | | | | | 06 | 1.2 | .98 | .067 | <.050 | .026 | .08 | | | | 46 | | | | 19 | .93 | .81 | .055 | <.050 | .024 | .07 | 18 | | | 36 | | | | 26 | .91 | | <.050 | <.050 | .017 | .05 | 14 | <0.1 | <0.1 | 21 | 1 | <1 | | MAR
24 | .89 | | <.050 | <.050 | <.010 | | 16 | <0.1 | <0.1 | 34 | 1 | <1 | | APR | .09 | | <.050 | <.050 | <.010 | | 10 | <0.1 | <0.1 | 34 | 1 | <.π | | 22 | .90 | .76 | E.030 | <.050 | .016 | .05 | 20 | | | 41 | | | | 30 | .87 | .85 | < .050 | <.050 | .022 | .07 | 39 | <0.1 | | 60 | <1 | | | MAY | | | | | | | | | | | | | | 13 | .77 | .71 | <.050 | <.050 | .015 | .05 | 16 | <0.1 | <0.1 | 35 | 2 | <1 | | JUN | | | | | | | | | | | | | | 09 | .75 | .73 | <.050 | <.050 | .023 | .07 | 10 | <0.1 | <0.1 | 35 | <1 | <1 | | JUL | .73 | . 75 | <.050 | <.050 | .014 | .04 | 13 | <0.1 | <0.1 | 16 | <1 | . 1 | | 16
AUG | . / 3 | . /5 | <.050 | <.050 | .014 | .04 | 13 | <0.1 | <0.1 | 16 | <1 | <1 | | 05 | .58 | .52 | <.050 | <.050 | .018 | .06 | 16 | <0.1 | <0.1 | 23 | <1 | <1 | | SEP | . 50 | .52 | 1.050 | 1.050 | .010 | .00 | 10 | ~0.1 | ~0.1 | 23 | ~- | ~= | | 08 | .74 | .65 | .070 | .050 | .038 | .12 | 35 | <0.1 | <0.1 | 17 | <1 | <1 | | | | | | | | | | | | | | | ## 03176500 NEW RIVER AT GLEN LYN, VA--Continued | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
SUS-
PENDED
TOTAL
(MG/L
AS C)
(00689) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | QUALITY ASSUR- ANCE DATA INDICA- TOR CODE *(99111) | |-----------|---|---|--|---|--|---|---|---|---|---|--|--| | OCT 199 | 7 | | | | | | | | | | | | | 06
NOV | 3.0 | 1.7 | <.20 | .012 | E.0058 | .006 | E.0054 | .0082 | 3 | 11 | 48 | 1 | | 12 | 5.9 | 1.6 | | .012 | E.0141 | .007 | E.0040 | .0091 | 1 | 4.8 | 56 | 1 | | DEC
08 | <1.0 | 1.5 | <.20 | .009 | E.0053 | .006 | <.0180 | .0067 | 1 | 2.7 | 71 | 30 | | JAN 199 | | 1.5 | 1.20 | .005 | 1.0055 | .000 | 1.0100 | .0007 | _ | 2., | , 1 | 50 | | 05 | 5.7 | 1.5 | .20 | | | | | | 31 | 121 | 82 | 30 | | 08 | <4.0 | 3.2 | 4.8 | | | | | | 240 | 16100 | 80 | 1 | | FEB | | | | | | | | | | | | | | 06 | 4.5 | 4.1 | .70 | | | | | | 39 | 2500 | 66 | 1 | | 19 | 4.4 | 1.4 | .90 | | | | | | 39 | 3070 | 77 | 1 | | 26 | 7.7 | 1.5 | .50 | | | | | | 15 | 358 | 96 | 100 | | MAR | | | | | | | | | | | | | | 24 | 4.4 | 1.4 | .70 | | | | | | 16 | 700 | 79 | 1 | | APR | - 0 | 1.0 | | | | | | | 1.0 | 1040 | 0.5 | | | 22
30 | 5.2
14 | 1.9 | .60 | | | | | | 19 | 1040 | 95 | 1 | | MAY | 14 | 1.9 | .20 | | | | | | 8 | 131 | 89 | 1 | | MAY
13 | <4.0 | 1.4 | . 50 | | | | | | 13 | 562 | 90 | 1 | | JUN | <4.0 | 1.1 | . 30 | | | | | | 13 | 302 | 90 | _ | | 09 | <4.0 | 1.5 | .30 | | | | | | 3 | 53 | 93 | 1 | | JUL | 11.0 | 1.5 | .50 | | | | | | 3 | 33 | ,,, | _ | | 16 | <4.0 | 1.7 | .60 | | | | | | 2 | 15 | 67 | 1 | | AUG | | | | | | | | | | | | | | 05
SEP | 6.1 | 1.6 | .50 | | | | | | 3 | 16 | 40 | 1 | | 08 | <4.0 | 1.5 | .40 | | | | | | 5 | 12 | 36 | 1 | E Estimated. * The values listed under parameter code 99111 indicate the type of quality-assurance sample associated with each environmental sample, where 1 denotes none, 30 denotes a replicate sample, and 100 denotes more than one type of quality-assurance sample. #### 03207800 LEVISA FORK AT BIG ROCK, VA LOCATION.--Lat 37°21'13", long 82°11'45", Buchanan County, Hydrologic Unit 05070202, on left bank at Big Rock, 2,000 ft downstream from Rocklick Creek, and 2,500 ft downstream from bridge on State Highway 645. DRAINAGE AREA. -- 297 mi². PERIOD OF RECORD. -- October 1967 to current year. GAGE.--Water-stage recorder. Datum of gage is 866.37 ft above sea level. REMARKS.--Records good except for period of doubtful gage-height record Aug. 3-13, which is fair. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. Maximum discharge, $56,000 \text{ ft}^3/\text{s}$, from rating curve extended above $7,000 \text{ ft}^3/\text{s}$ on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some
prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jan. 29, 1957, reached a stage of about 23.0 ft, information from local resident. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $4,500~{\rm ft}^3/{\rm s}$ and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-------------------|--------------|-----------------------------------|---------------------|-------------------|--------------|-----------------------------------|---------------------| | Feb. 4
Mar. 21 | 0330
0530 | 4,560
11,100 | 8.36
12.35 | Apr. 19
May 24 | 2200
1100 | 6,380
6,430 | 9.65
9.68 | | Apr. 17 | 0830 | 12,900 | 13.15 | June 10 | 1300 | *16,300 | *14.56 | Minimum discharge, 24 ft³/s, Oct. 17-18, 23-24, gage height, 2.54 ft. | | | | | | Di | AILY MEAN | VALUES | | | | | | |-------|------|------|------|-------|-------|-----------|--------|-------|-------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 44 | 30 | 169 | 59 | 663 | 557 | 525 | 412 | 443 | 365 | 302 | 61 | | 2 | 37 | 61 | 123 | 55 | 645 | 487 | 591 | 450 | 379 | 283 | 191 | 59 | | 3 | 33 | 70 | 83 | 69 | 1000 | 452 | 550 | 402 | 430 | 240 | e160 | 58 | | 4 | 31 | 61 | 74 | 134 | 3420 | 410 | 951 | 450 | 1090 | 212 | e130 | 55 | | 5 | 30 | 51 | 75 | 188 | 1690 | 402 | 1220 | 599 | 1050 | 202 | e120 | 52 | | 6 | 30 | 45 | 74 | 196 | 1150 | 385 | 962 | 559 | 888 | 191 | e110 | 51 | | 7 | 27 | 38 | 63 | 199 | 878 | 392 | 747 | 516 | 654 | 178 | e103 | 51 | | 8 | 30 | 37 | 57 | 901 | 921 | 419 | 646 | 946 | 514 | 294 | e98 | 52 | | 9 | 31 | 41 | 55 | 737 | 1060 | 529 | 771 | 986 | 475 | 444 | e130 | 54 | | 10 | 31 | 42 | 84 | 393 | 1260 | 596 | 1070 | 755 | 6990 | 290 | e450 | 53 | | 11 | 36 | 44 | 136 | 275 | 1450 | 561 | 1180 | 754 | 2820 | 228 | 369 | 53 | | 12 | 36 | 41 | 111 | 217 | 2260 | 495 | 1010 | 683 | 1470 | 193 | e185 | 51 | | 13 | 30 | 38 | 87 | 194 | 1460 | 438 | 797 | 582 | 1170 | 176 | e132 | 49 | | 14 | 27 | 46 | 76 | 161 | 1020 | 411 | 682 | 485 | 928 | 188 | 127 | 48 | | 15 | 27 | 50 | 64 | 160 | 762 | 373 | 587 | 410 | 873 | 193 | 129 | 46 | | 16 | 27 | 47 | 52 | 212 | 651 | 372 | 600 | 356 | 832 | 172 | 204 | 44 | | 17 | 26 | 43 | 55 | 223 | 832 | 420 | 6380 | 321 | 659 | 165 | 623 | 41 | | 18 | 27 | 36 | 49 | 228 | 1220 | 683 | 2360 | 284 | 528 | 156 | 364 | 63 | | 19 | 28 | 33 | 45 | 226 | 922 | 2760 | 3900 | 257 | 457 | 142 | 237 | 177 | | 20 | 29 | 32 | 43 | 233 | 793 | 2280 | 3780 | 250 | 437 | 138 | 177 | 58 | | 21 | 29 | 45 | 43 | 217 | 730 | 6520 | 1820 | 500 | 377 | 135 | 142 | 52 | | 22 | 27 | 122 | 57 | 208 | 675 | 2150 | 1300 | 337 | 347 | 128 | 121 | 103 | | 23 | 25 | 104 | 59 | 244 | 870 | 1340 | 1020 | 1860 | 518 | 165 | 109 | 86 | | 24 | 28 | 72 | 56 | 299 | 1670 | 1000 | 833 | 3940 | 484 | 281 | 101 | 58 | | 25 | 32 | 55 | 59 | 343 | 1280 | 795 | 694 | 1830 | 417 | 207 | 90 | 48 | | 26 | 46 | 49 | 56 | 315 | 936 | 684 | 608 | 1350 | 349 | 173 | 82 | 43 | | 27 | 56 | 45 | 62 | 331 | 746 | 605 | 542 | 1140 | 309 | 156 | 77 | 41 | | 28 | 44 | 43 | 71 | 802 | 622 | 536 | 477 | 1060 | 279 | 142 | 73 | 41 | | 29 | 34 | 41 | 65 | 979 | | 477 | 431 | 808 | 259 | 132 | 66 | 42 | | 30 | 31 | 62 | 65 | 1150 | | 430 | 407 | 614 | 281 | 122 | 70 | 149 | | 31 | 28 | | 64 | 885 | | 398 | | 527 | | 317 | 68 | | | TOTAL | 997 | 1524 | 2232 | 10833 | 31586 | 28357 | 37441 | 24423 | 26707 | 6408 | 5340 | 1839 | | MEAN | 32.2 | 50.8 | 72.0 | 349 | 1128 | 915 | 1248 | 788 | 890 | 207 | 172 | 61.3 | | MAX | 56 | 122 | 169 | 1150 | 3420 | 6520 | 6380 | 3940 | 6990 | 444 | 623 | 177 | | MIN | 25 | 30 | 43 | 55 | 622 | 372 | 407 | 250 | 259 | 122 | 66 | 41 | | CFSM | .11 | .17 | .24 | 1.18 | 3.80 | 3.08 | 4.20 | 2.65 | 3.00 | .70 | .58 | .21 | | IN. | .12 | .19 | .28 | 1.36 | 3.96 | 3.55 | 4.69 | 3.06 | 3.35 | .80 | .67 | .23 | e Estimated. # 03207800 LEVISA FORK AT BIG ROCK, VA--Continued | STATIST | rics of M | ONTHLY MEAN | DATA F | OR WATER | YEARS 1968 | - 1998, | BY WATER | YEAR (WY) | | | | | |---------|-----------|-------------|--------|----------|------------|---------|-----------|-----------|------|-----------|----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 133 | 214 | 373 | 572 | 697 | 762 | 705 | 535 | 282 | 153 | 119 | 83.7 | | MAX | 692 | 911 | 1201 | 1596 | 1451 | 2107 | 2355 | 1323 | 1135 | 630 | 325 | 273 | | (WY) | 1990 | 1978 | 1973 | 1974 | 1994 | 1975 | 1987 | 1984 | 1979 | 1979 | 1971 | 1989 | | MIN | 6.85 | 19.3 | 72.0 | 82.7 | 168 | 139 | 154 | 113 | 40.2 | 29.1 | 33.3 | 12.6 | | (WY) | 1970 | 1970 | 1998 | 1981 | 1968 | 1988 | 1986 | 1976 | 1970 | 1970 | 1969 | 1969 | | SUMMARY | Y STATIST | ICS | FOR | 1997 CAL | ENDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER YEA | ARS 1968 | - 1998 | | ANNUAL | TOTAL | | | 114391 | | | 177687 | | | | | | | ANNUAL | MEAN | | | 313 | | | 487 | | | 384 | | | | HIGHEST | r annual | MEAN | | | | | | | | 606 | | 1979 | | LOWEST | ANNUAL M | EAN | | | | | | | | 121 | | 1988 | | HIGHEST | r daily m | EAN | | 4660 | Mar 3 | | 6990 | Jun 10 | | 24800 | Apr | 4 1977 | | LOWEST | DAILY ME | AN | | 25 | Oct 23 | | 25 | Oct 23 | | 5.1 | Oct 1 | 19 1969 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 27 | Oct 14 | | 27 | Oct 14 | | 5.5 | Oct | 13 1969 | | INSTANT | raneous p | EAK FLOW | | | | | 16300 | Jun 10 | | 56000 | Apr | 4 1977 | | INSTANT | TANEOUS P | EAK STAGE | | | | | 14.56 | 5 Jun 10 | | 27.38 | Apr | 4 1977 | | INSTANT | TANEOUS L | OW FLOW | | | | | 24 | a0ct 17 | | 5.0 | b0ct | 1 1969 | | ANNUAL | RUNOFF (| CFSM) | | 1. | 06 | | 1.64 | 1 | | 1.29 | | | | ANNUAL | RUNOFF (| INCHES) | | 14. | 33 | | 22.26 | 5 | | 17.57 | | | | | CENT EXCE | | | 688 | | | 1060 | | | 841 | | | | 50 PERG | CENT EXCE | EDS | | 197 | | | 217 | | | 186 | | | | 90 PERG | CENT EXCE | EDS | | 37 | | | 41 | | | 37 | | | a Also Oct. 18, 23, 24, 1997. b Also Oct. 13, 14, 17-20, 1969. #### 03208500 RUSSELL FORK AT HAYSI, VA LOCATION.--Lat 37°12'25", long 82°17'45", Dickenson County, Hydrologic Unit 05070202, on right bank 180 ft downstream from bridge on State Highway 63, at Haysi, and 700 ft downstream from McClure River. DRAINAGE AREA. -- 286 mi². PERIOD OF RECORD.--July 1926 to current year. Monthly discharge only for some periods, published in WSP 1305. REVISED RECORDS.--WSP 1003: 1926-43. WSP 1385: 1928(M), 1929, 1933(M), 1935(M), 1937-38(M). GAGE.--Water-stage recorder. Datum of gage is 1,237.61 ft above sea level. Prior to Dec. 21, 1939, nonrecording gage at highway bridge 180 ft upstream at same datum. REMARKS.--No estimated daily discharges. Records good. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. Maximum discharge, $59,000~{\rm ft}^3/{\rm s}$, from rating curve extended above $32,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of $4,500~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-------------------|--------------|-----------------------------------|---------------------|--------------------|--------------|-----------------------------------|---------------------| | Feb. 4
Mar. 19 | 0130
0230 | 6,860
5,970 | 8.27
7.72 | Apr. 17
Apr. 19 | 0830
2000 | *24,300
10,000 | *17.21
10.18 | | Mar. 21 | 0500 | 7,980 | 8.93 | June 10 | 1300 | 12,700 | 11.65 | Minimum discharge, 21 ft³/s, Oct. 24, gage height, 1.99 ft. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | | | | | | | | *************************************** | | | | | | |-------|------|------|------|-------|-------|-------|---|-------|-------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 41 | 26 | 151 | 48 | 815 | 438 | 434 | 353 | 222 | 331 | 268 | 46 | | 2 | 34 | 36 | 128 | 53 | 772 | 390 | 498 | 501 | 188 | 217 | 131 | 44 | | 3 | 30 | 51 | 80 | 51 | 1480 | 369 | 482 | 435 | 181 | 175 | 97 | 43 | | 4 | 28 | 49 | 65 | 87 | 4570 | 333 | 2050 | 557 | 271 | 153 | 81 | 43 | | 5 | 27 | 42 | 62 | 134 | 1870 | 317 | 1960 | 612 | 393 | 148 | 71 | 40 | | 6 | 26 | 37 | 56 | 148 | 1120 | 302 | 1130 | 547 | 424 | 131 | 65 | 38 | | 7 | 25 | 34 | 47 | 176 | 881 | 300 | 787 | 520 | 312 | 119 | 60 | 41 | | 8 | 23 | 34 | 42 | 1190 | 1040 | 325 | 633 | 1720 | 236 | 212 | 56 | 43 | | 9 | 22 | 34 | 42 | 805 | 1170 | 536 | 966 | 1650 | 238 | 289 | 76 | 39 | | 10 | 24 | 36 | 69 | 416 | 1430 | 713 | 1220 | 1260 | 6020 | 176 | 167 | 36 | | 11 | 27 | 36 | 124 | 268 | 1720 | 579 | 1080 | 2090 | 2690 | 135 | 135 | 34 | | 12 | 28 | 34 | 98 | 196 | 2520 | 482 | 871 | 1410 | 1240 | 115 | 83 | 34 | | 13 | 27 | 30 | 75 | 152 | 1410 | 411 | 689 | 890 | 1030 | 104 | 68 | 34 | | 14 | 26 | 34 | 62 | 123 | 934 | 379 | 590 | 625 | 825 | 204 | 64 | 33 | | 15 | 25 | 38 | 51 | 117 | 694 | 332 | 518 | 472 | 714 | 140 | 72 | 31 | | 16 | 25 | 37 | 44 | 170 | 597 | 334 | 1580 | 378 | 534 | 119 | 111 | 30 | | 17 | 25 | 34 | 41 | 184 | 788 | 437 | 11700 | 311 | 411 | 302 | 1290 | 29 | | 18 | 25 | 29 | 39 | 172 | 1160 | 1000 | 2820 | 251 | 304 | 164 | 502 | 29 | | 19 | 25 | 26 | 36 | 174 | 892 | 3950 | 6340 | 215 | 278 | 122 | 225 | 29 | | 20 | 25 | 25 | 35 | 203 | 732 | 3200 | 4820 | 194 | 271 | 108 | 130 | 29 | | 21 | 24 | 39 | 34 | 207 | 623 | 5630 | 1940 | 334 | 216 | 96 | 100 | 33 | | 22 | 28 | 110 | 45 | 195 | 543 | 2050 | 1260 | 241 | 210 | 153 |
86 | 39 | | 23 | 22 | 90 | 49 | 292 | 615 | 1170 | 938 | 683 | 1310 | 151 | 77 | 37 | | 24 | 22 | 60 | 45 | 519 | 845 | 821 | 747 | 1250 | 871 | 140 | 70 | 34 | | 25 | 27 | 45 | 46 | 533 | 810 | 639 | 604 | 859 | 1030 | 107 | 65 | 32 | | 26 | 40 | 39 | 47 | 409 | 672 | 534 | 519 | 651 | 567 | 99 | 61 | 30 | | 27 | 60 | 36 | 50 | 363 | 583 | 467 | 455 | 489 | 385 | 85 | 58 | 29 | | 28 | 47 | 34 | 55 | 818 | 496 | 424 | 388 | 399 | 285 | 79 | 54 | 28 | | 29 | 34 | 31 | 54 | 1210 | | 383 | 335 | 312 | 227 | 73 | 53 | 96 | | 30 | 28 | 35 | 55 | 1500 | | 351 | 317 | 256 | 267 | 67 | 53 | 109 | | 31 | 26 | | 54 | 1110 | | 325 | | 275 | | 369 | 49 | | | TOTAL | 896 | 1221 | 1881 | 12023 | 31782 | 27921 | 48671 | 20740 | 22150 | 4883 | 4478 | 1192 | | MEAN | 28.9 | 40.7 | 60.7 | 388 | 1135 | 901 | 1622 | 669 | 738 | 158 | 144 | 39.7 | | MAX | 60 | 110 | 151 | 1500 | 4570 | 5630 | 11700 | 2090 | 6020 | 369 | 1290 | 109 | | MIN | 22 | 25 | 34 | 48 | 496 | 300 | 317 | 194 | 181 | 67 | 49 | 28 | | CFSM | .10 | .14 | .21 | 1.36 | 3.97 | 3.15 | 5.67 | 2.34 | 2.58 | .55 | .51 | .14 | | IN. | .12 | .16 | .24 | 1.56 | 4.13 | 3.63 | 6.33 | 2.70 | 2.88 | .64 | .58 | .16 | 16.05 742 132 15 #### BIG SANDY RIVER BASIN ## 03208500 RUSSELL FORK AT HAYSI, VA--Continued | STATISTICS OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1926 | - 1998 | BY | WATER | YEAR | (WY) |) | |---------------|---------|------|------|-----|-------|-------|------|--------|----|-------|------|------|---| | | | | | | | | | | | | | | | 14.98 632 184 30 | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------|----------|-----------|-------|-----------|-----------|----------|----------|------------|------|-----------|---------|--------| | MEAN | 88.4 | 166 | 334 | 518 | 656 | 777 | 588 | 422 | 188 | 149 | 120 | 64.0 | | MAX | 838 | 961 | 1326 | 2083 | 1797 | 2331 | 1994 | 1429 | 738 | 566 | 561 | 608 | | (WY) | 1990 | 1978 | 1927 | 1937 | 1939 | 1955 | 1977 | 1958 | 1998 | 1938 | 1966 | 1989 | | MIN | .98 | 2.46 | 11.1 | 19.6 | 57.7 | 168 | 64.0 | 63.4 | 21.6 | 3.03 | 8.81 | 2.07 | | (WY) | 1954 | 1954 | 1954 | 1940 | 1941 | 1988 | 1942 | 1941 | 1966 | 1930 | 1953 | 1943 | | SUMMARY | STATIST | ICS | FOR 1 | .997 CALE | NDAR YEAR | <u>!</u> | FOR 1998 | WATER YEAR | | WATER YEA | RS 1926 | - 1998 | | ANNUAL ' | TOTAL | | | 115202 | | | 177838 | | | | | | | ANNUAL I | MEAN | | | 316 | | | 487 | | | 338 | | | | HIGHEST | ANNUAL I | MEAN | | | | | | | | 568 | | 1994 | | LOWEST A | ANNUAL M | EAN | | | | | | | | 100 | | 1941 | | HIGHEST | DAILY M | EAN | | 8060 | Mar 3 | | 11700 | Apr 17 | | 30600 | Apr | 4 1977 | | LOWEST I | DAILY ME | AN | | 22 | aOct 9 | | 22 | aOct 9 | | .20 | Jun 2 | 7 1936 | | ANNUAL S | SEVEN-DA | Y MINIMUM | | 24 | Oct 18 | | 24 | Oct 18 | | .56 | Jun 2 | 4 1936 | | INSTANT | ANEOUS P | EAK FLOW | | | | | 24300 | Apr 17 | | 59000 | Apr | 4 1977 | | INSTANT | ANEOUS P | EAK STAGE | | | | | 17. | 21 Apr 17 | | 28.24 | Apr | 4 1977 | | INSTANT | ANEOUS L | OW FLOW | | | | | 21 | Oct 24 | | b.20 | cJun 2 | 7 1936 | | ANNUAL I | RUNOFF (| CFSM) | | 1.1 | 0 | | 1. | 70 | | 1.18 | | | | | | | | | | | | | | | | | 23.13 1170 174 30 ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Oct. 23, 24, 1997. b Observed. c Also June 28, 1936. #### 03208950 CRANES NEST RIVER NEAR CLINTWOOD, VA LOCATION.--Lat 37°07'26", long 82°26'20", Dickenson County, Hydrologic Unit 05070202, on left bank on State Highway 649, 500 ft downstream from Clinchfield Railway bridge, 1,000 ft downstream from Rush Creek, and 2.1 mi southeast of Clintwood. DRAINAGE AREA. -- 66.5 mi². PERIOD OF RECORD. -- October 1963 to current year. REVISED RECORDS.--WDR VA-77-1: 1967(M). WDR VA-92-1: 1991(P). GAGE.--Water-stage recorder. Datum of gage is 1,440.30 ft above sea level. REMARKS.--No estimated daily discharges. Records good. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. Maximum discharge, 18,000 ft³/s, from rating curve extended above 3,100 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 0.91 ft, Sept. 28, 1964. Several measurements of water temperature were made during the year. Water-quality record for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jan. 29, 1957, reached a stage of about 20.0 ft. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Mar. 18 | 2400 | 1,160
*3 410 | 7.27
*12.90 | Apr. 19 | 1600 | 2,110 | 10.00 | Minimum discharge, 4.9 ft³/s, Dec. 19, gage height, 1.47 ft. | | | DISCH | ARGE, IN | CUBIC FEET | | OND, WATER | | TOBER 1991 | 7 TO SEPTI | EMBER 1998 | 3 | | |-------|-------|-------|----------|------------|------|------------|------|------------|------------|------------|------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 10 | 7.7 | 31 | 13 | 137 | 77 | 87 | 113 | 52 | 70 | 67 | 13 | | 2 | 9.0 | 11 | 24 | 16 | 123 | 70 | 85 | 141 | 46 | 54 | 42 | 12 | | 3 | 8.6 | 14 | 16 | 17 | 256 | 67 | 80 | 119 | 45 | 46 | 32 | 12 | | 4 | 8.4 | 13 | 14 | 32 | 583 | 63 | 431 | 134 | 85 | 42 | 26 | 12 | | 5 | 8.2 | 13 | 13 | 31 | 285 | 59 | 312 | 130 | 119 | 40 | 23 | 11 | | 6 | 7.8 | 11 | 12 | 29 | 194 | 53 | 192 | 115 | 117 | 36 | 22 | 10 | | 7 | 7.4 | 11 | 10 | 56 | 168 | 52 | 142 | 125 | 85 | 34 | 20 | 10 | | 8 | 7.7 | 11 | 9.3 | 384 | 212 | 58 | 121 | 255 | 67 | 48 | 20 | 9.7 | | 9 | 7.6 | 13 | 11 | 136 | 233 | 90 | 222 | 275 | 79 | 69 | 27 | 10 | | 10 | 7.8 | 12 | 32 | 76 | 264 | 98 | 245 | 277 | 498 | 43 | 29 | 9.6 | | 11 | 8.5 | 11 | 36 | 53 | 327 | 84 | 213 | 393 | 384 | 36 | 22 | 9.2 | | 12 | 8.7 | 11 | 23 | 43 | 424 | 74 | 169 | 248 | 213 | 32 | 19 | 8.8 | | 13 | 9.0 | 9.9 | 18 | 37 | 255 | 67 | 137 | 176 | 225 | 32 | 18 | 8.5 | | 14 | 9.5 | 13 | 16 | 32 | 179 | 65 | 122 | 138 | 182 | 39 | 22 | 8.3 | | 15 | 12 | 19 | 13 | 32 | 136 | 59 | 109 | 113 | 158 | 33 | 33 | 7.8 | | 16 | 10 | 15 | 14 | 41 | 118 | 67 | 289 | 97 | 118 | 42 | 56 | 7.7 | | 17 | 9.9 | 13 | 14 | 39 | 170 | 85 | 1860 | 85 | 101 | 52 | 194 | 7.5 | | 18 | 9.6 | 11 | 12 | 37 | 227 | 240 | 494 | 74 | 79 | 37 | 95 | 7.4 | | 19 | 9.7 | 10 | 12 | 40 | 176 | 602 | 1530 | 67 | 74 | 32 | 52 | 11 | | 20 | 9.7 | 9.8 | 11 | 45 | 147 | 457 | 878 | 62 | 67 | 38 | 35 | 8.0 | | 21 | 9.1 | 18 | 11 | 42 | 127 | 477 | 409 | 79 | 60 | 30 | 28 | 7.6 | | 22 | 8.8 | 39 | 14 | 40 | 110 | 285 | 295 | 66 | 67 | 41 | 24 | 11 | | 23 | 8.8 | 24 | 15 | 74 | 113 | 194 | 238 | 220 | 247 | 36 | 21 | 11 | | 24 | 9.2 | 15 | 13 | 100 | 114 | 147 | 197 | 169 | 287 | 35 | 20 | 9.3 | | 25 | 12 | 11 | 15 | 85 | 105 | 119 | 166 | 114 | 329 | 31 | 18 | 8.6 | | 26 | 17 | 9.3 | 14 | 67 | 98 | 102 | 145 | 107 | 156 | 28 | 17 | 8.3 | | 27 | 22 | 8.8 | 15 | 56 | 92 | 89 | 129 | 92 | 104 | 24 | 16 | 7.7 | | 28 | 13 | 8.4 | 17 | 106 | 83 | 81 | 116 | 80 | 78 | 23 | 15 | 7.6 | | 29 | 9.3 | 8.0 | 15 | 152 | | 73 | 104 | 68 | 65 | 21 | 14 | 11 | | 30 | 8.2 | 9.7 | 16 | 219 | | 67 | 101 | 60 | 70 | 20 | 14 | 25 | | 31 | 7.8 | | 15 | 177 | | 63 | | 55 | | 118 | 13 | | | TOTAL | 304.3 | 390.6 | 501.3 | 2307 | 5456 | 4184 | 9618 | 4247 | 4257 | 1262 | 1054 | 300.6 | | MEAN | 9.82 | 13.0 | 16.2 | 74.4 | 195 | 135 | 321 | 137 | 142 | 40.7 | 34.0 | 10.0 | | MAX | 22 | 39 | 36 | 384 | 583 | 602 | 1860 | 393 | 498 | 118 | 194 | 25 | | MIN | 7.4 | 7.7 | 9.3 | 13 | 83 | 52 | 80 | 55 | 45 | 20 | 13 | 7.4 | | CFSM | .15 | .20 | .24 | 1.12 | 2.93 | 2.03 | 4.82 | 2.06 | 2.13 | .61 | .51 | .15 | | IN. | .17 | .22 | .28 | 1.29 | 3.05 | 2.34 | 5.38 | 2.38 | 2.38 | .71 | .59 | .17 | ### 03208950 CRANES NEST RIVER NEAR CLINTWOOD, VA--Continued | STATIST | rics of M | ONTHLY MEAN | DATA E | FOR WATER | YEARS 19 | 64 - 1998, | BY WATER | YEAR (WY) | | | | | |---------|-----------|-------------|--------|-----------|----------|------------|----------|-----------|------|------|------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 30.5 | 47.9 | 84.4 | 119 | 146 | 169 | 139 | 98.4 | 53.0 | 31.6 | 31.6 | 23.8 | | MAX | 191 | 164 | 228 | 338 | 367 | 434 | 498 | 262 | 236 | 75.7 | 142 | 116 | | (WY) | 1990 | 1978 | 1992 | 1972 | 1994 | 1975 | 1977 | 1984 | 1989 | 1991 | 1966 | 1982 | | MIN | 1.67 | 6.33 | 4.41 | 5.98 | 36.6 | 37.8 | 28.1 | 21.2 | 7.40 | 5.50 | 10.0 | 3.95 | | (WY) | 1964 | 1966 | 1966 | 1966 | 1968 | 1988 | 1986 | 1976 | 1966 | 1970 | 1964 | 1965 | | SUMMARY STATISTICS | FOR 1997 CALENDAR YEAR | FOR 1998 WATER YEAR | WATER YEARS 1964 - 1998 | |--------------------------|------------------------|---------------------|-------------------------| | ANNIJAI, TOTAI, | 22769.8 | 33881.8 | | | ANNUAL MEAN | 62.4 | 92.8 | 80.8 | | | 02.4 | 92.0 | | | HIGHEST ANNUAL MEAN | | | 126 1994 | | LOWEST ANNUAL MEAN | | | 34.7 1988 | | HIGHEST DAILY MEAN | 1570 Mar 3 | 1860 Apr 17 | 8000 Apr 4 1977 | | LOWEST DAILY MEAN | 7.3 aSep 6 | 7.4 bOct 7 | .70 Sep 17 1964 | | ANNUAL SEVEN-DAY MINIMUM | 7.6 Sep 2 | 7.8 Oct 4 | .93 Sep 12 1964 | | INSTANTANEOUS PEAK FLOW | | 3410 Apr 17 | 18000 Apr 4 1977 | | INSTANTANEOUS PEAK STAGE | | 12.90 Apr 17 | c26.09 Apr 4 1977 | | INSTANTANEOUS LOW FLOW | | 4.9 Dec 19 | .48 Sep 28 1964 | | ANNUAL RUNOFF (CFSM) | .94 | 1.40 | 1.22 | | ANNUAL RUNOFF (INCHES) | 12.74 | 18.95 | 16.51 | | 10 PERCENT EXCEEDS | 132 | 226 | 175 | | 50 PERCENT EXCEEDS | 31 | 42 | 39 | | 90 PERCENT EXCEEDS | 9.0 | 9.3 | 8.1 | | | | | | a Also Sept. 7, 8, 1997. b Also Sept. 18, 1998. c From floodmark. ## 03209000 POUND RIVER BELOW FLANNAGAN DAM, NEAR HAYSI, VA LOCATION.--Lat 37°14'13", long 82°20'36", Dickenson County,
Hydrologic Unit 05070202, on right bank 1,100 ft upstream from Blacklog Branch, 1,700 ft downstream from John W. Flannagan Dam, 1.4 mi upstream from mouth, and 3.4 mi northwest of Haysi. DRAINAGE AREA. -- 221 mi². PERIOD OF RECORD.--July 1926 to current year. Monthly discharge only for some periods, published in WSP 1305. Prior to October 1963, published as Pound River near Haysi. REVISED RECORDS.--WSP 953: 1940-41. WSP 1003: 1942, 1943(P). WSP 1275: 1927-30, 1931(M), 1932-39. GAGE.--Water-stage recorder. Datum of gage is 1,200.00 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to Dec. 20, 1939, nonrecording gage at site 3.8 mi upstream at different datum. Dec. 20, 1939, to Sept. 30, 1963, water-stage recorder at site 4.6 mi upstream at datum 79.91 ft higher. REMARKS.--No estimated daily discharges. Records good. Flow regulated since March 1965 by John W. Flannagan Reservoir (station 03208990) 1,700 ft upstream and since August 1966 by North Fork of Pound Lake (station 03208680) 33 mi upstream. U.S. Army Corps of Engineers satellite precipitation and gage-height telemeter at station. Maximum discharge, about 30,000 ft³/s, from rating curve extended above 1,750 ft³/s. Maximum discharge since construction of John W. Flannagan Dam in 1965, 4,540 ft³/s. Minimum gage height since construction of John W. Flannagan Dam, 0.91 ft, Sept. 26, 1996, when gates in Flannagan Dam were closed for inspection. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,020 $\rm ft^3/s$, Apr. 22, gage height, 7.78 ft; minimum, 32 $\rm ft^3/s$, Oct. 18-19, gage height, 2.04 ft; minimum daily, 39 $\rm ft^3/s$, Oct. 1-3. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | | DISC | narge, co | DIC FEET | | ILY MEAN V | | BER 1997 1 | O SEPIEME | 5EK 1990 | | | |--|--|--|--|---|---|--|---|--|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 39
39
39
252
282 | 79
131
302 | 151
98
92 | 74
74
74 | 733
547
1230 | 221
145
147 | 51
50
51
51 | 339
495
462 | 150
153
154
222
588 | 244
244
189
63 | 360
152
62
62
107 | 46
45
46
54
63 | | 6
7
8
9
10 | 152
204
109
48
49 | 72
72
72 | 94
78
53 | 212
655
745 | 579
313
813 | 258
257
258 | 51
51
52
53
54 | 425
1110
1280 | 463
282
231
231
137 | 95
141
141
190
268 | 53
53
53
71
141 | 63
63
64
65
65 | | 11
12
13
14
15 | 257
255
45
114
148 | 200
200
200 | 140
69
70 | 278
166
142 | 1170
673
293 | 309
314
279 | 54
54
54
54
168 | 1240
682
417 | 1620
2460
981
937
700 | 178
68
69
68
108 | 139
133
98
60
60 | 65
65
64
63
68 | | 16
17
18
19
20 | 148
101
269
260
108 | 200
123
87 | 72
72
72 | 91
138
138 | 637
650
582 | 203
250
1420 | 602
585
2230
694
1800 | 186
139
163 | 447
281
244
227
151 | 129
129
129
129
129 | 156
376
493
242
72 | 75
76
75
74
74 | | 21
22
23
24
25 | 169
174
142
143
400 | 200
210
302 | 72
72
72 | 189
189
189 | 281
485
478 | 975
1680
1570 | 2980
3640
3950
3290
1720 | 208
478
1290 | 148
228
456
556
932 | 129
88
262
194
64 | 72
72
72
72
72 | 74
74
62
56
69 | | 26
27
28
29
30
31 | 382
130
145
103
75 | 197
173
138
138 | 74
74
74
74 | 330
577
936
734 | 362
369
 | 339
339
339
280 | 1020
1220
1100
437
437 | 441
376
360
170 | 929
275
268
155
133 | 63
64
65
65
65
414 | 55
50
50
50
50 | 75
75
75
76
58 | | TOTAL
MEAN
MAX
MIN
(†)
MEAN‡
CFSM‡
IN.‡ | 4856
157
400
39
-4371
15.6
.07 | 173
391
72
-3927
41.6
.19 | 83.7
179
53
-101
80.5
.36 | 302
936
74
+625
322
1.46 | 632
1740
279
-620
610
2.76 | 504
1680
145
-96
501
2.27 | 26604
887
3950
50
+8994
1187
5.37 | 523
1360
139
+15
524
2.37 | 14739
491
2460
133
+141
496
2.24
2.50 | 4247
137
414
63
-277
128
.58 | 3608
116
493
50
+152
121
.55
.63 | 1967
65.6
76
45
-1326
21.4
.10 | | CAL YR
WTR YR | | TOTAL
TOTAL | 83027
122687 | MEAN
MEAN | 227 MAX
336 MAX | | | 27 MEAN
39 MEAN | | CFSM‡ 1
CFSM‡ 1 | .03 IN.‡ | | [†] Total change in contents, equivalent in cubic feet per second, per month, in North Fork of Pound Lake and John W. Flannagan Reservoir; provided by U. S. Army Corps of Engineers. ‡ Adjusted for monthly change in contents. #### 03209000 POUND RIVER BELOW FLANNAGAN DAM, NEAR HAYSI, VA--Continued | STATISTICS OF MONTHLY MEAN | N DATA FOR WATER Y | EARS 1926 - 196 | 4, BY WATER YEAR (WY) | [UNREGULATED] | | |--|---|---|---|---|--| | OCT NOV MEAN 48.6 132 MAX 362 678 (WY) 1938 1930 MIN 1.00 2.33 (WY) 1954 1940 | DEC JAN
272 431
1064 1242
1927 1937
8.34 16.0
1940 1940 | FEB MAF
534 640
1118 1968
1957 1963
35.0 226
1941 1931 | APR MAY
440 287
974 892
1927 1958
57.7 45.1
1942 1941 | JUN JUL
126 146
392 692
1938 1942
11.3 3.07
1941 1930 | AUG SEP
93.5 38.8
400 211
1942 1928
4.22 .51
1932 1932 | | SUMMARY STATISTICS | WATER Y | EARS 1926 - 196 | 4 | | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 265
420
76.6
16100
.1
.1
30000
b16.5
<.1
1.2
16.2
630
94
8.0 | 192
194
Jan 29 195
0 aSep 9 193
0 Sep 12 193
Mar 23 192
0 (c) | 7
1
7
2
2
2
9
9 | | | | STATISTICS OF MONTHLY MEAN | | | | - | | | OCT NOV MEAN 241 307 MAX 927 679 (WY) 1990 1978 MIN 48.9 24.8 (WY) 1989 1966 | DEC JAN
338 448
1003 1171
1992 1972
16.1 31.8
1966 1966 | FEB MAF
507 535
1343 1181
1994 1975
92.3 110
1992 1988 | APR MAY
299 361
1004 1074
1977 1975
46.1 47.4
1995 1982 | JUN JUL 187 112 756 320 1989 1989 9.66 5.49 1966 1965 | AUG SEP
104 96.3
245 405
1994 1982
7.13 32.5
1965 1967 | | SUMMARY STATISTICS | FOR 1997 CALEN | DAR YEAR | FOR 1998 WATER YEAR | WATER | YEARS 1965 - 1998 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 83027
227
3850
27
33
1.03
13.98
419
131
39 | Mar 7
Aug 15
Aug 13 | 122687
336
3950 Apr 23
39 dOct 1
48 Aug 28
4020 Apr 22
7.78 Apr 22
32 gOct 18
1.52
20.65
772
169
57 | 294
481
120
4410
2
2
2
4540
8
1
1
18
662
145 | 1975
1966
Apr 9 1977
3 fJun 26 1965
5 Jun 25 1965
Apr 8 1977
20 Apr 8 1977
2 hFeb 16 1968
33 | < Less than. Less than. a Also Sept. 10, 12-22, 28-30, 1932. b From floodmarks, site and datum then in use. c On several days in September 1932. d Also Oct. 2, 3, 1997. f Also June 27-29, 1965. g Also Oct. 19, 1997. h Also Aug. 26, 1986. #### TENNESSEE RIVER BASIN ### 03471500 SOUTH FORK HOLSTON RIVER AT RIVERSIDE, NEAR CHILHOWIE, VA LOCATION.--Lat 36°45'37", long 81°37'53", Smyth County, Hydrologic Unit 06010102, on right bank 400 ft upstream from highway bridge at Riverside, 900 ft upstream from Spring Branch, 3.2 mi downstream from Redstone Branch, 4.0 mi southeast of Chilhowie, and at mile 97.2. DRAINAGE AREA. -- 76.1 mi². PERIOD OF RECORD.--October 1920 to December 1931, July 1942 to current year. Monthly discharge only for some periods, published in WSP 1306. Prior to October 1924, published as "near Chilhowie." June 1907
to December 1909, at site 4.5 mi downstream also published as "near Chilhowie"; records not equivalent. REVISED RECORDS.--WSP 1033: 1943-44(m). WSP 1306: Drainage area, 1921-31(M). GAGE.--Water-stage recorder. Datum of gage is 2,106.77 ft above sea level. Nov. 1, 1920, to Nov. 14, 1931, nonrecording gage at site 400 ft downstream at same datum. REMARKS.--No estimated daily discharges. Records good. Prior to August 1951, diurnal fluctuation at low flow caused by mill 500 ft upstream from station. Maximum discharge, 9,600 ft³/s, from rating curve extended above 3,700 ft³/s on basis of slope-area measurement of peak flow. Minimum discharge recorded, 2 ft³/s, but may have been less in 1925 and 1926 before installation of water-stage recorder. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 650 ft^3/s and maximum (*): | Date | Time | Discharge (ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |---------|------|--------------------------------|---------------------|---------|------|-----------------------------------|------------------| | Jan. 8 | 0600 | 1,300 | 5.04 | Apr. 19 | 2400 | 1,300 | 5.04 | | Feb. 17 | 1945 | *2,190 | *6.09 | May 11 | 0800 | 959 | 4.50 | | Mar. 21 | 0245 | 959 | 4.50 | June 10 | 1515 | 725 | 4.06 | | Apr. 17 | 1045 | 1,100 | 4.74 | | | | | $\texttt{Minimum discharge, 19 ft}^3/\texttt{s, Oct. 13, 31, Nov. 29, Dec. 19, 20, 21, minimum gage height, 1.21 ft, Oct. 13. } \\$ DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|------|------|------|------|------|------|------|------|------|------|------|------| | 1 | 29 | 23 | 33 | 27 | 95 | 233 | 108 | 136 | 203 | 105 | 45 | 28 | | 2 | 25 | 28 | 32 | 25 | 92 | 199 | 99 | 212 | 164 | 86 | 40 | 27 | | 3 | 24 | 30 | 27 | 26 | 135 | 174 | 94 | 210 | 144 | 79 | 38 | 27 | | 4 | 23 | 29 | 26 | 27 | 327 | 147 | 153 | 305 | 165 | 75 | 37 | 27 | | 5 | 23 | 27 | 25 | 35 | 325 | 130 | 173 | 303 | 191 | 78 | 35 | 26 | | | 23 | 2. | 23 | 33 | 323 | 130 | 1.3 | 303 | | , 0 | 33 | 20 | | 6 | 23 | 24 | 24 | 50 | 240 | 119 | 160 | 244 | 261 | 70 | 34 | 26 | | 7 | 23 | 24 | 23 | 51 | 197 | 110 | 141 | 222 | 235 | 67 | 33 | 26 | | 8 | 22 | 24 | 2.3 | 686 | 179 | 152 | 127 | 260 | 188 | 66 | 34 | 29 | | 9 | 22 | 25 | 23 | 301 | 188 | 382 | 144 | 279 | 165 | 66 | 35 | 28 | | 10 | 22 | 25 | 27 | 180 | 223 | 376 | 164 | 380 | 488 | 62 | 42 | 27 | | | | | | | | | | | | | | | | 11 | 22 | 24 | 28 | 127 | 282 | 255 | 179 | 873 | 527 | 59 | 41 | 26 | | 12 | 22 | 23 | 26 | 100 | 491 | 198 | 175 | 556 | 350 | 56 | 36 | 26 | | 13 | 22 | 23 | 24 | 85 | 412 | 162 | 157 | 363 | 314 | 55 | 34 | 25 | | 14 | 22 | 25 | 23 | 73 | 298 | 143 | 141 | 273 | 272 | 54 | 33 | 26 | | 15 | 22 | 27 | 23 | 78 | 235 | 126 | 126 | 223 | 330 | 52 | 35 | 24 | | | | | | | | | | | | | | | | 16 | 22 | 25 | 22 | 121 | 218 | 114 | 129 | 188 | 294 | 50 | 52 | 24 | | 17 | 23 | 24 | 22 | 130 | 1070 | 107 | 765 | 164 | 231 | 51 | 62 | 24 | | 18 | 23 | 23 | 22 | 111 | 1070 | 109 | 533 | 145 | 188 | 48 | 46 | 24 | | 19 | 23 | 23 | 22 | 99 | 560 | 232 | 607 | 131 | 166 | 46 | 41 | 24 | | 20 | 23 | 22 | 21 | 89 | 438 | 445 | 966 | 120 | 148 | 45 | 37 | 24 | | 21 | 23 | 26 | 21 | 78 | 353 | 816 | 512 | 133 | 129 | 44 | 36 | 24 | | 22 | 24 | 30 | 24 | 73 | 286 | 480 | 351 | 121 | 124 | 43 | 34 | 26 | | 23 | 24 | 27 | 25 | 111 | 277 | 325 | 272 | 161 | 297 | 45 | 33 | 27 | | 24 | 24 | 24 | 24 | 166 | 282 | 247 | 223 | 189 | 179 | 46 | 32 | 25 | | | 24 | 23 | 33 | | | | 188 | 213 | 140 | | | 25 | | 25 | 21 | 23 | 33 | 153 | 243 | 202 | 188 | 213 | 140 | 44 | 31 | 24 | | 26 | 29 | 22 | 31 | 131 | 214 | 172 | 164 | 373 | 121 | 44 | 30 | 24 | | 27 | 31 | 22 | 34 | 124 | 210 | 151 | 150 | 423 | 110 | 42 | 30 | 24 | | 28 | 26 | 22 | 33 | 117 | 239 | 138 | 138 | 399 | 101 | 41 | 30 | 23 | | 29 | 23 | 22 | 31 | 100 | | 127 | 123 | 288 | 94 | 40 | 29 | 23 | | 30 | 22 | 24 | 31 | 103 | | 116 | 117 | 247 | 102 | 39 | 29 | 24 | | 31 | 22 | | 29 | 101 | | 107 | | 255 | | 47 | 28 | | | | | | | | | | | | | | | | | TOTAL | 735 | 740 | 812 | 3678 | 9179 | 6794 | 7379 | 8389 | 6421 | 1745 | 1132 | 762 | | MEAN | 23.7 | 24.7 | 26.2 | 119 | 328 | 219 | 246 | 271 | 214 | 56.3 | 36.5 | 25.4 | | MAX | 31 | 30 | 34 | 686 | 1070 | 816 | 966 | 873 | 527 | 105 | 62 | 29 | | MIN | 22 | 22 | 21 | 25 | 92 | 107 | 94 | 120 | 94 | 39 | 28 | 23 | | CFSM | .31 | .32 | .34 | 1.56 | 4.31 | 2.88 | 3.23 | 3.56 | 2.81 | .74 | .48 | .33 | | IN. | .36 | .36 | .40 | 1.80 | 4.49 | 3.32 | 3.61 | 4.10 | 3.14 | .85 | .55 | .37 | | | | | | | | | | | | | | | #### TENNESSEE RIVER BASIN # 03471500 SOUTH FORK HOLSTON RIVER AT RIVERSIDE, NEAR CHILHOWIE, VA--Continued | STATIST | ICS OF | MONTHLY MI | EAN DATA | FOR WATER | YEARS 1921 | - 1932, | 1942 - | 1998, BY | WATER YEAR | (WY) | | | |----------|---------|------------|----------|------------|------------|---------|---------|------------|------------|-----------|--------|--------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 50.3 | 70.4 | 112 | 155 | 205 | 210 | 171 | 139 | 91.7 | 58.9 | 54.9 | 44.9 | | MAX | 162 | 409 | 272 | 353 | 508 | 512 | 570 | 278 | 322 | 172 | 209 | 254 | | (WY) | 1990 | 1978 | 1973 | 1996 | 1957 | 1955 | 1987 | 1945 | 1923 | 1989 | 1942 | 1989 | | MIN | 19.9 | 19.9 | 25.8 | 28.8 | 57.2 | 51.3 | 52.6 | 49.1 | 31.1 | 22.5 | 17.5 | 20.6 | | (WY) | 1954 | 1954 | 1956 | 1956 | 1931 | 1988 | 1986 | 1926 | 1988 | 1988 | 1988 | 1988 | | ~ | ~ | | | . 1005 | | _ | 1000 | | | | | 1000 | | SUMMARY | STATI | STICS | F'OF | R 1997 CAL | ENDAR YEAR | F. | OR 1998 | WATER YEAR | ξ | WATER YEA | | | | | | | | | | | | | | | 1942 | - 1998 | | ANNUAL ' | TOTAL | | | 35824 | | | 47766 | | | | | | | ANNUAL I | MEAN | | | 98. | 1 | | 131 | | | 113 | | | | HIGHEST | ANNUA | L MEAN | | | | | | | | 162 | | 1974 | | LOWEST A | ANNUAL | MEAN | | | | | | | | 53.8 | | 1988 | | HIGHEST | DAILY | MEAN | | 748 | Mar 4 | | 1070 | aFeb 17 | 7 | 4040 | Nov | 6 1977 | | LOWEST 1 | DAILY I | MEAN | | 21 | bDec 20 | | 21 | bDec 20 |) | 8.0 | Jul 1 | 9 1926 | | ANNUAL | SEVEN-1 | DAY MINIMU | 4 | 22 | Dec 15 | | 22 | Dec 15 | 5 | 15 | Jul 1 | 7 1926 | | INSTANT | ANEOUS | PEAK FLOW | | | | | 2190 | Feb 17 | 7 | 9600 | Nov | 6 1977 | | INSTANT | ANEOUS | PEAK STAG | € | | | | 6. | 09 Feb 17 | 7 | 10.20 | Nov | 6 1977 | | INSTANT | ANEOUS | LOW FLOW | | | | | 19 | cOct 13 | 3 | 2.0 | dAug 2 | 6 1943 | | ANNUAL 1 | RUNOFF | (CFSM) | | 1. | 29 | | 1. | 72 | | 1.48 | | | | ANNUAL 1 | RUNOFF | (INCHES) | | 17. | 51 | | 23. | 35 | | 20.17 | | | | 10 PERC | ENT EX | CEEDS | | 222 | | | 302 | | | 229 | | | | 50 PERC | ENT EX | CEEDS | | 58 | | | 66 | | | 71 | | | | 90 PERC | ENT EX | CEEDS | | 23 | | | 23 | | | 27 | | | a Also Feb. 18, 1998. b Also Dec. 21, 1997. c Also Oct. 31, Nov. 29, and Dec. 19-21, 1997. b Also Oct. 15, 1943, Aug. 9, 11, 1944, and Oct. 19, 1945. #### TENNESSEE RIVER BASIN ### 03473000 SOUTH FORK HOLSTON RIVER NEAR DAMASCUS, VA LOCATION.--Lat 36°39'06", long 81°50'39", Washington County, Hydrologic Unit 06010102, on right bank 500 ft upstream from bridge on U.S. Highway 58, 0.7 mi downstream from Laurel Creek, 3.2 mi northwest of Damascus, 4.9 mi upstream from Middle Fork, and at mile 77.2. DRAINAGE AREA. -- 301 mi². PERIOD OF RECORD.--October 1931 to current year. Monthly discharge only for some periods, published in WSP 1306. Published as "at Vestal" prior to October 1978. REVISED RECORDS.--WSP 823: Drainage area. WSP 1306: 1932-33(M). GAGE.--Water-stage recorder. Datum of gage is 1,792.30 ft above sea level. REMARKS.--Records good except for period with ice effect, Jan. 2, which is fair. Prior to 1980, some diurnal fluctuation at low flow caused by powerplant upstream from station. Maximum discharge, 22,000 ft³/s, from rating curve extended above 10,000 ft³/s on basis of slope-area measurement of peak flow. Minimum gage height, 2.07 ft, Aug. 19, 1988. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |-------------------------------|----------------------|-----------------------------------|-----------------------|-------------------|--------------|-----------------------------------|---------------------| | Jan. 8
Feb. 18 | 1000
0030 | 5,350
4,180 | 8.80
7.80 | May 11
May 20 | 0030
2200 | 5,670
4,010 | 9.06
7.65 | | Mar. 21
Apr. 17
Apr. 20 | 0500
0815
0215 | 4,790
*6,780
4,970 | 8.34
*9.91
8.49 | May 27
June 10 | 1800
1100 | 3,180
5,350 | 6.88
8.80 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 84 ft^3/s , Oct. 13, 14, gage height, 2.18 ft. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|------|------|------|-------|-------|-------|-------|-------|--------------|------|------|------| | 1 | 110 | 111 | 449 | 186 | 578 | 769 | 530 | 524 | 772 | 581 | 240 | 122 | | 2 | 108 | 166 | 367 | e180 | 551 | 671 | 481 | 756 | 634 | 465 | 193 | 120 | | 3 | 98 | 164 | 280 | 191 | 861 | 613 | 453 | 771 | 567 | 407 | 177 | 117 | | 4 | 96 | 159 | 258 | 217 | 2100 | 528 | 1700 | 1040 | 843 | 377 | 168 | 117 | | 5 | 93 | 144 | 233 | 331 | 1890 | 478 | 1680 | 1080 | 1050 | 712 | 160 | 114 | | 6 | 91 | 133 | 208 | 496 | 1260 | 463 | 1110 | 904 | 1010 | 458 | 155 | 111 | | 7 | 89 | 125 |
187 | 493 | 997 | 464 | 853 | 895 | 921 | 380 | 151 | 109 | | 8 | 89 | 122 | 175 | 3970 | 883 | 646 | 716 | 1780 | 751 | 380 | 149 | 139 | | 9 | 87 | 128 | 183 | 1830 | 841 | 1290 | 843 | 2600 | 679 | 409 | 164 | 141 | | 10 | 86 | 130 | 215 | 1020 | 905 | 1410 | 896 | 2940 | 3220 | 380 | 274 | 120 | | 11 | 87 | 126 | 222 | 723 | 1060 | 996 | 920 | 4540 | 2650 | 332 | 273 | 115 | | 12 | 87 | 122 | 211 | 567 | 1890 | 771 | 849 | 2490 | 1840 | 306 | 193 | 112 | | 13 | 86 | 121 | 200 | 481 | 1620 | 634 | 745 | 1550 | 1560 | 289 | 170 | 108 | | 14 | 85 | 135 | 188 | 405 | 1150 | 567 | 667 | 1120 | 1260 | 278 | 163 | 105 | | 15 | 87 | 177 | 173 | 487 | 883 | 502 | 592 | 893 | 1330 | 264 | 168 | 104 | | 16 | 87 | 159 | 164 | 731 | 765 | 464 | 684 | 750 | 1090 | 248 | 262 | 100 | | 17 | 87 | 145 | 158 | 728 | 1990 | 445 | 4840 | 655 | 867 | 243 | 391 | 101 | | 18 | 90 | 134 | 151 | 613 | 3040 | 456 | 2800 | 570 | 711 | 236 | 331 | 100 | | 19 | 92 | 129 | 145 | 554 | 1760 | 1210 | 2650 | 510 | 667 | 225 | 252 | 105 | | 20 | 97 | 124 | 140 | 494 | 1370 | 1850 | 4050 | 778 | 601 | 228 | 209 | 101 | | 21 | 93 | 145 | 138 | 431 | 1130 | 4100 | 2270 | 1590 | 517 | 212 | 186 | 106 | | 22 | 97 | 210 | 172 | 407 | 941 | 2310 | 1510 | 953 | 482 | 200 | 174 | 128 | | 23 | 95 | 176 | 170 | 522 | 951 | 1450 | 1140 | 902 | 1000 | 231 | 163 | 125 | | 24 | 96 | 159 | 166 | 658 | 978 | 1060 | 924 | 1000 | 716 | 236 | 155 | 110 | | 25 | 109 | 147 | 286 | 641 | 874 | 861 | 768 | 1040 | 781 | 219 | 149 | 105 | | 26 | 147 | 141 | 265 | 563 | 764 | 741 | 671 | 1700 | 589 | 208 | 140 | 104 | | 27 | 200 | 135 | 274 | 563 | 734 | 665 | 623 | 2470 | 547 | 195 | 138 | 102 | | 28 | 136 | 129 | 256 | 620 | 790 | 621 | 597 | 2240 | 460 | 191 | 134 | 101 | | 29 | 115 | 125 | 232 | 557 | | 575 | 515 | 1360 | 415 | 185 | 131 | 104 | | 30 | 106 | 130 | 230 | 675 | | 528 | 501 | 1010 | 503 | 188 | 129 | 104 | | 31 | 100 | | 211 | 647 | | 490 | | 973 | | 268 | 125 | | | TOTAL | 3126 | 4251 | 6707 | 20981 | 33556 | 28628 | 37578 | 42384 | 29033 | 9531 | 5867 | 3350 | | MEAN | 101 | 142 | 216 | 677 | 1198 | 923 | 1253 | 1367 | 968 | 307 | 189 | 112 | | MAX | 200 | 210 | 449 | 3970 | 3040 | 4100 | 4840 | 4540 | 3220 | 712 | 391 | 141 | | MIN | 85 | 111 | 138 | 180 | 551 | 445 | 453 | 510 | 415 | 185 | 125 | 100 | | CFSM | .34 | .47 | .72 | 2.25 | 3.98 | 3.07 | 4.16 | 4.54 | 3.22
3.59 | 1.02 | .63 | . 37 | | IN. | .39 | .53 | .83 | 2.59 | 4.15 | 3.54 | 4.64 | 5.24 | 3.59 | 1.18 | .73 | . 41 | e Estimated. TENNESSEE RIVER BASIN # 03473000 SOUTH FORK HOLSTON RIVER NEAR DAMASCUS, VA--Continued | STATIS' | TICS OF M | ONTHLY MEA | N DATA | FOR WATER | YEARS 1932 | - 1998, | BY WATER | R YEAR (WY) | | | | | |---------|-----------|------------|--------|------------|------------|---------|-----------|-------------|------|-------|------------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 215 | 287 | 486 | 672 | 853 | 890 | 727 | 580 | 368 | 286 | 253 | 178 | | MAX | 938 | 1258 | 1203 | 1490 | 2022 | 2075 | 1995 | 1367 | 968 | 1079 | 1193 | 790 | | (WY) | 1978 | 1978 | 1973 | 1957 | 1957 | 1955 | 1987 | 1998 | 1998 | 1938 | 1940 | 1989 | | MIN | 76.5 | 85.3 | 93.6 | 101 | 200 | 228 | 224 | 155 | 129 | 100 | 89.6 | 79.0 | | (WY) | 1953 | 1940 | 1940 | 1940 | 1941 | 1988 | 1942 | 1941 | 1988 | 1988 | 1988 | 1954 | | SUMMAR | Y STATIST | ics | FOI | R 1997 CAL | ENDAR YEAR | F | OR 1998 V | WATER YEAR | | WATER | YEARS 1932 | - 1998 | | ANNUAL | TOTAL | | | 172955 | | | 224992 | | | | | | | ANNUAL | MEAN | | | 474 | | | 616 | | | 481 | | | | HIGHES' | T ANNUAL | MEAN | | | | | | | | 712 | | 1974 | | LOWEST | ANNUAL M | IEAN | | | | | | | | 245 | | 1988 | | | T DAILY M | | | 3930 | Mar 3 | | 4840 | Apr 17 | | 12800 | _ | 5 1977 | | LOWEST | DAILY ME | AN | | 85 | Oct 14 | | 85 | Oct 14 | | 40 | | 27 1983 | | | | MUMINIM YA | | 86 | Oct 9 | | 86 | Oct 9 | | 63 | - | 13 1954 | | | TANEOUS P | | | | | | 6780 | Apr 17 | | 22000 | - | 5 1977 | | | | EAK STAGE | | | | | | 91 Apr 17 | | 17. | | 5 1977 | | | TANEOUS L | | | | | | 84 | a0ct 13 | | 30 | | 14 1941 | | | RUNOFF (| | | 1. | | | 2.0 | | | 1. | | | | | RUNOFF (| | | 21. | 38 | | 27.8 | 81 | | 21. | 72 | | | | CENT EXCE | | | 1010 | | | 1390 | | | 1000 | | | | 50 PER | CENT EXCE | EDS | | 343 | | | 405 | | | 307 | | | 106 112 102 90 PERCENT EXCEEDS a Also Oct. 14, 1997. b Also Dec. 24, 1943. ## 03474000 MIDDLE FORK HOLSTON RIVER AT SEVEN MILE FORD, VA LOCATION.--Lat $36^{\circ}48^{\circ}26^{\circ}$, long $81^{\circ}37^{\circ}20^{\circ}$, Smyth County, Hydrologic Unit 06010102, on right bank at downstream side of bridge on U.S. Highway 11 at Seven Mile Ford, 0.3 mi upstream from Meade Creek, 3.3 mi downstream from Walker Creek, and at mile 32.1 DRAINAGE AREA. -- 132 mi². PERIOD OF RECORD.--July 1942 to December 1981, January 1982 to September 1987 (annual maximum only), October 1987 to September 1989, October 1989 to September 1996 (annual maximum only), October 1996 to current year. REVISED RECORDS. -- WSP 973: 1942(m). WSP 1306: 1947(M). GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,960.00 ft above sea level. REMARKS.--No estimated daily discharges. Records good. Prior to April 1977, some diurnal fluctuation at low flow caused by mill 9 mi above station. Since May 1936, flow occasionally regulated by the filling or draining of Hungry Mother Lake on Hungry Mother Creek, capacity, about 1,600 acre-ft. Tennessee Valley Authority gageheight data logger at station, called at 6-hour intervals by computer at Knoxville, TN. Maximum discharge, 14,500 ft³/s. Minimum gage height, 0.89 ft, Sept. 8, 1988. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been made at this location. COOPERATION.--Gage-height record of extremes were provided by Tennessee Valley Authority for the period Jan. 1, 1982, to Sept. 30, 1987, and October 1, 1989 to September 30, 1996. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Apr. 17 | 0915 | *2,130 | *3.63 | June 10 | 1530 | 2,030 | 3.57 | Minimum discharge, 27 $\mathrm{ft}^3/\mathrm{s},$ Nov. 21, gage height, 1.05 ft. | | | DISCHA | ARGE, IN (| CUBIC FEE | | OND, WATE | | TOBER 199 | 7 TO SEPT | EMBER 1998 | 3 | | |-------|------|--------|------------|-----------|-------|-----------|-------|-----------|-----------|------------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 36 | 34 | 56 | 38 | 176 | 230 | 150 | 213 | 165 | 150 | 61 | 45 | | 2 | 36 | 52 | 45 | 37 | 177 | 206 | 137 | 432 | 149 | 117 | 56 | 44 | | 3 | 36 | 45 | 39 | 40 | 356 | 194 | 131 | 350 | 159 | 105 | 54 | 44 | | 4 | 35 | 45 | 45 | 44 | 1040 | 177 | 290 | 868 | 205 | 100 | 52 | 44 | | 5 | 36 | 40 | 45 | 55 | 946 | 159 | 285 | 522 | 322 | 102 | 51 | 44 | | 6 | 35 | 36 | 41 | 73 | 635 | 133 | 227 | 366 | 282 | 92 | 51 | 43 | | 7 | 34 | 34 | 37 | 70 | 495 | 127 | 193 | 358 | 228 | 89 | 49 | 42 | | 8 | 34 | 35 | 35 | 713 | 330 | 145 | 172 | 511 | 181 | 86 | 54 | 47 | | 9 | 34 | 36 | 35 | 309 | 366 | 228 | 333 | 445 | 170 | 86 | 56 | 44 | | 10 | 33 | 34 | 47 | 204 | 419 | 269 | 335 | 509 | 964 | 82 | 144 | 43 | | 11 | 34 | 33 | 54 | 144 | 435 | 217 | 317 | 948 | 764 | 78 | 100 | 42 | | 12 | 33 | 33 | 63 | 119 | 564 | 182 | 273 | 666 | 448 | 75 | 63 | 42 | | 13 | 33 | 31 | 59 | 113 | 473 | 159 | 193 | 472 | 397 | 74 | 54 | 41 | | 14 | 33 | 35 | 57 | 107 | 359 | 149 | 174 | 316 | 321 | 84 | 51 | 40 | | 15 | 32 | 37 | 54 | 136 | 288 | 137 | 151 | 263 | 353 | 73 | 54 | 38 | | 16 | 32 | 35 | 54 | 266 | 259 | 129 | 160 | 222 | 304 | 70 | 82 | 39 | | 17 | 32 | 33 | 53 | 217 | 571 | 128 | 1430 | 203 | 248 | 68 | 158 | 39 | | 18 | 33 | 32 | 52 | 169 | 885 | 171 | 781 | 182 | 204 | 66 | 112 | 40 | | 19 | 33 | 31 | 35 | 154 | 560 | 680 | 774 | 165 | 205 | 64 | 77 | 39 | | 20 | 33 | 31 | 32 | 152 | 452 | 762 | 1040 | 151 | 185 | 62 | 65 | 39 | | 21 | 33 | 37 | 32 | 135 | 371 | 1470 | 650 | 177 | 156 | 61 | 59 | 41 | | 22 | 33 | 46 | 43 | 129 | 321 | 863 | 487 | 159 | 147 | 61 | 56 | 47 | | 23 | 32 | 39 | 44 | 175 | 330 | 596 | 324 | 241 | 281 | 64 | 54 | 47 | | 24 | 32 | 35 | 43 | 207 | 362 | 328 | 269 | 324 | 183 | 71 | 52 | 41 | | 25 | 36 | 32 | 61 | 201 | 318 | 268 | 231 | 308 | 172 | 65 | 50 | 40 | | 26 | 45 | 32 | 51 | 179 | 279 | 227 | 204 | 580 | 168 | 62 | 50 | 39 | | 27 | 48 | 32 | 53 | 161 | 258 | 202 | 187 | 457 | 132 | 59 | 49 | 39 | | 28 | 37 | 31 | 52 | 159 | 246 | 185 | 170 | 350 | 119 | 58 | 48 | 39 | | 29 | 34 | 30 | 46 | 168 | | 167 | 146 | 273 | 112 | 57 | 47 | 41 | | 30 | 34 | 32 | 46 | 207 | | 152 | 140 | 221 | 146 | 55 | 47 | 57 | | 31 | 32 | | 43 | 197 | | 142 | | 186 | | 66 | 46 | | | TOTAL | 1073 | 1068 | 1452 | 5078 | 12271 | 9182 | 10354 | 11438 | 7870 | 2402 | 2002 | 1270 | | MEAN | 34.6 | 35.6 | 46.8 | 164 | 438 | 296 | 345 | 369 | 262 | 77.5 | 64.6 | 42.3 | | MAX | 48 | 52 | 63 | 713 | 1040 | 1470 | 1430 | 948 | 964 | 150 | 158 | 57 | | MIN | 32 | 30 | 32 | 37 | 176 | 127 | 131 | 151 | 112 | 55 | 46 | 38 | | CFSM | .26 | .27 | .35 | 1.24 | 3.32 | 2.24 | 2.61 | 2.80 | 1.99 | .59 | .49 | .32 | | IN. | .30 | .30 | .41 | 1.43 | 3.46 | 2.59 | 2.92 | 3.22 | 2.22 | .68 | .56 | .36 | # 03474000 MIDDLE FORK HOLSTON RIVER AT SEVEN MILE FORD, VA--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1942 - 1981, 1988 - 1989, 1997 - 1998, BY WATER YEAR (WY) | | OCT | NOV | DEC | JAN | FEB | MAR | APR | M | ΑY | JUN | JUL | AUG | SEP | |---------|------------|-----------|-------|------------|-----------|------|----------|--------|------|------|----------|-----------
---------| | MEAN | 71.2 | 95.2 | 166 | 234 | 301 | 312 | 248 | 2 | 07 | 123 | 82.8 | 75.6 | 65.5 | | MAX | 298 | 580 | 534 | 708 | 870 | 844 | 630 | 4 | 33 | 294 | 207 | 210 | 256 | | (WY) | 1977 | 1978 | 1973 | 1957 | 1957 | 1955 | 1977 | 19 | 45 | 1979 | 1989 | 1947 | 1989 | | MIN | 32.4 | 29.8 | 34.1 | 37.0 | 85.5 | 74.5 | 107 | 73 | . 0 | 38.9 | 33.8 | 28.1 | 32.4 | | (WY) | 1989 | 1954 | 1956 | 1966 | 1954 | 1988 | 1963 | 19 | 54 | 1988 | 1988 | 1988 | 1988 | | SUMMARY | STATIST: | ICS | FOR 1 | L997 CALEI | NDAR YEAR | 1 | FOR 1998 | WATER | YEAR | | WATER YE | EARS 1942 | - 1981 | | | | | | | | | | | | | | 1988 | - 1989 | | | | | | | | | | | | | | 1997 | - 1998 | | ANNUAL | TOTAL | | | 57198 | | | 65460 | | | | | | | | ANNUAL | | | | 157 | | | 179 | | | | 165 | | | | HIGHEST | ' ANNUAL I | MEAN | | | | | | | | | 250 | | 1973 | | LOWEST | ANNUAL MI | EAN | | | | | | | | | 79.2 | | 1988 | | HIGHEST | DAILY M | EAN | | 1760 | Mar 3 | | 1470 | Ma | r 21 | | 5990 | Apr | 4 1977 | | LOWEST | DAILY ME | AN | | 30 | Nov 29 | | 30 | No | z 29 | | 20 | aSep : | 26 1944 | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 32 | Nov 24 | | 32 | No | v 24 | | 24 | Sep | 3 1960 | | INSTANT | ANEOUS PI | EAK FLOW | | | | | 2130 | Ap: | r 17 | | 14500 | Nov | 6 1977 | | INSTANT | ANEOUS PI | EAK STAGE | | | | | 3. | 63 Ap: | r 17 | | 10.75 | Jan : | 29 1957 | | INSTANT | CANEOUS LO | OW FLOW | | | | | 27 | No | v 21 | | 9.0 | Sep | 26 1944 | | ANNUAL | RUNOFF (| CFSM) | | 1.19 | 9 | | 1. | 36 | | | 1.25 | 5 | | | ANNUAL | RUNOFF (| INCHES) | | 16.12 | 2 | | 18. | 45 | | | 16.96 | 5 | | | 10 PERC | CENT EXCE | EDS | | 339 | | | 433 | | | | 340 | | | | 50 PERC | CENT EXCE | EDS | | 87 | | | 100 | | | | 93 | | | | 90 PERC | CENT EXCE | EDS | | 34 | | | 34 | | | | 37 | | | a Also Aug. 2, 1964. ## NATIONAL WATER-QUALITY ASSESSMENT PROGRAM TENNESSEE RIVER BASIN SURFACE-WATER QUALITY # 03474000 MIDDLE FORK HOLSTON RIVER AT SEVEN MILE FORD, VA LOCATION.--Lat 36°48'26", long 81°37'20", Smyth County, Hydrologic Unit 06010102, on right bank at downstream side of bridge on U.S. Highway 11 at Seven Mile Ford, 0.3 mi upstream from Meade Creek, 3.3 mi downstream from Walker Creek, and at mile 32.1 DRAINAGE AREA. -- 132 mi². PERIOD OF RECORD. -- October 1996 to present. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | Column C | DATE | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML)
(31501) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |--|----------|---|---|---|---|---|---|---|--|---|---|--|---| | Note | | | 34 | 333 | 8.2 | 15.0 | 11.8 | 709 | 10.6 | 300 | 160 | 110 | 38 | | 1 | | 1.09 | 30 | 336 | 8.0 | . 0 | 2.2 | 710 | | 300 | 100 | 92 | 37 | | PRE | | 1.24 | 53 | 264 | 7.3 | -5.0 | 1.1 | 707 | 11.4 | 150 | 68 | 56 | 30 | | Oct 197 | 22 | | 125 | 257 | 7.9 | 3.0 | 5.2 | 709 | 11.6 | 810 | 310 | 260 | 30 | | MACNE FOTAS FOTAS CHLO FUL | 04 | | | | | | | | | | | | | | 20 15 5 5.6 2.5 14 10 2.3 6.2 184 0 151 202 <.010 NOV 20 14 7.1 2.3 15 13 1.6 4.5 107 0 88 194 <.010 ECC 18 11 6.5 1.8 14 10 1.2 2.0 178 0 146 149 <.010 JAN 1998 22 9.6 8.4 1.8 14 15 <.10 5.1 126 0 103 148 .013 FEB 04 5.9 10 1.8 10 18 <.10 5.1 66 0 5.3 7 1.4 9.4 10 <.10 5.3 76 1 66 0 6 10 54 115 <.010 25 7.6 5.7 1.4 9.4 10 <.10 5.3 76 1 66 0 6 0 54 115 <.010 ETHYL NOTE OF SOLVED S | DATE | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | BONATE WATER DIS IT FIELD MG/L AS HCO3 | BONATE WATER DIS IT FIELD MG/L AS CO3 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | | 20 14 | | | 5.6 | 2.5 | 14 | 10 | .23 | 6.2 | 184 | 0 | 151 | 202 | <.010 | | 18 11 | 20 | 14 | 7.1 | 2.3 | 15 | 13 | .16 | 4.5 | 107 | 0 | 88 | 194 | <.010 | | PHOS- PHORUS ORGANIC O | 18 | | 6.5 | 1.8 | 14 | 10 | .12 | 2.0 | 178 | 0 | 146 | 149 | <.010 | | 04 5.9 10 1.8 10 18 <.10 5.1 66 0 54 115 <.010 25 7.6 5.7 1.4 9.4 10 <.10 5.1 66 0 5.3 76 1 64 121 <.010 25 7.6 5.7 1.4 9.4 10 <.10 5.3 76 1 64 121 <.010 25 7.6 5.7 1.4 9.4 10 <.10 5.3 76 1 64 121 <.010 25 7.6 5.7 1.4 9.4 10 <.10 5.3 76 1 64 121 <.010 25 7.6 | 22 | | 8.4 | 1.8 | 14 | 15 | <.10 | 5.1 | 126 | 0 | 103 | 148 | .013 | | GEN, GEN, GEN, GEN, AM- GEN, AM- GEN, AM- GEN, AM- CARBON, ORGANIC SUS- ANILINE DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- | 04 | | | | | | | | | | | | | | 20 1.26 | DATE | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS DIS- SOLVED (MG/L AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | DIS-
SOLVED
(UG/L
AS FE) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | ORGANIC SUS- PENDED TOTAL (MG/L AS C) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L) | | NOV 20 1.51 .229 .15 <.10 .016 .036 .053 12 <4.0 1.1 <.20 <.003 DEC 18995 <.020 .14 .13 .023 .031 .041 37 <4.0 1.7 .20 <.003 JAN 1998 22 1.11 <.020 .13 <.10 .029 .018 .022 30 5.4 1.5 <.20 <.003 FEB 04985 .051 .87 .17 .139 .023 .030 29 7.8 3.2 2.4 <.003 | | | 0.61 | .
00 | . 20 | 110 | 222 | 000 | 11 | | 1 0 | 2.0 | . 003 | | DEC 18995 <.020 .14 .13 .023 .031 .041 37 <4.0 1.7 .20 <.003 JAN 1998 22 1.11 <.020 .13 <.10 .029 .018 .022 30 5.4 1.5 <.20 <.003 FEB 04985 .051 .87 .17 .139 .023 .030 29 7.8 3.2 2.4 <.003 | NOV | | | | | | | | | | | | | | JAN 1998 22 1.11 <.020 .13 <.10 .029 .018 .022 30 5.4 1.5 <.20 <.003 FEB 04985 .051 .87 .17 .139 .023 .030 29 7.8 3.2 2.4 <.003 | DEC | | | | | | | | | | | | | | FEB 04985 .051 .87 .17 .139 .023 .030 29 7.8 3.2 2.4 <.003 | JAN 1998 | | <.020 | .14 | .13 | .023 | .031 | .041 | 37 | <4.0 | 1.7 | .20 | <.003 | | | | 1.11 | <.020 | .13 | <.10 | .029 | .018 | .022 | 30 | 5.4 | 1.5 | <.20 | <.003 | | 25869 <.020 <.10 <.10 .010 <.010 .019 16 5.2 1.1 .20 <.003 | 04
25 | .985
.869 | .051
<.020 | .87
<.10 | .17
<.10 | .139
.010 | .023
<.010 | .030
.019 | 29
16 | 7.8
5.2 | 3.2
1.1 | 2.4 | <.003
<.003 | < Actual value is known to be less than the value shown.</p>> Actual value is known to be greater than the value shown. K Results based on colony count outside the acceptance range (non-ideal colony count). ## NATIONAL WATER-QUALITY ASSESSMENT PROGRAM TENNESSEE RIVER BASIN SURFACE-WATER QUALITY # 03474000 MIDDLE FORK HOLSTON RIVER AT SEVEN MILE FORD, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | |--|---|--|---|---|---
--|--|---|---|---|--|--| | OCT 1997
20 | <.002 | .010 | <.002 | <.002 | <.002 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | E.0132 | | NOV 20 | <.002 | .008 | <.002 | <.002 | <.002 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | E.0086 | | DEC
18 | <.002 | .012 | <.002 | <.002 | <.002 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | E.0094 | | JAN 1998
22 | | .012 | <.002 | <.002 | <.002 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | E.0093 | | FEB | | | | | | | | | | | | | | 04
25 | <.002
<.002 | .005 | <.002
<.002 | <.002
<.002 | <.002
<.002 | <.002
<.002 | <.004
<.004 | <.003
<.003 | <.003
<.003 | <.004
<.004 | <.002
<.002 | E.0067
E.0093 | | DATE | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | | OCT 1997
20 | <.017 | .007 | <.001 | E.0009 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.004 | <.005 | | NOV
20 | <.017 | .027 | <.001 | <.006 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.004 | <.005 | | DEC
18 | <.017 | E.002 | <.001 | <.006 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.004 | <.005 | | JAN 1998
22 | | <.002 | <.001 | <.006 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.004 | <.005 | | FEB 04 | <.017 | <.002 | <.001 | <.006 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.004 | <.005 | | 25 | <.017 | <.002 | <.001 | <.006 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.004 | <.005 | | | | | | | | | | | | | | | | DATE | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF,
REC
(UG/L)
(82667) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | | OCT 1997 | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | OCT 1997
20
NOV | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | OCT 1997
20
NOV
20
DEC | LACHLOR
WATER
DISSOLV
(UG/L)
(39415)
.006 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684)
<.003 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676)
<.003 | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679)
<.004 | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669)
<.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.002 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.004 | | OCT 1997
20
NOV
20
DEC
18
JAN 1998 | LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.001
<.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684)
<.003
<.003 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676)
<.003
<.003 | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679)
<.004
<.004 | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669)
<.004
<.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005 | WATER
FLURD
0.7 U
GF, REC
(UG/L)
(82664)
<.002
<.002 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.004
<.004 | | OCT 1997
20
NOV
20
DEC
18
JAN 1998
22
FEB | LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 .007 | AZIN-
PHOS:
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.001
<.001
<.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684)
<.003
<.003 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676)
<.003
<.003
<.003 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 | ULATE WATER WATER 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.002
<.002
<.002 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.004
<.004
<.004 | | OCT 1997
20
NOV
20
DEC
18
JAN 1998
22 | LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.001
<.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684)
<.003
<.003 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676)
<.003
<.003 | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679)
<.004
<.004 | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669)
<.004
<.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005 | WATER
FLURD
0.7 U
GF, REC
(UG/L)
(82664)
<.002
<.002 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.004
<.004 | | OCT 1997
20
NOV
20
DEC
18
JAN 1998
22
FEB
04 | LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 .007 .010 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.001
<.001
<.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004
<.004
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005 | WATER
FLURD
0.7 U
GF, REC
(UG/L)
(82664)
<.002
<.002
<.002
<.002 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.004
<.004
<.004
<.004 | | OCT 1997 20 NOV 20 JAN 1998 22 FEB 04 25 | LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 .007 .010 .005 .006 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) | AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 METON, WATER, DISS, REC (UG/L) (04037) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004
SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 <
.003 < .003 < .003 < .003 < .003 < .003 < .003 < .0 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .0 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 TER-BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005
<.005
THIO-BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <-002 <-002 <-002 <-002 <-002 <-002 <-002 <-002 <-002 <-004 <-005 <-006 <-006 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 < | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SIEVE DIAM. % FINER THAN .062 MM (70331) | | OCT 1997 20 NOV 20 JAN 1998 22 FEB 04 25 DATE | LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 .007 .010 .005 .006 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 | AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 METON, WATER, DISS, REC (UG/L) (04037) E.0049 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004
SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 .005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.005 </.0</td <td>AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.007</td> <td>PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 TEBU-THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010</td> <td>ULATE WATER WATER FILITRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.013</td> <td>METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001</td> <td>METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005
<.005
MATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82681)</td> <td>WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 SEDI-MENT, SUS-PENDED (MG/L) (80154)</td> <td>THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)</td> | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.007 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 TEBU-THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010 | ULATE WATER WATER FILITRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.013 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005
<.005
MATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82681) | WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 SEDI-MENT, SUS-PENDED (MG/L) (80154) | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. FINER THAN .062 MM (70331) | | OCT 1997 20 NOV 20 JAN 1998 22 FEB 04 25 DATE OCT 1997 20 NOV 20 DEC | LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 .007 .010 .005 .006 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 | AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001
<.001 METON, WATER, DISS, REC (UG/L) (04037) E.0049 <.018 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685)
<.013
<.070 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004
<.004
SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
E.0041 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 < .003 G .003 < .003 < .003 < .003 < .004 G .005 . | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.004 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 <.004 TEBU-THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 TER-BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.013 <.013 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 C.004 <.004 <.004 <.004 <.004 <.004 <.004 <.001 CRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001 <.001 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
(.005
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.00 | WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 SEDI-MENT, SUS-PENDED (MG/L) (80154) | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. FINER THAN (70331) 76 33 | | OCT 1997 20 NOV 20 JAN 1998 22 FEB 04 25 DATE OCT 1997 20 NOV 20 DEC 18 JAN 1998 | LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 .007 .010 .005 .006 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 <.007 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 < | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685)
<.013
<.070
<.013 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004
SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
E.0041
E.0047
<.005 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .0 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.007 <.007 <.007 <.007 <.007 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 TEBU- THIURON WATER FLTRD 0.7 U (82670) <.010 <.010 E.0059 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.013 <.013 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.007 TRIAL- LATE WATER FLTRD 0.7 U (82678) <.001 <.001 <.001 | METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 THIO-BENCARB WATER FLTRD 0.7 U (82681) <.002 <.002 | WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 (.002 3EDI-MENT, SUS-PENDED (MG/L) (80154) 3 3 3 1 | THION, DIS- SOLVED (UG/L)
(39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SIEVE DIAM. FINER THAN062 MM (70331) 76 33 50 | | OCT 1997 20 NOV 20 JAN 1998 22 FEB 04 25 DATE OCT 1997 20 NOV 20 DEC | LACHLOR WATER DISSOLV (UG/L) (39415) .006 .006 .007 .010 .005 .006 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 <.007 | AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 METON, WATER, DISS, REC (UG/L) (04037) E.0049 <.018 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685)
<.013
<.070 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004
<.004
SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
E.0041 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 < .003 G .003 < .003 < .003 < .003 < .004 G .005 . | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.004 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 <.004 TEBU-THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 TER-BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.013 <.013 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 C.004 <.004 <.004 <.004 <.004 <.004 <.004 <.001 CRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001 <.001 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
(.005
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.005)
(.00 | WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 SEDI-MENT, SUS-PENDED (MG/L) (80154) | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. FINER THAN (70331) 76 33 | < Actual value is known to be less than the value shown. ${\tt E}\ {\tt Estimated}\,.$ ## 03475000 MIDDLE FORK HOLSTON RIVER NEAR MEADOWVIEW, VA LOCATION.--Lat 36°42'47", long 81°49'08", Washington County, Hydrologic Unit 06010102, on left bank 48 ft downstream from bridge on State Highway 803, 0.9 mi upstream from Cedar Creek, 4.1 mi southeast of Meadowview, and at mile 13.2. DRAINAGE AREA. -- 211 mi². PERIOD OF RECORD.--October 1931 to September 1953, May 1976 to current year. Monthly discharge only for October 1931, published in WSP 1306. REVISED RECORDS. -- WSP 823: Drainage area. WSP 1276: 1932-34. GAGE.--Water-stage recorder. Datum of gage is 1,820.22 ft above sea level. REMARKS.--Records good except for period with ice effect, Jan. 2, which is fair. Prior to 1954, flow regulated by powerplant 0.9 mi upstream from station. Maximum discharge, 12,500 ft³/s, from rating curve extended above 12,000 ft³/s. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jan. 29, 1957, reached a stage of 11.8 ft, from floodmark, discharge, 10,000 ft³/s, and flood of Dec. 10, 1972, reached a stage of 11.0 ft, from floodmark, discharge, 8,540 ft³/s, from information by Tennessee Valley Authority. Flood of Mar. 30, 1975, reached a stage of 10.37 ft, discharge, 7,410 ft³/s. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 2,000 ft^3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Feb. 5 | 0200 | 2,090 | 5.77 | Apr. 20 | 0345 | 2,390 | 6.16 | | Mar. 21 | 0815 | 3,110 | 7.04 | June 10 | 2200 | 2,880 | 6.77 | | Apr. 17 | 1515 | *3.380 | *7.35 | | | | | Minimum discharge, 51 ft³/s, Dec. 20, gage height, 1.99 ft. | | | DISCHA | ARGE, IN (| CUBIC FEE | | OND, WATE | | CTOBER 199 | 7 TO SEPTI | EMBER 1998 | 3 | | |--|----------------------------------|----------------------------------|--|--|---|---|---|---|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 68
65
65
63 | 63
86
100
84
80 | 89
86
72
76
77 | 68
e66
69
72
83 | 322
320
468
1540
1690 | 336
313
297
277
261 | 303
291
274
458
507 | 287
567
462
951
718 | 275
254
256
267
429 | 271
212
193
183
186 | 119
105
100
97
95 | 79
78
78
77
76 | | 6
7
8
9
10 | 63
61
61
60
61 | 70
66
64
65
64 | 72
66
62
63
73 | 106
117
925
517
327 | 1020
811
584
577
624 | 229
218
232
301
378 | 417
362
329
488
566 | 511
475
657
625
643 | 381
328
275
257
1580 | 172
163
163
160
154 | 92
91
90
106
240 | 75
75
78
80
75 | | 11
12
13
14
15 | 61
62
60
58
59 | 62
61
59
63
69 | 92
92
91
86
81 | 231
185
172
159
176 | 628
719
685
538
434 | 329
286
255
244
229 | 505
442
352
322
294 | 1340
1030
737
524
432 | 1500
799
685
583
573 | 145
140
136
142
135 | 225
135
114
106
105 | 73
73
72
71
68 | | 16
17
18
19
20 | 59
59
61
62
61 | 66
62
59
58
57 | 78
77
76
69
54 | 337
325
256
228
227 | 382
454
1230
739
597 | 221
219
236
1010
890 | 297
2260
1480
1150
1980 | 374
336
311
288
270 | 516
428
360
331
329 | 130
127
124
122
119 | 132
222
216
145
121 | 67
69
69
69 | | 21
22
23
24
25 | 58
58
57
58
64 | 62
83
78
67
60 | 54
64
75
71
94 | 206
188
237
291
294 | 510
443
438
503
461 | 2600
1490
1010
632
514 | 1140
860
624
509
446 | 290
288
324
407
456 | 282
268
395
312
277 | 116
115
117
125
119 | 109
102
99
95
90 | 71
78
83
74
71 | | 26
27
28
29
30
31 | 76
97
77
65
62
60 | 58
57
56
55
58 | 91
87
94
83
79
76 | 261
253
257
309
338
348 | 406
375
354
 | 448
399
368
341
318
298 | 397
368
343
303
288 | 756
666
529
418
347
302 |
283
241
220
209
217 | 114
110
108
105
104
118 | 88
87
85
83
82
82 | 70
70
69
68
104 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1964
63.4
97
57
.30 | 1992
66.4
100
55
.31 | 2400
77.4
94
54
.37
.42 | 7628
246
925
66
1.17
1.34 | 17852
638
1690
320
3.02
3.15 | 15179
490
2600
218
2.32
2.68 | 18355
612
2260
274
2.90
3.24 | 16321
526
1340
270
2.50
2.88 | 13110
437
1580
209
2.07
2.31 | 4428
143
271
104
.68 | 3658
118
240
82
.56
.64 | 2229
74.3
104
67
.35
.39 | e Estimated. # 03475000 MIDDLE FORK HOLSTON RIVER NEAR MEADOWVIEW, VA--Continued | STATIST | CICS OF | MONTHLY MEAI | N DATA | FOR WATER | YEARS 1932 | - 1953, | 1976 - 3 | 1998, BY W | ATER YEAR | (WY) | | | |---------|----------|--------------|--------|------------|------------|---------|-----------|------------|-----------|-----------|--------|------------------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 113 | 133 | 213 | 352 | 463 | 461 | 359 | 303 | 194 | 143 | 145 | 97.8 | | MAX | 479 | 739 | 526 | 731 | 1050 | 899 | 1158 | 677 | 485 | 420 | 649 | 357 | | (WY) | 1977 | 1978 | 1943 | 1996 | 1994 | 1993 | 1987 | 1990 | 1981 | 1938 | 1940 | 1989 | | MIN | 45.3 | 44.3 | 49.9 | 52.6 | 64.0 | 114 | 98.3 | 74.2 | 61.5 | 55.5 | 50.5 | 50.0 | | (WY) | 1934 | 1942 | 1940 | 1940 | 1934 | 1988 | 1942 | 1941 | 1988 | 1988 | 1988 | 1952 | | | | | | 1005 655 | | _ | 1000 | | | | 1000 | 1050 | | SUMMARY | STATIS | TICS | FOF | R 1997 CAL | ENDAR YEAR | F | OR 1998 I | WATER YEAR | | WATER YEA | | - 1953
- 1998 | | | | | | | | | | | | | | | | ANNUAL | TOTAL | | | 91035 | | | 105116 | | | | | | | ANNUAL | MEAN | | | 249 | | | 288 | | | 247 | | | | HIGHEST | ANNUAL | MEAN | | | | | | | | 356 | | 1990 | | LOWEST | ANNUAL | MEAN | | | | | | | | 105 | | 1941 | | HIGHEST | DAILY | MEAN | | 2640 | Mar 4 | | 2600 | Mar 21 | | 8220 | Apr | 5 1977 | | LOWEST | DAILY M | EAN | | 54 | aDec 20 | | 54 | aDec 20 | | b7.0 | Nov 1 | 9 1950 | | ANNUAL | SEVEN-D | AY MINIMUM | | 59 | Nov 24 | | 59 | Nov 24 | | 38 | Oct 2 | 5 1952 | | INSTANT | CANEOUS | PEAK FLOW | | | | | 3380 | Apr 17 | | 12500 | Nov | 7 1977 | | INSTANT | CANEOUS | PEAK STAGE | | | | | 7. | 35 Apr 17 | | 13.41 | Nov | 7 1977 | | INSTANT | CANEOUS | LOW FLOW | | | | | 51 | Dec 20 | | b6.0 | cNov 1 | 0 1933 | | ANNUAL | RUNOFF | (CFSM) | | 1. | 18 | | 1.3 | 36 | | 1.17 | | | | ANNUAL | RUNOFF | (INCHES) | | 16. | 05 | | 18. | 53 | | 15.94 | | | | 10 PERC | CENT EXC | EEDS | | 526 | | | 624 | | | 500 | | | | 50 PERC | CENT EXC | EEDS | | 133 | | | 172 | | | 147 | | | | 90 PERC | CENT EXC | EEDS | | 62 | | | 62 | | | 62 | | | Also Dec. 21, 1997. Flow was regulated by powerplant. Also Dec. 4, 1936, Jan. 21, 22, Feb. 1, 1940, Jan. 8, 1942, and Oct. 15, 16, 31, 1943. #### 03478400 BEAVER CREEK AT BRISTOL, VA LOCATION.--Lat 36°37'54", long 82°08'02", Bristol City, Hydrologic Unit 06010102, on right bank 50 ft upstream from bridge on State Highway 1405, 75 ft downstream from Goose Creek, 0.9 mi downstream from Clear Creek, 3.7 mi northeast of Bristol, VA post office, and at mile 20.6. DRAINAGE AREA. -- 27.7 mi². PERIOD OF RECORD.--July 1957 to current year. Published as "near Bristol" prior to October 1974. GAGE.--Water-stage recorder. Datum of gage is 1,780.98 ft above sea level. REMARKS.--Records good except for period of no gage-height record, Oct. 26-27, which is fair. Small diurnal fluctuation at low flow caused by with- drawal of water, which is returned to stream 600 ft upstream from station, for car-washing operation. Since September 1965, some regulation at high flow by flood-control reservoirs, capacity, 7,600 acre-ft. Maximum discharge, 1,600 ft³/s, from rating curve extended above 390 ft³/s on basis of slope-area measurement of peak flow. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1936 reached a stage of about 12 ft. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,080 ft^3/s , Apr. 17, gage height, 8.80 ft; minimum, 13 ft^3/s , Oct. 9, 12-18, 19-24, 25-26, minimum gage height, 2.75 ft, Nov. 27-30. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | | | | | DAI | LY MEAN V | ALUES | | | | | | |-------|------|------|------|------|------|-----------|-------|------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 16 | 16 | 40 | 15 | 58 | 48 | 57 | 67 | 41 | 83 | 29 | 18 | | 2 | 15 | 18 | 23 | 15 | 57 | 47 | 50 | 67 | 39 | 53 | 27 | 18 | | 3 | 15 | 17 | 20 | 16 | 102 | 47 | 57 | 69 | 44 | 47 | 26 | 18 | | 4 | 15 | 18 | 20 | 16 | 134 | 45 | 125 | 71 | 72 | 48 | 26 | 18 | | 5 | 14 | 16 | 18 | 16 | 113 | 43 | 86 | 62 | 60 | 48 | 25 | 17 | | 6 | 14 | 15 | 17 | 16 | 93 | 41 | 71 | 58 | 50 | 43 | 25 | 17 | | 7 | 14 | 15 | 16 | 40 | 80 | 40 | 64 | 89 | 46 | 41 | 24 | 16 | | 8 | 14 | 15 | 15 | 80 | 73 | 51 | 61 | 90 | 44 | 43 | 24 | 18 | | 9 | 14 | 14 | 17 | 52 | 68 | 66 | 116 | 78 | 48 | 42 | 24 | 17 | | 10 | 14 | 14 | 19 | 38 | 64 | 55 | 99 | 103 | 54 | 39 | 41 | 16 | | 11 | 14 | 14 | 18 | 33 | 61 | 50 | 83 | 142 | 49 | 38 | 27 | 16 | | 12 | 14 | 14 | 17 | 31 | 59 | 47 | 73 | 104 | 58 | 37 | 25 | 15 | | 13 | 14 | 14 | 16 | 30 | 53 | 45 | 68 | 90 | 61 | 37 | 41 | 15 | | 14 | 13 | 18 | 16 | 27 | 50 | 44 | 65 | 81 | 52 | 35 | 41 | 15 | | 15 | 13 | 16 | 15 | 31 | 48 | 43 | 64 | 74 | 54 | 34 | 31 | 14 | | 16 | 13 | 15 | 15 | 33 | 50 | 45 | 110 | 69 | 47 | 33 | 29 | 14 | | 17 | 13 | 15 | 15 | 31 | 65 | 43 | 466 | 65 | 45 | 33 | 29 | 14 | | 18 | 13 | 14 | 14 | 29 | 66 | 75 | 267 | 61 | 43 | 32 | 30 | 15 | | 19 | 13 | 14 | 14 | 33 | 58 | 122 | 285 | 57 | 47 | 35 | 27 | 15 | | 20 | 13 | 14 | 14 | 30 | 55 | 135 | 284 | 54 | 43 | 34 | 24 | 14 | | 21 | 13 | 18 | 14 | 28 | 52 | 166 | 204 | 55 | 41 | 32 | 23 | 15 | | 22 | 13 | 17 | 17 | 31 | 50 | 117 | 146 | 52 | 50 | 30 | 22 | 16 | | 23 | 13 | 15 | 15 | 36 | 62 | 94 | 123 | 66 | 99 | 31 | 22 | 15 | | 24 | 14 | 15 | 17 | 34 | 60 | 82 | 106 | 56 | 54 | 31 | 21 | 14 | | 25 | 14 | 14 | 17 | 31 | 55 | 75 | 93 | 49 | 48 | 30 | 21 | 14 | | 26 | e22 | 14 | 16 | 29 | 52 | 69 | 84 | 66 | 46 | 29 | 20 | 14 | | 27 | e20 | 13 | 19 | 39 | 51 | 64 | 82 | 51 | 44 | 29 | 20 | 13 | | 28 | 16 | 13 | 18 | 64 | 49 | 60 | 78 | 46 | 42 | 28 | 20 | 13 | | 29 | 15 | 13 | 17 | 64 | | 57 | 72 | 44 | 44 | 28 | 19 | 13 | | 30 | 14 | 21 | 17 | 67 | | 55 | 68 | 42 | 76 | 28 | 19 | 13 | | 31 | 14 | | 16 | 63 | | 52 | | 41 | | 36 | 19 | | | TOTAL | 446 | 459 | 542 | 1098 | 1838 | 2023 | 3607 | 2119 | 1541 | 1167 | 801 | 460 | | MEAN | 14.4 | 15.3 | 17.5 | 35.4 | 65.6 | 65.3 | 120 | 68.4 | 51.4 | 37.6 | 25.8 | 15.3 | | MAX | 22 | 21 | 40 | 80 | 134 | 166 | 466 | 142 | 99 | 83 | 41 | 18 | | MIN | 13 | 13 | 14 | 15 | 48 | 40 | 50 | 41 | 39 | 28 | 19 | 13 | | CFSM | .52 | . 55 | .63 | 1.28 | 2.37 | 2.36 | 4.34 | 2.47 | 1.85 | 1.36 | .93 | .55 | | IN. | .60 | .62 | .73 | 1.47 | 2.47 | 2.72 | 4.84 | 2.85 | 2.07 | 1.57 | 1.08 | .62 | e Estimated. #### 03478400 BEAVER CREEK AT BRISTOL, VA--Continued | STATISTICS | OF | MONTHLY | MEAN | DATA | FOR | WATER | YEARS | 1958 | _ | 1998. | BY | WATER | YEAR | (WY |) | |------------|----|---------|------|------|-----|-------|-------|------|---|-------|----|-------|------|-----|---| OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|-----------|-----------|-------|-----------|-----------|------|-----------|-----------|------|---------|-----------|--------| | MEAN | 18.3 | 19.9 | 32.0 | 42.8 | 55.4 | 59.7 | 53.0 | 41.8 | 33.1 | 25.5 | 21.3 | 17.9 | | MAX | 76.1 | 58.0 | 128 | 141 | 131 | 130 | 120 | 129 | 73.1 | 53.4 | 64.5 | 48.9 | | (WY) | 1973 | 1978 | 1973 | 1974 | 1994 | 1963 | 1998 | 1958 | 1972 | 1972 | 1982 | 1982 | | MIN | 8.08 | 10.3 | 9.13 | 8.92 | 19.5 | 19.7 | 19.3 | 17.7 | 13.0 | 10.2 | 9.96 | 9.23 | | (WY) | 1970 | 1970 | 1966 | 1966 | 1981 | 1988 | 1985 | 1985 | 1988 | 1988 | 1988 | 1969 | | | | | | | | | | | | | | | | SUMMAR' | Y STATIST | ICS | FOR : | 1997 CALE | NDAR YEAR | F | OR 1998 W | ATER YEAR | | WATER Y | EARS 1958 | - 1998 | | ANNUAL | TOTAL | | | 14430 | | | 16101 | | | | | | | ANNUAL | MEAN | | | 39.5 | | | 44.1 | | | 34.9 | | | | | | 417 7 7 7 | | | | | | | | CO 0 | | 1072 | | ANNUAL TOTAL | 14430 | 16101 | | |--------------------------|------------|-------------|------------------| | ANNUAL MEAN | 39.5 | 44.1 | 34.9 | | HIGHEST ANNUAL MEAN | | | 62.8 1973 | | LOWEST ANNUAL MEAN | | | 16.2 1988 | | HIGHEST DAILY MEAN | 204 Mar 3 | 466 Apr 17 | 580 Mar 12 1963 | | LOWEST DAILY MEAN | 13 aOct 14 | 13 aOct 14 | 7.4 bSep 28 1969 | | ANNUAL SEVEN-DAY MINIMUM | 13 Oct 14 | 13 Oct 14 | 7.6 Oct 13 1969 | | INSTANTANEOUS PEAK FLOW | | 1080 Apr 17 | 1600 Oct 2 1977 | | INSTANTANEOUS PEAK STAGE | | 8.80 Apr 17 | 9.94 Oct 2 1977 | | INSTANTANEOUS LOW FLOW | | 13 cOct 9 | 3.4 Dec 30 1963 | | ANNUAL RUNOFF (CFSM) | 1.43 | 1.59 | 1.26 | | ANNUAL RUNOFF (INCHES) | 19.38 | 21.62 | 17.14 | | 10 PERCENT EXCEEDS | 67 | 80 | 63 | | 50 PERCENT EXCEEDS | 39 | 34 | 27 | | 90 PERCENT EXCEEDS | 14 | 14 | 12 | | | | | | a Also Oct. 15-23, and Nov. 27-29, 1997. b Also Sept. 29 and Oct. 5, 15, 18, 19, 23, 24, 1969. c Also Oct. 12-26, 1997. ## 03488000 NORTH FORK HOLSTON RIVER NEAR SALTVILLE, VA LOCATION.--Lat 36°53'48", long 81°44'47", Smyth County, Hydrologic Unit 06010101, on right bank 0.5 mi upstream from Cedar Branch bridge, 1.5 mi northeast of Saltville, 7.8 mi downstream from Laurel Creek, and at mile 85.0. DRAINAGE AREA. -- 222 mi². PERIOD OF RECORD.--June 1907 to December 1908 (published as "at Saltville"), October 1920 to current year. Monthly
discharge only for some periods, published in WSP 1306. REVISED RECORDS.--WSP 758: Drainage area. WSP 1113: 1944-47. WSP 1306: 1907(M), 1921-22(M), 1924-30(M), 1932-34(M), drainage area at site used 1907-8. WSP 1726: 1947, monthly and yearly runoff. GAGE.--Water-stage recorder. Datum of gage is 1,703.53 ft above sea level. June 11, 1907, to Nov. 12, 1908, nonrecording gage on highway bridge 2.1 mi downstream at different datum. Nov. 2, 1920, to May 23, 1934, nonrecording gage on highway bridge 0.5 mi downstream at datum 7.74 ft lower. REMARKS.--Records good except those for period with ice effect, Jan. 2, and period of no gage-height record, June 4-5, which are fair. National Weather Service gage-height telemeter at station. Maximum discharge, 16,500 ft³/s, from rating curve extended above 13,000 ft³/s on basis of slope-area measurement of peak flow. Minimum discharge, 1.0 ft³/s, Oct. 15, 16, 1947, gage height, 0.13 ft, flow retarded by mine cave-in. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 3,000 ${\rm ft}^3/{\rm s}$ and maximum (*): DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |--------------------|--------------|-----------------------------------|---------------------|---------|------|-----------------------------------|------------------| | Mar. 21
Apr. 17 | 0845
1300 | 6,070
*6,570 | 7.94
*8.30 | June 10 | 1915 | 3,050 | 5.42 | Minimum discharge, 26 ft³/s, Oct. 8-9, 10-11, gage height, 0.47 ft. | | | DISCH | ARGE, IN | CUBIC FEE | | OND, WATE
AILY MEAN | | TOBER 199 | 7 TO SEPT | EMBER 199 | 8 | | |-------|------|-------|----------|-----------|-------|------------------------|-------|-----------|-----------|-----------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 31 | 39 | 47 | 51 | 339 | 488 | 252 | 238 | 264 | 169 | 67 | 42 | | 2 | 30 | 44 | 56 | e50 | 329 | 388 | 262 | 577 | 233 | 148 | 64 | 40 | | 3 | 28 | 55 | 65 | 55 | 556 | 333 | 240 | 470 | 225 | 125 | 52 | 40 | | 4 | 28 | 69 | 61 | 63 | 2430 | 286 | 447 | 485 | e380 | 115 | 48 | 39 | | 5 | 27 | 59 | 57 | 88 | 2000 | 254 | 583 | 509 | e640 | 113 | 45 | 38 | | 6 | 29 | 51 | 55 | 177 | 1060 | 232 | 497 | 437 | 618 | 106 | 43 | 37 | | 7 | 27 | 45 | 50 | 218 | 748 | 219 | 407 | 386 | 446 | 98 | 41 | 36 | | 8 | 27 | 42 | 44 | 1590 | 641 | 311 | 343 | 482 | 332 | 95 | 39 | 39 | | 9 | 26 | 41 | 44 | 846 | 652 | 859 | 1500 | 736 | 296 | 106 | 137 | 37 | | 10 | 27 | 41 | 52 | 457 | 744 | 914 | 1740 | 756 | 1600 | 104 | 403 | 35 | | 11 | 26 | 42 | 76 | 295 | 819 | 625 | 1150 | 1170 | 1570 | 91 | 507 | 35 | | 12 | 27 | 43 | 82 | 224 | 1020 | 457 | 814 | 958 | 889 | 83 | 198 | 34 | | 13 | 27 | 41 | 69 | 208 | 960 | 358 | 608 | 680 | 835 | 77 | 122 | 33 | | 14 | 27 | 43 | 59 | 194 | 684 | 317 | 492 | 517 | 829 | 73 | 100 | 33 | | 15 | 28 | 44 | 49 | 193 | 492 | 279 | 411 | 409 | 659 | 74 | 91 | 31 | | 16 | 28 | 48 | 43 | 342 | 402 | 256 | 379 | 337 | 555 | 70 | 141 | 31 | | 17 | 29 | 48 | 41 | 375 | 528 | 251 | 4290 | 291 | 428 | 67 | 289 | 31 | | 18 | 30 | 44 | 40 | 294 | 1660 | 297 | 1960 | 252 | 341 | 65 | 289 | 31 | | 19 | 31 | 41 | 39 | 248 | 1160 | 1960 | 1440 | 226 | 297 | 62 | 198 | 31 | | 20 | 31 | 39 | 38 | 239 | 936 | 1540 | 2200 | 206 | 274 | 61 | 139 | 31 | | 21 | 31 | 41 | 37 | 208 | 766 | 4480 | 1240 | 304 | 226 | 58 | 104 | 34 | | 22 | 32 | 48 | 46 | 187 | 623 | 1850 | 854 | 291 | 210 | 56 | 86 | 41 | | 23 | 32 | 53 | 57 | 296 | 627 | 1020 | 650 | 356 | 334 | 73 | 75 | 53 | | 24 | 33 | 54 | 68 | 464 | 786 | 706 | 512 | 980 | 276 | 81 | 67 | 51 | | 25 | 38 | 47 | 78 | 399 | 677 | 536 | 414 | 880 | 230 | 68 | 62 | 45 | | 26 | 45 | 43 | 92 | 302 | 574 | 435 | 351 | 725 | 265 | 60 | 57 | 40 | | 27 | 55 | 41 | 89 | 267 | 539 | 377 | 310 | 689 | 184 | 56 | 52 | 38 | | 28 | 53 | 39 | 81 | 465 | 549 | 342 | 279 | 609 | 163 | 53 | 49 | 35 | | 29 | 50 | 39 | 70 | 441 | | 306 | 248 | 476 | 146 | 52 | 47 | 36 | | 30 | 43 | 39 | 67 | 420 | | 274 | 234 | 373 | 150 | 50 | 46 | 79 | | 31 | 38 | | 60 | 394 | | 250 | | 305 | | 54 | 44 | | | TOTAL | 1014 | 1363 | 1812 | 10050 | 23301 | 21200 | 25107 | 16110 | 13895 | 2563 | 3702 | 1156 | | MEAN | 32.7 | 45.4 | 58.5 | 324 | 832 | 684 | 837 | 520 | 463 | 82.7 | 119 | 38.5 | | MAX | 55 | 69 | 92 | 1590 | 2430 | 4480 | 4290 | 1170 | 1600 | 169 | 507 | 79 | | MIN | 26 | 39 | 37 | 50 | 329 | 219 | 234 | 206 | 146 | 50 | 39 | 31 | | CFSM | .15 | .20 | .26 | 1.46 | 3.75 | 3.08 | 3.77 | 2.34 | 2.09 | .37 | .54 | .17 | | IN. | .17 | .23 | .30 | 1.68 | 3.90 | 3.55 | 4.21 | 2.70 | 2.33 | .43 | .62 | .19 | | | | | | | | | | | | | | | e Estimated. # 03488000 NORTH FORK HOLSTON RIVER NEAR SALTVILLE, VA--Continued | STATIST | rics of M | ONTHLY MEAN | DATA | FOR WATER | YEARS 1 | 907 | - 1909, | 1921 - | 1998, BY | WATER YEAR | (WY) | | | |---------|-----------|-------------|------|------------|----------|-----|---------|---------|-----------|------------|---------|-----------|---------| | | OCT | NOV | DEC | JAN | FEB | 3 | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 115 | 169 | 330 | 473 | 577 | | 607 | 450 | 373 | 226 | 125 | 118 | 86.8 | | MAX | 916 | 1077 | 1178 | 1317 | 1500 | | 1735 | 1311 | 858 | 1036 | 353 | 584 | 474 | | (WY) | 1977 | 1978 | 1927 | 1957 | 1957 | , | 1955 | 1987 | 1990 | 1907 | 1938 | 1940 | 1989 | | MIN | 24.9 | 27.5 | 32.4 | 49.9 | 98.0 | | 121 | 116 | 80.4 | 46.3 | 33.6 | 25.2 | 25.8 | | (WY) | 1954 | 1940 | 1940 | 1966 | 1934 | : | 1988 | 1995 | 1941 | 1930 | 1988 | 1988 | 1930 | | SUMMARY | Y STATIST | ICS | FOF | R 1997 CAL | ENDAR YE | AR | F | OR 1998 | WATER YEA | ıR. | WATER Y | EARS 1907 | | | | | | | | | | | | | | | 1921 | - 1998 | | ANNUAL | TOTAL | | | 87240 | | | | 121273 | | | | | | | ANNUAL | MEAN | | | 239 | | | | 332 | | | 302 | | | | HIGHEST | r annual | MEAN | | | | | | | | | 457 | | 1973 | | | ANNUAL M | | | | | | | | | | 135 | | 1988 | | HIGHEST | r daily m | EAN | | 3510 | Mar | | | 4480 | Mar 2 | | 10900 | - | 5 1977 | | | DAILY ME | | | 26 | aSep | | | 26 | b0ct | | 2.0 | | L5 1947 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 27 | Sep | 2 | | 27 | Oct | 7 | 21 | - | 8 1952 | | | TANEOUS P | | | | | | | 6570 | - | | 16500 | | 29 1957 | | | | EAK STAGE | | | | | | | .30 Apr 1 | | 13.5 | | 6 1977 | | | FANEOUS L | | | | | | | 26 | | 8 | d1.0 | | L5 1947 | | | RUNOFF (| | | 1. | | | | 1. | | | 1.3 | | | | | RUNOFF (| | | 14. | 62 | | | 20 | . 32 | | 18.4 | 7 | | | | CENT EXCE | | | 578 | | | | 816 | | | 650 | | | | | CENT EXCE | | | 92 | | | | 148 | | | 158 | | | | 90 PERC | CENT EXCE | EDS | | 30 | | | | 35 | | | 40 | | | a Also Sept. 6-8, 22, 23, and Oct. 9, 11, 1997. b Also Oct. 11, 1997. c Also Oct. 9-11, 1997 d Flow retarded by mine cave-in. f Also Oct. 16, 1947. #### 03524000 CLINCH RIVER AT CLEVELAND, VA LOCATION.--Lat 36°56'41", long 82°09'18", Russell County, Hydrologic Unit 06010205, on right bank 500 ft upstream from highway bridge at Cleveland, 0.5 mi downstream from Muddy Hollow, 2.3 mi downstream from Weaver Creek, 4.4 mi downstream from Thompson Creek, and at mile 271.6. DRAINAGE AREA. -- 528 mi². PERIOD OF RECORD. --October 1920 to current year. Monthly discharge only for some periods, published in WSP 1306. REVISED RECORDS.--WSP 823: Drainage area. WSP 1306: 1921-23(M), 1926(M), 1929-31(M). WSP 1706: 1927(M). GAGE.--Water-stage recorder. Datum of gage is 1,500.24 ft above sea level. Prior to Nov. 1, 1931, nonrecording gage on highway bridge 500 ft downstream at datum 1.0 ft lower. REMARKS.--Records good except those for periods of no gage-height record, Jan. 8-9, and 27-30, which are fair. National Weather Service gage-height telemeter at station. Maximum discharge, 34,500 ft³/s, from rating curve extended above 26,000 ft³/s on basis of contracted-opening measurement at gage height 24.40 ft. Minimum gage height, 0.96 ft, Feb. 10, 1934. Several measurements of water temperature made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 5,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Feb. 4 | 1115 | 5,980 | 9.26 | Apr. 17 | 1245 | *13,800 | *16.19 | | Feb. 12 | 1730 | 5,530 | 8.79 | Apr. 20 | 0800 | 6,560 | 9.85 | | Mar. 21 | 1545 | 12,200 | 14.91 | June 11 | 0030 | 9,740 | 12.83 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 55 ft³/s, Oct. 14-17, gage height, 1.24 ft. | | | | · | | Di | AILY MEAN | VALUES | | | | | | |-------|------|------|------|-------|-------|-----------|--------|-------|-------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 83 | 75 | 176 | 117 | 1120 | 1170 | 751 | 618 | 724 | 563 | 336 | 111 | | 2 | 74 | 83 | 177 | 115 | 1080 | 1010 | 877 | 665 | 597 | 459 | 270 | 104 | | 3 | 71 | 96 | 148 | 133 | 2030 | 886 | 760 | 688 | 542 | 379 | 197 | 101 | | 4 | 66 | 123 | 137 | 167 | 5660 | 783 | 1790 | 841 | 646 | 335 | 165 | 98 | | 5 | 63 | 132 | 130 | 226 | 4150 | 704 | 2110 | 812 | 988 | 328 | 149 | 97 | | 6 | 61 | 116 | 124 | 315 | 2560 | 659 | 1560 | 736 | 1080 | 308 | 138 | 94 | | 7 | 60 | 102 | 117 | 503 | 1800 | 640 | 1210 | 683 | 857 | 291 | 130 | 92 | | 8 | 59 | 96 | 108 | e3500 | 1630 | 710 | 1000 | 1040 | 676 | 295 | 124 | 97 | | 9 | 59 | 92 | 105 | e2700 | 1740 | 1470 | 2320 | 2470 | 605 | 404 | 124 | 96 | |
10 | 58 | 90 | 118 | 1350 | 2260 | 1840 | 4670 | 2090 | 5210 | 390 | 395 | 91 | | 11 | 58 | 92 | 164 | 840 | 2840 | 1410 | 3640 | 3210 | 6750 | 299 | 737 | 89 | | 12 | 58 | 92 | 181 | 612 | 5050 | 1100 | 2630 | 2460 | 2870 | 265 | 407 | 85 | | 13 | 58 | 91 | 166 | 503 | 4310 | 906 | 1870 | 1710 | 2190 | 243 | 270 | 83 | | 14 | 56 | 90 | 141 | 426 | 2740 | 797 | 1450 | 1280 | 1720 | 286 | 210 | 81 | | 15 | 55 | 93 | 121 | 373 | 1840 | 709 | 1190 | 1010 | 1510 | 242 | 266 | 78 | | 16 | 55 | 94 | 106 | 397 | 1430 | 671 | 1290 | 836 | 1330 | 224 | 346 | 76 | | 17 | 55 | 92 | 97 | 456 | 2130 | 725 | 10900 | 725 | 1040 | 220 | 622 | 75 | | 18 | 60 | 90 | 92 | 455 | 4170 | 862 | 6840 | 628 | 834 | 211 | 598 | 74 | | 19 | 61 | 88 | 88 | 459 | 3170 | 3740 | 4390 | 557 | 752 | 200 | 451 | 73 | | 20 | 59 | 83 | 84 | 524 | 2250 | 3920 | 6110 | 503 | 991 | 187 | 331 | 73 | | 21 | 58 | 85 | 82 | 510 | 1820 | 10600 | 3940 | 542 | 754 | 178 | 270 | 75 | | 22 | 59 | 110 | 89 | 449 | 1550 | 6560 | 2680 | 634 | 638 | 170 | 221 | 83 | | 23 | 58 | 153 | 100 | 537 | 1730 | 3370 | 1960 | 740 | 1320 | 294 | 195 | 135 | | 24 | 58 | 132 | 108 | 768 | 2960 | 2210 | 1530 | 1530 | 1030 | 359 | 179 | 115 | | 25 | 66 | 114 | 122 | 812 | 2430 | 1610 | 1220 | 2050 | 851 | 297 | 164 | 107 | | 26 | 78 | 100 | 124 | 704 | 1780 | 1280 | 1020 | 1490 | 666 | 236 | 150 | 92 | | 27 | 102 | 91 | 127 | e680 | 1460 | 1070 | 886 | 1420 | 560 | 199 | 141 | 86 | | 28 | 114 | 86 | 133 | e810 | 1290 | 934 | 791 | 1500 | 486 | 181 | 133 | 82 | | 29 | 95 | 82 | 134 | e1000 | | 831 | 695 | 1160 | 435 | 167 | 125 | 92 | | 30 | 88 | 121 | 133 | e1200 | | 745 | 640 | 907 | 458 | 158 | 119 | 181 | | 31 | 78 | | 132 | 1290 | | 674 | | 875 | | 235 | 114 | | | TOTAL | 2083 | 2984 | 3864 | 22931 | 68980 | 54596 | 72720 | 36410 | 39110 | 8603 | 8077 | 2816 | | MEAN | 67.2 | 99.5 | 125 | 740 | 2464 | 1761 | 2424 | 1175 | 1304 | 278 | 261 | 93.9 | | MAX | 114 | 153 | 181 | 3500 | 5660 | 10600 | 10900 | 3210 | 6750 | 563 | 737 | 181 | | MIN | 55 | 75 | 82 | 115 | 1080 | 640 | 640 | 503 | 435 | 158 | 114 | 73 | | CFSM | .13 | .19 | . 24 | 1.40 | 4.67 | 3.34 | 4.59 | 2.22 | 2.47 | .53 | .49 | .18 | | IN. | .15 | .21 | .27 | 1.62 | 4.86 | 3.85 | 5.12 | 2.57 | 2.76 | .61 | .57 | .20 | e Estimated. ## 03524000 CLINCH RIVER AT CLEVELAND, VA--Continued | STATIS | STICS OF | MONTHLY M | EAN DATA | FOR WATER | YEARS 1921 | - 1998, | BY WATE | R YEAR (WY) | | | | | |---------|-----------|-----------|----------|-----------|------------|---------|----------|-------------|------|-----------|---------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 264 | 400 | 778 | 1140 | 1385 | 1439 | 1024 | 804 | 488 | 328 | 315 | 210 | | MAX | 1389 | 2011 | 3043 | 2817 | 3360 | 4572 | 3414 | 2254 | 2016 | 972 | 1640 | 1003 | | (WY) | 1977 | 1978 | 1927 | 1937 | 1957 | 1955 | 1987 | 1958 | 1923 | 1938 | 1940 | 1989 | | MIN | 53.8 | 64.0 | 80.7 | 92.1 | 206 | 309 | 228 | 195 | 79.7 | 78.2 | 63.2 | 55.3 | | (WY) | 1931 | 1940 | 1940 | 1940 | 1941 | 1988 | 1942 | 1941 | 1930 | 1930 | 1988 | 1930 | | SUMMAR! | Y STATIST | rics | FOR | 1997 CALE | NDAR YEAR | FO | R 1998 W | ATER YEAR | | WATER YEA | RS 1921 | - 1998 | | ANNUAL | TOTAL | | | 207117 | | | 323174 | | | | | | | ANNUAL | MEAN | | | 567 | | | 885 | | | 712 | | | | HIGHES | T ANNUAL | MEAN | | | | | | | | 1076 | | 1972 | | LOWEST | ANNUAL M | IEAN | | | | | | | | 287 | | 1988 | | HIGHEST | T DAILY M | IEAN | | 7670 | Mar 4 | | 10900 | Apr 17 | | 27800 | Apr | 5 1977 | | LOWEST | DAILY ME | AN | | 55 | a0ct 15 | | 55 | a0ct 15 | | 37 | bSep 1 | L3 1964 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 56 | Oct 11 | | 56 | Oct 11 | | 40 | Sep 1 | L3 1964 | | INSTAN | TANEOUS P | EAK FLOW | | | | | 13800 | Apr 17 | | 34500 | Apr | 5 1977 | | INSTAN | TANEOUS P | EAK STAGE | | | | | 16.1 | 9 Apr 17 | | 26.40 | Apr | 5 1977 | | INSTAN | TANEOUS L | OW FLOW | | | | | 55 | cOct 14 | | 35 | Sep 2 | 28 1964 | | ANNUAL | RUNOFF (| CFSM) | | 1.0 | 7 | | 1.6 | 8 | | 1.35 | - | | | ANNUAL | RUNOFF (| INCHES) | | 14.5 | 9 | | 22.7 | 7 | | 18.31 | | | 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Also Oct. 16, 17, 1997. b Also Sept. 28, 1964. c Also Oct. 15-17, 1997. ## 03524550 GUEST RIVER NEAR MILLER YARD, VA LOCATION.--Lat 36°52'43", long 82°24'22", Wise County, Hydrologic Unit 06010205, on left bank, 850 ft upstream from footbridge on Guest River Gorge Trail, 210 ft downstream from Lick Branch, and 1,200 ft upstream from mouth. DRAINAGE AREA.--100 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1996 to September 1998 (discontinued). GAGE.--Water-stage recorder. Datum of gage is 1,400 ft above sea level, from topographic map. REMARKS.--Records good except those for period of ice effect, Jan. 2, period of no gage-height record, Feb. 8-27, and period of doubtful gage-height record, Apr. 17, which are poor. Maximum discharge, 4,660 ft³/s, from rating curve extended above 1,600 ft³/s. Minimum gage height, 1.82 ft, Sept. 5, 6, 1997. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 EXTREMES FOR CURRENT YEAR.--Maximum observed discharge, 4,660 ${\rm ft^3/s}$, Apr. 17, gage height, 7.65 ${\rm ft}$; minimum, 5.9 ${\rm ft^3/s}$, Sept. 17, gage height, 1.87 ${\rm ft}$. | | | DISCIE | AKGE, IN | CODIC FEE | | AILY MEAN | VALUES | TOBER 199 | , 10 PEF11 | SHEEK 1990 | , | | |-------|-------|--------|----------|-----------|------|-----------|--------|-----------|------------|------------|------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 20 | 16 | 66 | 51 | 307 | 148 | 206 | 181 | 159 | 131 | 88 | 14 | | 2 | 14 | 20 | 66 | e50 | 290 | 133 | 231 | 203 | 109 | 92 | 55 | 15 | | 3 | 11 | 26 | 53 | 54 | 527 | 123 | 208 | 188 | 100 | 80 | 46 | 14 | | 4 | 12 | 31 | 49 | 81 | 1200 | 117 | 757 | 399 | 466 | 74 | 40 | 12 | | 5 | 11 | 31 | 48 | 105 | 627 | 111 | 752 | 354 | 751 | 70 | 30 | 12 | | 6 | 11 | 24 | 45 | 114 | 395 | 106 | 507 | 289 | 554 | 67 | 26 | 12 | | 7 | 9.1 | 21 | 42 | 290 | 305 | 102 | 354 | 267 | 366 | 61 | 23 | 13 | | 8 | 7.5 | 22 | 39 | 1810 | e290 | 125 | 282 | 360 | 260 | 66 | 24 | 19 | | 9 | 9.9 | 24 | 41 | 722 | e280 | 336 | 674 | 437 | 243 | 106 | 31 | 24 | | 10 | 12 | 25 | 105 | 381 | e300 | 363 | 665 | 640 | 808 | 83 | 34 | 15 | | 11 | 18 | 23 | 189 | 246 | e350 | 246 | 532 | 1340 | 847 | 64 | 37 | 12 | | 12 | 14 | 21 | 106 | 169 | e450 | 189 | 402 | 711 | 526 | 57 | 27 | 11 | | 13 | 13 | 20 | 79 | 125 | e400 | 158 | 315 | 438 | 624 | 55 | 23 | 10 | | 14 | 10 | 24 | 66 | 107 | e300 | 142 | 269 | 314 | 497 | 83 | 22 | 10 | | 15 | 9.1 | 39 | 57 | 99 | e250 | 127 | 238 | 242 | 414 | 65 | 53 | 8.8 | | 16 | 12 | 35 | 49 | 112 | e220 | 145 | 472 | 199 | 305 | 57 | 73 | 8.0 | | 17 | 11 | 29 | 42 | 108 | e350 | 213 | e3500 | 157 | 231 | 68 | 405 | 7.6 | | 18 | 11 | 24 | 38 | 102 | e440 | 482 | 1280 | 123 | 173 | 53 | 152 | 9.4 | | 19 | 12 | 22 | 35 | 106 | e350 | 1770 | 1640 | 109 | 162 | 50 | 79 | 9.3 | | 20 | 12 | 22 | 33 | 113 | e290 | 1090 | 1490 | 99 | 137 | 52 | 58 | 14 | | 21 | 10 | 34 | 32 | 106 | e250 | 1130 | 929 | 188 | 113 | 46 | 46 | 15 | | 22 | 8.5 | 110 | 42 | 111 | e230 | 684 | 606 | 134 | 116 | 63 | 38 | 33 | | 23 | 9.3 | 86 | 49 | 403 | e220 | 456 | 500 | 303 | 552 | 57 | 34 | 29 | | 24 | 11 | 59 | 49 | 459 | e230 | 336 | 385 | 374 | 296 | 58 | 29 | 20 | | 25 | 19 | 46 | 67 | 337 | e210 | 275 | 317 | 231 | 267 | 52 | 25 | 15 | | 26 | 31 | 38 | 64 | 247 | e190 | 241 | 272 | 256 | 184 | 52 | 24 | 14 | | 27 | 49 | 33 | 64 | 216 | e180 | 205 | 241 | 209 | 130 | 43 | 22 | 14 | | 28 | 41 | 31 | 65 | 322 | 161 | 179 | 226 | 159 | 109 | 36 | 19 | 14 | | 29 | 25 | 30 | 59 | 334 | | 157 | 188 | 122 | 98 | 32 | 19 | 15 | | 30 | 18 | 32 | 58 | 381 | | 133 | 173 | 108 | 102 | 30 | 18 | 22 | | 31 | 16 | | 56 | 360 | | 120 | | 253 | | 63 | 17 | | | TOTAL | 477.4 | 998 | 1853 | 8221 | 9592 | 10142 | 18611 | 9387 | 9699 | 1966 | 1617 | 441.1 | | MEAN | 15.4 | 33.3 | 59.8 | 265 | 343 | 327 | 620 | 303 | 323 | 63.4 | 52.2 | 14.7 | | MAX | 49 | 110 | 189 | 1810 | 1200 | 1770 | 3500 | 1340 | 847 | 131 | 405 | 33 | | MIN | 7.5 | 16 | 32 | 50 | 161 | 102 | 173 | 99 | 98 | 30 | 17 | 7.6 | | CFSM | .15 | .33 | .60 | 2.65 | 3.43 | 3.27 | 6.20 | 3.03 | 3.23 | .63 | .52 | .15 | | IN. | .18 | .37 | .69 | 3.06 | 3.57 | 3.77 | 6.92 | 3.49 | 3.61 | .73 | .60 | .16 | e Estimated. ## 03524550 GUEST RIVER NEAR MILLER YARD, VA--Continued | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|-------|-----|-----|------|-------|-----|-----|-----|-----|-------|------|------| | MEAN | 40.2 | 119 | 207 | 266 | 311 | 398 | 404 | 236 | 215 | 57.2 | 35.7 | 18.3 | | 262.75 | C F O | 205 | 254 | 0.67 | 2 4 2 | 450 | 600 | 202 | 202 | C 2 4 | F0 0 | 01 0 | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1996 - 1998, BY WATER YEAR (WY) | MEAN
MAX | 40.2
65.0
1997 | 119
205
1997 | 207
354
1997 | 266
267
1997 | 311
343
1998 | 398
470
1997 | 404
620
1998 | 236
303
1998 | 215
323
1998 | 57.2
63.4
1998 | 35.7
52.2
1998 | 18.3
21.8
1997 | |---------------------|----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------| | (WY)
MIN
(WY) | 15.4
1998 | 33.3
1998 | 59.8
1998 | 265
1998 | 279
1997 | 327
1998 | 1998
188
1997 | 1998
169
1997 | 1998
106
1997 | 51.0
1997 | 1998
19.3
1997 | 14.7
1998 | | SUMMARY STATISTICS | FOR 1997 CALENDAR YEAR | FOR 1998 WATER YEAR | WATER YEARS 1996 - 1998 | |--------------------------|------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 50848.8 | 73004.5 | | | ANNUAL MEAN | 139 | 200 | 191 | | HIGHEST ANNUAL MEAN | | | 200
1998 | | LOWEST ANNUAL MEAN | | | 183 1997 | | HIGHEST DAILY MEAN | 1580 Mar 3 | 3500 Apr 17 | 3500 Apr 17 1998 | | LOWEST DAILY MEAN | 6.0 Sep 5 | 7.5 Oct 8 | 6.0 Sep 5 1997 | | ANNUAL SEVEN-DAY MINIMUM | 7.5 Sep 2 | 9.0 Sep 13 | 7.5 Sep 2 1997 | | INSTANTANEOUS PEAK FLOW | | a4660 Apr 17 | a4660 Apr 17 1998 | | INSTANTANEOUS PEAK STAGE | | a7.65 Apr 17 | a7.65 Apr 17 1998 | | INSTANTANEOUS LOW FLOW | | 5.9 Sep 17 | 4.9 bSep 5 1997 | | ANNUAL RUNOFF (CFSM) | 1.39 | 2.00 | 1.91 | | ANNUAL RUNOFF (INCHES) | 18.92 | 27.16 | 26.00 | | 10 PERCENT EXCEEDS | 359 | 462 | 434 | | 50 PERCENT EXCEEDS | 72 | 99 | 105 | | 90 PERCENT EXCEEDS | 12 | 14 | 15 | a Observed a Also Sept. 6, 1997. # 03524550 GUEST RIVER NEAR MILLER YARD, VA--Continued WATER-QUALITY RECORDS PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1996 to September 1998. WATER TEMPERATURE: October 1996 to September 1998. INSTRUMENTATION.--Water-temperature and specific conductance recorder since October 1996. REMARKS.--Interruption in record due to instrument malfunction. Records represent specific conductance within 5 microsiemens and water temperature within 0.5°C at sensors. EXTREMES FOR PERIOD OF RECORD. -- SPECIFIC CONDUCTANCE: Maximum recorded, 956 microsiemens, Sept. 10, 1997; minimum recorded, 131 microsiemens, Apr. 17, 1998. WATER TEMPERATURE: Maximum recorded, 26.7°C, Aug. 17, 1997; minimum 0.0°C on several days during winter periods. EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum recorded, 848 microsiemens, Oct. 19; minimum recorded, 131 microsiemens, Apr. 17. WATER TEMPERATURE: Maximum recorded, 25.9°C, Aug. 24; minimum, 0.0°C, Jan. 1-3. SPECIFIC CONDUCTANCE, US/CM @ 25 DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | MEAN | |-------|-----|---------|------|-----|---------|------|-----|---------|------|-----|---------|------| | | | OCTOBER | | NO | OVEMBER | | DI | ECEMBER | | | JANUARY | • | | 1 | 605 | 566 | 577 | 709 | 697 | 703 | 551 | 474 | 514 | 659 | 576 | 612 | | 2 | 584 | 557 | 564 | 730 | 709 | 717 | 580 | 465 | 523 | 721 | 654 | 672 | | 3 | 658 | 584 | 620 | 741 | 724 | 735 | 595 | 539 | 580 | 721 | 670 | 692 | | 4 | 675 | 658 | 666 | 768 | 704 | 731 | 539 | 511 | 520 | 698 | 626 | 653 | | 5 | 661 | 648 | 653 | 767 | 746 | 757 | 540 | 528 | 534 | 653 | 492 | 589 | | 6 | 688 | 661 | 674 | 765 | 739 | 753 | 564 | 531 | 543 | 492 | 412 | 444 | | 7 | 727 | 688 | 708 | 739 | 700 | 714 | 598 | 564 | 579 | 431 | 339 | 411 | | 8 | 738 | 727 | 732 | 708 | 682 | 695 | 594 | 584 | 589 | 339 | 186 | 225 | | 9 | 748 | 732 | 739 | 684 | 658 | 668 | 593 | 569 | 581 | 250 | 212 | 228 | | 10 | 750 | 724 | 743 | 670 | 656 | 665 | 630 | 532 | 579 | 273 | 250 | 262 | | 11 | 732 | 671 | 707 | 698 | 667 | 683 | 595 | 423 | 499 | 300 | 271 | 285 | | 12 | 738 | 687 | 723 | 713 | 698 | 707 | 466 | 439 | 452 | 320 | 299 | 313 | | 13 | 734 | 692 | 711 | 727 | 713 | 721 | 482 | 441 | 465 | 349 | 317 | 333 | | 14 | 768 | 734 | 757 | 725 | 705 | 715 | 441 | 419 | 430 | 378 | 349 | 366 | | 15 | 772 | 761 | 765 | 709 | 651 | 682 | 429 | 418 | 424 | 401 | 374 | 390 | | 16 | 782 | 772 | 777 | 697 | 656 | 682 | 434 | 422 | 427 | 421 | 392 | 407 | | 17 | 783 | 770 | 776 | 740 | 697 | 721 | 441 | 429 | 434 | 435 | 419 | 429 | | 18 | 847 | 783 | 816 | 738 | 676 | 703 | 465 | 441 | 454 | 428 | 412 | 423 | | 19 | 848 | 823 | 835 | 677 | 633 | 651 | 493 | 463 | 477 | 456 | 399 | 418 | | 20 | 827 | 811 | 820 | 641 | 630 | 636 | 504 | 490 | 496 | 483 | 432 | 448 | | 21 | 832 | 810 | 822 | 653 | 615 | 634 | 524 | 499 | 511 | 501 | 458 | 476 | | 22 | 835 | 815 | 824 | 666 | 552 | 611 | 526 | 516 | 521 | 466 | 434 | 457 | | 23 | 818 | 795 | 806 | 663 | 497 | 537 | 535 | 518 | 525 | 434 | 298 | 380 | | 24 | 807 | 783 | 796 | 536 | 504 | 519 | 557 | 534 | 546 | 298 | 273 | 284 | | 25 | 783 | 767 | 774 | 525 | 511 | 518 | 556 | 476 | 503 | 292 | 273 | 282 | | 26 | 767 | 717 | 739 | 556 | 523 | 542 | 520 | 493 | 507 | 311 | 287 | 301 | | 27 | 747 | 689 | 725 | 571 | 554 | 562 | 519 | 481 | 496 | 341 | 311 | 321 | | 28 | 771 | 719 | 756 | 569 | 553 | 562 | 544 | 485 | 511 | 359 | 324 | 338 | | 29 | 761 | 744 | 755 | 564 | 554 | 559 | 508 | 469 | 481 | 432 | 339 | 380 | | 30 | 744 | 698 | 714 | 570 | 545 | 557 | 572 | 508 | 542 | 434 | 389 | 412 | | 31 | 712 | 691 | 702 | | | | 638 | 520 | 577 | 411 | 367 | 390 | | MONTH | 848 | 557 | 735 | 768 | 497 | 655 | 638 | 418 | 510 | 721 | 186 | 407 | # 03524550 GUEST RIVER NEAR MILLER YARD, VA--Continued SPECIFIC CONDUCTANCE, US/CM @ 25 DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | MEAN | |---|--|--|--|---|---|---|--|--|---|------------------------------------|------------------------------------|---| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | 371 | 358 | 365 | 459 | 451 | 454 | 486 | 407 | 451 | 524 | 507 | 517 | | 2 | 371
366 | 361
281 | 366
340 | 476
517 | 458
473 | 469
497 | 448
393 | 384
349 | 409
372 | 527
533 | 506
510 | 517
521 | | 4 | 296 | 256 | 280 | 517 | 501 | 509 | 349 | 204 | 257 | 510 | 379 | 423 | | 5 | 332 | 291 | 313 | 534 | 513 | 520 | | | | 392 | 359 | 377 | | 6 | 362 | 325 | 344 | 537 | 524 | 531 | 260 | 213 | 234 | 385 | 360 | 373 | | 7 | 376 | 360 | 369 | 543 | 529 | 534 | 295 | 255 | 273 | 396 | 366 | 385 | | 8
9 | 393
389 | 366
360 | 383
380 | 537
511 | 491
357 | 518
441 | 331
331 | 295
238 | 310
282 | 382
394 | 348
329 | 362
355 | | 10 | 382 | 355 | 371 | 357 | 309 | 325 | 247 | 229 | 237 | 344 | 243 | 307 | | 11 | 357 | 311 | 339 | 335 | 315 | 324 | 268 | 241 | 257 | 259 | 227 | 238 | | 12 | 313 | 243 | 265 | 372 | 329 | 349 | 284 | 266 | 272 | 277 | 238 | 257 | | 13 | 280 | 248 | 259 | 420 | 366 | 393
407 | 315 | 284 | 294 | 333 | 276 | 305 | | 14
15 | 324
359 | 276
319 | 299
338 | 415
430 | 398
404 | 418 | 334
359 | 315
334 | 324
348 | 386
419 | 333
385 | 355
404 | | | | | | | | | | | | | | | | 16
17 | 383
385 | 357
250 | 370
349 | 515
536 | 421
402 | 446
474 | 377
253 | 240
131 | 348
160 | 469
501 | 417
461 | 448
485 | | 18 | 254 | 225 | 241 | 403 | 210 | 359 | 255 | 187 | 217 | 532 | 501 | 519 | | 19
20 | 290
320 | 254
283 | 272
301 | 248
227 | 178
211 | 211
219 | 255
242 | 170
172 | 219
208 | 557
581 | 529
554 | 547
568 | | 20 | 320 | 203 | 301 | 221 | 211 | 219 | 242 | 1/2 | 200 | 201 | 334 | 300 | | 21 | 355 | 317 | 334 | 236 | 217 | 228 | 330 | 242 | 290 | 608 | 519 | 567 | | 22
23 | 376
384 | 352
373 | 366
378 | 279
320 | 234
277 | 253
300 | 374
408 | 330
374 | 351
392 | 591
513 | 452
392 | 503
482 | | 24 | 397 | 380 | 389 | 365 | 319 | 338 | 415 | 389 | 400 | 502 | 383 | 429 | | 25 | 398 | 388 | 394 | 390 | 355 | 370 | 443 | 415 | 432 | 408 | 383 | 391 | | 26 | 424 | 392 | 409 | 412 | 388 | 404 | 468 | 439 | 450 | 437 | 394 | 408 | | 27 | 432 | 419 | 425 | 425
447 | 412 | 419
434 | 480
499 | 465
479 | 474
491 | 458 | 403
449 | 434 | | 28
29 | 453 | 427 | 441 | 454 | 420
435 | 434 | 516 | 479 | 505 | 467
482 | 449 | 458
472 | | 30 | | | | 479 | 454 | 468 | 527 | 513 | 520 | 503 | 482 | 489 | | 31 | | | | 487 | 467 | 474 | | | | 529 | 301 | 416 | | MONTH | 453 | 225 | 346 | 543 | 178 | 404 | | | | 608 | 227 | 429 | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | | | JUNE | | | JULY | | i | AUGUST | | | SEPTEMBE | R | | 1
2 | 409
445 | JUNE
371
369 | 383
407 | 555
555 | JULY
533
548 | 543
552 | 647
625 | AUGUST
545
582 | 617
598 | 748
749 | SEPTEMBE
737
742 | 743
745 | | 1
2
3 | 409
445
482 | JUNE
371
369
445 | 383
407
465 | 555
555
575 | JULY
533
548
554 | 543
552
564 | 647
625
638 | 545
582
606 | 617
598
618 | 748
749
 | 737
742 | 743
745
 | | 1
2 | 409
445 | JUNE
371
369 | 383
407 | 555
555 | JULY
533
548 | 543
552 | 647
625 |
AUGUST
545
582 | 617
598 | 748
749 | SEPTEMBE
737
742 | 743
745 | | 1
2
3
4
5 | 409
445
482
524
389 | JUNE
371
369
445
340
277 | 383
407
465
423
305 | 555
555
575
590
592 | JULY 533 548 554 575 587 | 543
552
564
581
589 | 647
625
638
660
659 | 545
582
606
638
647 | 617
598
618
655
653 | 748
749
 | 737
742

 | 743
745

 | | 1
2
3
4
5 | 409
445
482
524
389 | JUNE 371 369 445 340 277 | 383
407
465
423
305 | 555
555
575
590
592
613 | JULY 533 548 554 575 587 | 543
552
564
581
589 | 647
625
638
660
659 | 545
582
606
638
647 | 617
598
618
655
653 | 748
749
 | 737
742
 | 743
745
 | | 1
2
3
4
5 | 409
445
482
524
389
296
324
366 | JUNE 371 369 445 340 277 272 296 324 | 383
407
465
423
305
282
312
345 | 555
555
575
590
592
613
630
648 | JULY 533 548 554 575 587 591 613 630 | 543
552
564
581
589
599
621
641 | 647
625
638
660
659
680
702
701 | 545
582
606
638
647
659
680
679 | 617
598
618
655
653
669
693
690 | 748
749

 | 737
742

 | 743
745

 | | 1
2
3
4
5
6
7
8
9 | 409
445
482
524
389
296
324
366
388 | JUNE 371 369 445 340 277 272 296 324 364 | 383
407
465
423
305
282
312
345
378 | 555
555
575
590
592
613
630
648
649 | JULY 533 548 554 575 587 591 613 630 625 | 543
552
564
581
589
599
621
641
637 | 647
625
638
660
659
680
702
701
722 | 545
582
606
638
647
659
680
679
679 | 617
598
618
655
653
669
693
690
705 | 748
749

 | 737
742

 | 743
745

 | | 1
2
3
4
5
6
7
8
9 | 409
445
482
524
389
296
324
366
388
401 | JUNE 371 369 445 340 277 272 296 324 364 262 | 383
407
465
423
305
282
312
345
378
327 | 555
555
575
590
592
613
630
648
649
659 | JULY 533 548 554 575 587 591 613 630 625 649 | 543
552
564
581
589
599
621
641
637
656 | 647
625
638
660
659
680
702
701
722
747 | 545
582
606
638
647
659
680
679
679
721 | 617
598
618
655
653
669
693
690
705
735 | 748
749

 | 737
742

 | 743
745

 | | 1
2
3
4
5
6
7
8
9
10 | 409
445
482
524
389
296
324
366
388
401
267 | JUNE 371 369 445 340 277 272 296 324 364 262 248 | 383
407
465
423
305
282
312
345
378
327
256 | 555
555
575
590
592
613
630
648
649
659 | JULY 533 548 554 575 587 591 613 630 625 649 647 | 543
552
564
581
589
599
621
641
637
656 | 647
625
638
660
659
680
702
701
722
747 | 545
582
606
638
647
659
680
679
679
721 | 617
598
618
655
653
669
693
690
705
735 | 748
749

 | 737
742

 | 743
745

 | | 1
2
3
4
5
6
7
8
9
10 | 409
445
482
524
389
296
324
366
388
401
267
288 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 | 383
407
465
423
305
282
312
345
378
327
256
274 | 555
555
575
590
592
613
630
648
649
659 | JULY 533 548 554 575 587 591 613 630 625 649 | 543
552
564
581
589
599
621
641
647
656 | 647
625
638
660
659
680
702
701
722
747 | 545
582
606
638
647
659
680
679
721
738
719 | 617
598
618
655
653
669
693
690
705
735 | 748
749

 | 737
742

 | 743
745

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 409
445
482
524
389
296
324
366
388
401
267
288
318
306 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 271 | 383
407
465
423
305
282
312
345
378
327
256
274
298
293 | 555
555
575
590
592
613
630
648
649
659
655
647
607 | JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 | 543
552
564
581
589
599
621
641
637
656
652
631
604
582 | 647
625
638
660
659
680
702
701
722
747
751
751
736
725 | 545
582
606
638
647
659
680
679
721
738
719
717 | 617
598
618
655
653
669
693
690
705
735
743
734
724
719 | 748
749

 | 737
742

 | 743
745

 | | 1
2
3
4
5
6
7
8
9
10 | 409
445
482
524
389
296
324
366
388
401
267
288
318 | JUNE 371 369 445 340 277 272 296 324 364 2662 248 261 271 | 383
407
465
423
305
282
312
345
378
327
256
274
298 | 555
555
575
590
592
613
630
648
649
659
655
647
607 | JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 | 543
552
564
581
589
599
621
641
637
656
652
631
604 | 647
625
638
660
659
680
702
701
722
747
751
751
736 | 545
582
606
638
647
659
680
679
679
721
738
719
717 | 617
598
618
655
653
669
693
690
705
735
743
734
724 | 748
749

 | 737
742

 | 743
745

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 409
445
482
524
389
296
324
366
388
401
267
288
318
306
337 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 | 383
407
465
423
305
282
312
345
378
327
256
274
298
293
317 | 555
555
575
590
592
613
630
648
649
659
655
647
607
629 | JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 584 | 543
552
564
581
589
599
621
641
637
656
652
631
604
582
615 | 647
625
638
660
659
680
702
701
722
747
751
751
736
725
732 | 545
582
606
638
647
659
680
679
721
738
719
717
710
672 | 617
598
618
655
653
669
693
690
705
735
743
734
724
719
696 | 748
749

 | 737
742

 | 743
745

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 409
445
482
524
389
296
324
366
388
401
267
288
318
306
337
376
413 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 271 305 331 376 | 383
407
465
423
305
282
312
345
378
327
256
274
298
293
317 | 555
555
575
590
592
613
630
648
649
659
655
647
607
607
629 | JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 584 | 543
552
564
581
589
599
621
641
637
656
652
631
604
582
615 | 647
625
638
660
659
680
702
701
722
747
751
751
736
725
732 | 545
582
606
638
647
659
680
679
721
738
719
717
710
672
588
339 | 617
598
618
655
653
669
693
705
735
743
734
724
719
696 | 748
749

 | 737
742

 | 743
745

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 409
445
482
524
389
296
324
366
388
401
267
288
318
306
337 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 | 383
407
465
423
305
282
312
345
378
327
256
274
298
293
317 | 555
555
575
590
592
613
630
648
649
659
655
647
607
629 | JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 584 | 543
552
564
581
589
599
621
641
637
656
652
631
604
582
615 | 647
625
638
660
659
680
702
701
722
747
751
751
736
725
732 | 545
582
606
638
647
659
680
679
721
738
719
717
710
672 | 617
598
618
655
653
669
693
690
705
735
743
734
724
719
696 | 748
749

 | 737
742

 | 743
745

 | | 1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | 409
445
482
524
389
296
324
366
388
401
267
288
318
306
337
376
413
435 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 271 305 331 376 413 | 383
407
465
423
305
282
312
345
378
327
256
274
298
293
317
352
391
425 | 555
555
575
575
590
592
613
630
648
649
659
655
647
607
607
629 | JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 584 564 599 615 | 543
552
564
581
589
599
621
641
656
652
631
604
582
615 | 647
625
638
660
659
680
702
701
722
747
751
751
736
725
732
777
588
422
 545
582
606
638
647
659
680
679
721
738
719
717
710
672
588
339
349 | 617
598
618
655
653
669
693
690
705
735
743
724
719
696
719
428
401 | 748 749 | 737
742

 | 743
745

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 409
445
482
524
389
296
324
366
388
401
267
288
318
306
337
376
413
435
463 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 435 | 383
407
465
423
305
282
312
345
378
327
256
274
298
293
317
352
391
425
450 | 555
555
575
590
592
613
630
648
649
659
655
647
607
629
605
615
642
646 | JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 584 564 599 615 | 543
552
564
581
589
599
621
641
637
656
652
631
604
582
615
576
605
6028
643 | 647
625
638
660
659
680
702
701
722
747
751
751
736
725
732
777
588
422
428 | 545
582
606
638
647
659
680
679
721
738
719
717
710
672
588
339
349
420 | 617
598
618
655
653
669
693
690
705
735
743
724
719
696
719
428
401
424 | 748 749 | 737 742 | 743
745

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 409
445
482
524
389
296
324
366
388
401
267
288
318
401
376
413
435
463
481
501
522 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 435 445 | 383
407
465
423
305
282
312
345
378
327
256
274
298
293
317
352
450
469
487
507 | 555
555
575
590
592
613
630
648
649
659
655
647
607
629
605
615
642
646
646 | JULY 533 548 554 575 587 591 613 625 649 647 605 599 564 584 564 599 615 639 624 624 659 | 543
552
564
581
589
599
621
637
656
652
631
604
582
615
576
605
628
635
646
644 | 647
625
638
660
659
680
702
701
722
747
751
751
736
725
732
777
588
422
428
455 | AUGUST 545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 349 424 455 496 | 617
598
618
655
653
669
693
705
735
743
734
719
696
719
428
401
424
441 | 748 749 | 737 742 | 743
745

 | | 1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 409
445
482
524
389
296
324
368
401
267
288
318
306
337
376
413
435
463
481
501
522
519 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 445 465 493 295 | 383
407
465
423
305
282
312
345
327
256
274
298
293
317
352
391
425
450
469
487
507
383 | 555
555
575
590
592
613
630
648
649
659
655
647
607
607
607
629
605
615
642
646
645 | JULY 533 548 554 575 587 591 613 625 649 647 605 599 564 584 564 599 615 639 624 624 659 630 | 543
552
564
581
589
599
621
641
637
656
652
631
604
582
615
576
628
643
646
646 | 647
625
638
660
659
680
702
701
722
747
751
736
725
732
777
588
422
428
455 | AUGUST 545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 349 420 424 455 496 530 | 617
598
618
655
653
669
693
690
705
735
743
724
719
696
719
428
401
424
441
474
512
548 | 748 749 | 737 742 | 743
745

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 409
445
482
524
389
296
324
366
388
401
267
288
318
401
376
413
435
463
481
501
522 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 435 445 | 383
407
465
423
305
282
312
345
378
327
256
274
298
293
317
352
450
469
487
507 | 555
555
575
590
592
613
630
648
649
659
655
647
607
629
605
615
642
646
646 | JULY 533 548 554 575 587 591 613 625 649 647 605 599 564 584 564 599 615 639 624 624 659 | 543
552
564
581
589
599
621
637
656
652
631
604
582
615
576
605
628
635
646
644 | 647
625
638
660
659
680
702
701
722
747
751
751
736
725
732
777
588
422
428
455 | AUGUST 545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 349 424 455 496 | 617
598
618
655
653
669
693
705
735
743
734
719
696
719
428
401
424
441 | 748 749 | 737 742 | 743
745

 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 409
445
482
524
389
296
324
368
401
267
288
318
306
337
376
413
435
463
481
501
522
519
447
399 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 445 465 493 295 391 371 | 383
407
465
423
305
282
312
345
378
327
256
274
298
293
317
352
450
469
487
507
383
426
381 | 555
555
575
590
592
613
630
648
649
659
655
647
607
607
629
605
615
642
646
645
663
669
667
666 | JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 584 564 599 615 639 624 624 659 630 654 622 | 543
552
564
581
589
599
621
637
656
652
631
604
582
615
576
628
635
646
646
646
663
7 | 647
625
638
660
659
680
702
701
722
747
751
736
725
732
777
588
422
428
455
496
530
568
589
611 | 545
582
606
638
647
659
680
679
721
738
719
717
710
672
588
339
349
420
424
455
496
530
568
589 | 617
598
618
655
653
669
693
690
705
735
743
724
719
696
719
428
401
424
441
474
512
548
581
601 | 748 749 | 737 742 | 743
745

- | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 409
445
482
524
389
296
324
366
388
401
267
288
318
306
337
376
413
463
463
481
501
522
519
447 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 445 465 493 295 | 383
407
465
423
305
282
312
345
378
327
256
274
298
293
317
352
391
425
469
487
507
383
426 | 555
555
575
590
592
613
630
648
649
659
655
647
607
629
605
615
642
646
645 | JULY 533 548 554 575 587 591 613 630 625 649 647 605 599 564 584 564 599 615 639 624 659 630 654 | 543
552
564
581
589
599
621
637
656
652
631
582
615
576
6028
643
635
646
646
664
663 | 647
625
638
660
659
680
702
701
722
747
751
736
725
732
777
588
422
428
455
496
530
568
589 | 545
582
606
638
647
659
680
679
721
738
719
717
710
672
588
339
420
424
455
496
530 | 617
598
618
655
653
669
690
705
735
743
734
719
696
719
428
401
424
441
474
512
581 | 748 749 | 737 742 | 743
745

 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 409
445
482
524
389
296
324
368
401
267
288
318
306
337
376
413
435
463
481
501
522
519
447
399
453
483
512 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 445 465 493 295 391 371 399 453 483 | 383
407
465
423
305
282
312
345
327
256
274
298
293
317
352
450
469
487
507
383
426
381
428
466
497 | 555
555
575
590
592
613
630
648
649
659
655
647
607
607
629
605
615
642
646
645
669
669
669
667
666 | JULY 533 548 554 575 587 591 613 6305 649 647 605 599 564 584 564 599 615 630 654 624 659 630 654 627 643 667 | 543
552
564
581
589
599
621
637
656
652
631
604
505
628
635
646
643
646
646
646
646
646
646
646
646 | 647
625
638
660
659
680
702
701
722
747
751
736
725
732
777
588
422
428
455
496
530
568
589
611
635
654
679 | 545
582
606
638
647
659
680
679
721
738
719
717
710
672
588
339
349
420
424
455
496
530
568
589 | 617
598
618
655
653
669
693
693
705
735
743
724
719
696
719
428
401
424
441
474
512
548
581
601
623
644
666 | 748 749 | 737 742 | 743 745 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 409
445
482
524
389
296
324
366
388
401
267
288
318
306
337
376
413
463
463
463
481
501
522
519
447
399 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 445 465 493 295 391 371 399 453 483 512 | 383
407
465
423
305
282
312
345
378
327
256
274
298
293
317
352
391
425
450
469
487
507
381
426
381
428
426
381 | 555
555
575
590
592
613
630
648
649
659
655
647
607
629
605
615
642
646
645
669
669
667
666 | JULY 533 548 554 575 587 591 613 625 649 647 605 599 564 584 564 599 615 639 624 659 624 659 654 622 627 643 6662 | 543
552
581
589
599
621
637
656
652
631
582
615
576
6028
643
635
646
646
663
637
656
664
663
637 | 647
625
638
660
659
680
702
701
722
747
751
736
725
732
777
588
422
428
455
496
530
568
589
611
635
654
679
693 | 545
582
606
638
647
659
680
679
721
738
719
717
710
672
588
339
420
424
455
496
530
568
589 | 617
598
618
655
653
6693
690
705
735
743
734
719
696
719
424
441
474
512
581
601
623
644
666
686 | 748 749 | 737 742 | 743
745

- | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 409
445
482
524
389
296
324
368
401
267
288
318
306
337
376
413
435
463
481
501
522
519
447
399
453
483
512 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 445 465 493 295 391 371 399 453 483 | 383
407
465
423
305
282
312
345
327
256
274
298
293
317
352
450
469
487
507
383
426
381
428
466
497 | 555
555
575
590
592
613
630
648
649
659
655
647
607
607
629
605
615
642
646
645
669
669
669
667
666 | JULY 533 548 554 575 587 591 613 6305 649 647 605 599 564 584 564 599 615 630 654 624 659 630 654 627 643 667 | 543
552
564
581
589
599
621
637
656
652
631
604
505
628
635
646
643
646
646
646
646
646
646
646
646 | 647
625
638
660
659
680
702
701
722
747
751
736
725
732
777
588
422
428
455
496
530
568
589
611
635
654
679 | 545
582
606
638
647
659
680
679
721
738
719
717
710
672
588
339
349
420
424
455
496
530
568
589 | 617
598
618
655
653
669
693
693
705
735
743
724
719
696
719
428
401
424
441
474
512
548
581
601
623
644
666 | 748 749 | 737 742 | 743 745 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 409
445
482
524
389
296
324
366
388
401
267
288
306
337
376
413
445
463
481
501
522
519
447
399
453
483
512
526
536
558 | JUNE 371 369 445 340 277 272 296 324 364 262 248 261 271 305 331 376 413 445 465 493 295 391 371 399 453 483 512 536 | 383
407
465
423
305
282
312
345
378
327
256
274
293
317
352
391
425
469
487
507
383
426
381
428
466
497
525
549 | 555
555
575
590
592
613
630
648
649
659
655
647
607
629
605
615
642
646
645
669
669
669
669
667
666 | JULY 533 548 554 575 587 591 613 625 649 647 605 594 584 564 599 6139 624 629 630 654 662 663 | 543
5564
581
589
599
621
637
656
652
631
582
615
576
605
644
643
637
646
646
643
637
656
666
667
6666 | 647
625
638
660
659
680
702
701
722
747
751
736
725
732
777
588
422
428
455
496
530
568
589
611
635
679
693
719 | AUGUST 545 582 606 638 647 659 680 679 721 738 719 717 710 672 588 339 3490 424 455 496 530 568 589 | 617
598
618
655
653
669
693
705
735
743
724
719
696
719
428
401
424
441
474
512
548
601
623
644
666
686
704 | 748 749 | 737 742 | 743 745 | # 03524550 GUEST RIVER NEAR MILLER YARD, VA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN
OCTOBER | MEAN | MAX | MIN | MEAN | MAX | MIN
ECEMBER | MEAN | MAX | MIN
JANUARY | MEAN | |----------------------------------|---|--|--|--|--|---|--|--------------------------------------|--|--|--|--| | 1
2
3
4
5 | 16.7
16.2
15.7
16.4
17.1 | 15.0
13.7
12.7
13.3 | 16.0
14.7
14.0
14.5
15.2 | 10.2
10.9
9.9
9.1
7.4 | 8.6 | 9.4
10.2
9.4
8.1
6.3 | 8.1
6.8
7.1
7.9
7.3 | | 7.7
6.3
6.4
7.5
6.1 | .7
.5
1.2
2.7
4.4 | . 0 | .2
.1
.5
1.7
3.0 | | 6
7
8
9
10 | 17.4
17.6
17.9
18.3
17.7 | 14.6
14.9 | 15.6
15.8
16.1
16.5
17.0 | 6.8
8.1
7.8
8.2
8.1 | 5.6
6.4
7.5
7.4
6.9 | 6.2
7.1
7.7
7.7
7.5 | 4.6
2.4
2.2
3.2
5.5 | 2.4
1.8
1.6
2.1
3.2 | 3.3
2.1
1.9
2.6
4.1 | 6.9
9.2
10.4
10.2
7.7 | 6.9 | 5.7
7.6
10.1
9.0
6.5 | | 12
13
14 | 19.1
18.8
18.7
17.2
14.6 | 17.1
16.0
15.9
14.5
12.2 | 17.7
17.3
17.1
16.0
13.2 | 7.7
7.2
7.3
8.0
7.4 | 7.2
6.4
6.0
7.3
5.9 | 7.4
6.9
6.6
7.6
6.7 | 5.5
5.0
4.3
3.1
1.9 | 3.1 | 5.2
4.6
3.8
2.5
1.3 | 6.0
6.8
7.6
6.8 | 5.3
6.0
6.8
5.4
6.2 | 5.7
6.4
7.1
6.0
6.5 | | 17
18 | 13.6
12.3
13.4
13.4
12.4 | 11.5 | 12.1
11.9
12.3
12.6
11.7 | 5.9
4.2
3.2
4.0
3.8 | 4.0
2.7
1.4
2.2
1.9 | 5.0
3.4
2.3
2.8
2.9 | 1.5
1.5
1.8
1.9
2.3 | .3 | .8
.7
1.0
1.1
1.4 | 7.2
6.7
6.1
5.4
4.8 | 6.7
6.1
5.0
4.8
3.5 | 7.0
6.5
5.5
5.0
3.9 | | 22
23
24 | 11.7
10.9
9.5
8.4
11.8 | 10.4
9.0
6.9
7.5
8.4 | 10.8
9.9
8.2
7.9
9.9 | 4.5
6.8
7.5
6.2
4.3 | 3.2
4.5
6.2
4.2
2.9 | 3.6
5.9
7.0
5.4
3.6 | 3.6
5.2
6.4
6.3
6.9 | 3.6
5.2 | 2.7
4.4
5.7
5.9
6.5 | 4.2
5.5
6.9
6.9
5.4 | 3.0
4.2
5.5
5.4
4.3 | 3.6
4.8
6.4
6.3
4.8 | | 27 | 12.5
12.5
10.5
9.6
9.4
9.6 | 11.1
10.5
8.8
7.3
6.7
7.0 | 11.6
11.7
9.6
8.3
7.9
8.1 | 3.9
4.4
5.2
6.1
7.9 | 2.5
2.8
3.1
4.6
6.1 | 3.2
3.6
4.1
5.3
7.0 | 7.0
6.1
4.0
2.7
2.2
1.6 | 6.1
4.0
2.7
1.8
1.6 | 6.5
5.1
3.5
2.2
2.0
1.4 | 4.7
4.4
3.3
4.4
5.1
4.8 | 3.9
1.6
1.4
2.9
4.4
4.2 | 4.3
3.5
2.4
3.6
4.7
4.5 | | MONTH | 19.1 | 6.7 | 12.9 | 10.9 | 1.4 | 6.0 | 8.1 | .1 | 3.8 | 10.4 | .0 | 4.9 | | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1
2
3
4
5 | 4.2
5.1
5.5
4.7
4.3 | 2.9
3.8
4.7
3.9
3.9 | 3.7
4.4
5.2
4.2
4.2 | 9.8
8.9
7.4
6.2
7.1 | 8.8
7.4
6.1
5.6
5.6 | 9.3
8.1
6.6
5.9
6.3 | 16.2
15.1
13.5
12.1 | 14.6
12.4
11.4
9.3 | 15.5
13.9
12.1
10.6 | 14.5
14.0
14.0
13.3
13.2 | 13.2
12.7
12.7
12.0
11.6 | 13.8
13.4
13.3
12.5
12.4 | | 6
7
8
9
10 | 4.8
5.6
5.9
6.4
6.5 | 4.2
4.5
5.1
5.3 | 4.5
5.1
5.5
5.8
6.0 | 7.2
8.4
10.4
10.6
8.4 | 6.0
6.9
8.4
8.4 | 6.6
7.6
9.4
10.0
6.3 | 11.2
12.2
14.2
13.5
11.7 | | 9.9
10.8
12.6
12.9
10.4 | 14.9
14.8
14.5
14.4
14.0 | 11.4
13.9
13.8
13.6
13.2 | 13.2
14.3
14.0
14.0
13.5 | | 11
12
13
14
15 | 6.9
6.9
6.1
6.2
5.7 | 5.8
6.1
5.9
5.4
4.3 | 6.3
6.5
6.0
5.8
5.2 | 4.6
4.0
3.6
6.2
6.7 | 3.3
2.2
1.6
2.8
4.0 | 3.9
3.0
2.8
4.3
5.3 | 10.8
11.8
12.3
14.2
14.0 | 8.2
8.7
9.5
11.6
11.8 | 9.5
10.3
11.0
12.7
12.9 | 14.1
14.6
16.0
18.0
19.2 | 13.1
12.4
13.0
14.9
16.0 | 13.5
13.6
14.5
16.3
17.7 | | 16
17
18
19
20 | 6.6
8.0
7.7
7.4
7.4 | 5.5
6.6
7.3
7.1
7.0 | 6.0
7.3
7.4
7.3
7.2 | 6.1
7.4
8.8
9.5
9.8 | 4.5
5.8
6.8
8.4
8.7 | 5.5
6.7
7.7
9.0
9.2 | 14.0
12.9
12.4
11.6
11.7 |
12.6
11.8
11.4
11.2
10.5 | 13.3
12.3
11.6
11.5
11.1 | 19.1
20.6
20.5
20.8
21.1 | 17.5
17.6
17.1
17.2
18.6 | 18.4
19.0
18.9
18.9 | | 21
22
23
24
25 | 7.1
7.1
7.1
6.7
7.2 | 6.4
5.6
6.7
5.8
5.2 | 6.9
6.4
7.0
6.3
6.3 | 9.3
7.2
7.0
7.5
7.3 | 7.2
6.1
5.3
5.9
6.2 | 8.3
6.6
6.2
6.7 | 12.0
11.7
12.0
12.6
13.8 | 10.2
11.0
10.6
10.4
10.7 | 11.3
11.2
11.3
11.6
12.3 | 20.7
20.1
19.1
19.1
19.4 | 19.3
18.9
17.6
17.1
17.8 | 20.0
19.5
18.2
18.0
18.7 | | 26
27
28
29
30
31 | 8.1
10.1
11.2
 | 5.7
8.1
9.5
 | 7.0
9.1
10.1
 | 10.3
13.0
14.5
15.8
16.3
16.7 | 6.4
9.5
11.6
12.8
13.0
14.1 | 8.4
11.3
13.1
14.1
14.7
15.4 | 14.8
14.3
13.4
13.3
14.0 | 12.3
12.4
10.8
11.9
12.6 | 13.6
13.4
12.3
12.7
13.3 | 19.1
18.8
20.1
20.8
22.4
21.1 | 18.1
17.9
17.4
18.2
19.3
19.7 | 18.7
18.3
18.8
19.6
20.7
20.4 | | MONTH | 11.2 | 2.9 | 6.2 | 16.7 | 1.6 | 7.9 | | | | 22.4 | 11.4 | 16.6 | # 03524550 GUEST RIVER NEAR MILLER YARD, VA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | MEAN | |-------|------|------|------|------|------|------|------|--------|------|------|----------|------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1 | 21.8 | 19.2 | 20.4 | 22.0 | 20.4 | 21.3 | 22.4 | 20.4 | 21.4 | 24.2 | 20.8 | 22.3 | | 2 | 21.7 | 18.8 | 20.2 | 22.1 | 19.7 | 21.0 | 23.5 | 20.1 | 21.6 | 23.6 | 20.1 | 21.8 | | 3 | 21.4 | 19.6 | 20.5 | 23.0 | 19.5 | 21.1 | 23.5 | 19.3 | 21.3 | | | | | 4 | 20.2 | 17.9 | 18.8 | 22.5 | 20.4 | 21.4 | 23.8 | 19.5 | 21.5 | | | | | 5 | 18.6 | 17.2 | 17.8 | 23.7 | 20.9 | 22.1 | 24.0 | 19.8 | 21.8 | | | | | 6 | 18.0 | 15.5 | 16.8 | 24.6 | 21.2 | 22.6 | 24.6 | 20.7 | 22.5 | | | | | 7 | 15.5 | 13.9 | 14.8 | 24.1 | 21.6 | 22.8 | 25.0 | 21.1 | 22.9 | | | | | 8 | 15.7 | 13.6 | 14.7 | 22.8 | 22.1 | 22.4 | 25.0 | 22.1 | 23.5 | | | | | 9 | 15.4 | 14.9 | 15.1 | 23.9 | 21.6 | 22.6 | 25.4 | 22.5 | 23.8 | | | | | 10 | 16.1 | 15.2 | 15.7 | 24.6 | 22.0 | 23.1 | 24.9 | 23.3 | 24.0 | | | | | 11 | 17.3 | 15.7 | 16.5 | 24.0 | 22.0 | 23.0 | 25.0 | 22.6 | 23.6 | | | | | 12 | 18.4 | 16.7 | 17.3 | 24.8 | 21.0 | 22.8 | 25.1 | 22.2 | 23.6 | | | | | 13 | 19.1 | 17.8 | 18.4 | 24.7 | 22.0 | 23.3 | 25.5 | 22.1 | 23.7 | | | | | 14 | 18.4 | 17.1 | 17.6 | 23.1 | 22.3 | 22.6 | 24.1 | 22.8 | 23.2 | | | | | 15 | 19.1 | 17.0 | 18.0 | 23.9 | 21.5 | 22.5 | 23.3 | 22.2 | 22.8 | | | | | 16 | 20.5 | 17.8 | 19.0 | 23.8 | 21.7 | 22.7 | 22.7 | 22.1 | 22.3 | | | | | 17 | 21.0 | 18.1 | 19.5 | 23.9 | 21.7 | 22.6 | 22.1 | 21.0 | 21.6 | | | | | 18 | 21.0 | 18.2 | 19.7 | 24.0 | 20.9 | 22.4 | 22.7 | 20.5 | 21.6 | | | | | 19 | 20.9 | 19.6 | 20.2 | 24.1 | 21.6 | 22.5 | 24.1 | 21.9 | 22.7 | | | | | 20 | 22.2 | 18.8 | 20.5 | 23.7 | 20.8 | 22.1 | 23.9 | 20.5 | 22.1 | | | | | 21 | 21.4 | 20.1 | 20.5 | 24.9 | 21.1 | 22.9 | 24.3 | 20.7 | 22.2 | | | | | 22 | 22.0 | 19.7 | 20.7 | 24.3 | 22.1 | 23.2 | 24.7 | 20.9 | 22.6 | | | | | 23 | 21.1 | 19.5 | 20.3 | 24.5 | 22.7 | 23.4 | 25.3 | 21.6 | 23.3 | | | | | 24 | 21.7 | 19.9 | 20.6 | 24.4 | 22.6 | 23.2 | 25.9 | 22.5 | 24.0 | | | | | 25 | 21.8 | 19.0 | 20.5 | 24.7 | 22.2 | 23.1 | 25.5 | 22.0 | 23.7 | | | | | 26 | 22.4 | 20.3 | 21.4 | 24.2 | 22.2 | 23.1 | 25.4 | 22.3 | 23.8 | | | | | 27 | 23.9 | 21.3 | 22.5 | 23.9 | 21.9 | 22.9 | 25.5 | 22.3 | 23.7 | | | | | 28 | 23.8 | 21.8 | 22.8 | 23.7 | 21.6 | 22.7 | 25.2 | 21.4 | 23.2 | | | | | 29 | 23.0 | 21.6 | 22.3 | 24.6 | 21.5 | 23.0 | 24.0 | 21.5 | 22.7 | | | | | 30 | 22.9 | 21.1 | 22.0 | 23.6 | 22.1 | 23.0 | 24.8 | 21.7 | 23.0 | | | | | 31 | | | | 23.3 | 21.7 | 22.7 | 24.5 | 21.2 | 22.8 | | | | | MONTH | 23.9 | 13.6 | 19.2 | 24.9 | 19.5 | 22.6 | 25.9 | 19.3 | 22.8 | | | | ## NATIONAL WATER-QUALITY ASSESSMENT PROGRAM TENNESSEE RIVER BASIN SURFACE-WATER QUALITY # 03524550 GUEST RIVER NEAR MILLER YARD, VA LOCATION.--Lat 36°52'43", long 82°24'22", Wise County, Hydrologic Unit 06010205, on left bank, 850 ft upstream from footbridge on Guest River Gorge Trail, 210 ft downstream from Lick Branch, and 1,200 ft upstream from mouth. DRAINAGE AREA. -- 100 mi². PERIOD OF RECORD.--October 1996 to present. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML)
(31501) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |-----------------------|--|--|---|--|--|--|--|--|---|--|---|---| | OCT 1997
21
NOV | 1.96 | 12 | 810 | 8.3 | 9.0 | 10.2 | 724 | 10.5 | K58 | K24 | К15 | 65 | | 19 | 2.05 | 21 | 656 | 8.3 | 2.0 | 2.0 | 726 | 13.8 | K11 | <1 | К3 | 54 | | 17 | 2.21 | 42 | 432 | 7.9 | 1.0 | .1 | 721 | 13.0 | 57 | 29 | K12 | 35 | | JAN 1998
09 | 4.04 | 713 | 226 | 7.5 | 8.0 | 8.8 | 716 | 10.5 | 4500 | 800 | 600 | 18 | | 21
FEB | 2.64 | 107 | 488 | 7.9 | .0 | 2.8 | 725 | 13.2 | 280 | 42 | 42 | 36 | | 26 | 3.03 | 30 | 412 | 8.0 | -1.0 | 5.4 | 720 | 12.0 | 530 | 180 | 140 | 34 | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | OCT 1997
21 | 33 | 51 | 5.5 | 240 | 21 | . 25 | 1.2 | 155 | 0 | 127 | 524 | <.010 | | NOV | | | | | | | | | | | | | | 19
DEC | 27 | 36 | 4.0 | 190 | 20 | .16 | .76 | 126 | 0 | 117 | 434 | <.010 | | 17
JAN 1998 | 17 | 23 | 2.5 | 110 | 17 | <.10 | 2.4 | 96 | 0 | 79 | 265 | <.010 | | 09
21 | 7.8
19 | 11
30 | 1.8
2.5 | 50
120 | 14
37 | <.10
.12 | 4.7
4.6 | 36
84 | 0 | 30
69 | 135
296 | <.010
.023 | | FEB
26 | 19 | 17 | 2.1 | 120 | 11 | <.10 | 4.9 | 56 | 0 | 46 | 256 | <.010 | | DATE | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
SUS-
PENDED
TOTAL
(MG/L
AS C)
(00689) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | | OCT 1997
21 | <.050 | <.015 | <.20 | <.20 | .038 | <.010 | .013 | 13 | 11 | 2.6 | .20 | <.003 | | NOV
19 | .612 | .210 | .21 | .14 | .026 | <.010 | .016 | 20 | 4.0 | 20 | <.20 | <.003 | | DEC
17 | .448 | <.020 | .12 | .12 | .019 | .029 | .027 | 31 | 9.5 | 1.9 | <.20 | <.003 | | JAN 1998
09 | .601 | <.020 | .23 | .17 | .272 | <.010 | <.010 | 32 | 105 | 2.5 | 1.3 | <.003 | | 21
FEB | .674 | .108 | . 25 | .19 | .029 | <.010 | .014 | 23 | 72 | 1.6 | <.20 | <.003 | | 26 | .475 | .040 | <.10 | <.10 | <.010 | <.010 | .012 | 15 | 129 | 1.4 | .20 | <.003 | < Actual value is known to be less than the value shown. K Results based on colony count outside the acceptance range (non-ideal colony count). # NATIONAL WATER-QUALITY ASSESSMENT PROGRAM TENNESSEE RIVER BASIN SURFACE-WATER QUALITY # 03524550 GUEST RIVER NEAR MILLER YARD, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) |
ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | |--|--|--|---|--|--|--|--
--|--|---|---|---| | OCT 1997
21 | <.002 | E.007 | <.002 | <.002 | <.002 | <.002 | <.004 | <.011 | <.011 | <.004 | <.002 | <.009 | | NOV
19 | <.002 | <.001 | <.002 | .0056 | <.002 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.003 | | DEC
17 | <.002 | <.001 | <.002 | <.002 | <.002 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.002 | | JAN 1998
09 | | E.003 | <.002 | <.002 | <.002 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | E.0024 | | 21
FEB | <.002 | <.001 | <.002 | <.002 | <.002 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.0024 | | 26 | <.002 | <.001 | <.002 | <.002 | <.002 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.002 | | DATE | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | | OCT 1997
21 | <.017 | <.002 | <.001 | <.006 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.004 | <.005 | | NOV
19 | <.017 | E.001 | <.001 | <.006 | <.002 | <.004 | <.003 | <.003 | E.003 | <.002 | <.004 | <.005 | | DEC
17 | <.017 | <.002 | <.001 | <.006 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.004 | <.005 | | JAN 1998
09
21 | <.017
<.017 | <.002
<.002 | <.001
<.001 | <.006
<.006 | <.002
<.002 | <.004
<.004 | <.003
<.003 | <.003
<.003 | <.004
<.004 | <.002
<.002 | <.004
<.004 | <.005
<.005 | | FEB
26 | <.017 | <.002 | <.001 | <.006 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.004 | <.005 | | | | | | | | | | | | | | | | DATE | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | | OCT 1997 | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | OCT 1997
21
NOV | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | OCT 1997
21
NOV
19
DEC | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684)
<.003 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676)
<.003 | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679)
<.007 | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669)
<.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005 | WATER
FLTRD
0.7 U
GF,
REC
(UG/L)
(82664)
<.002 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.004 | | OCT 1997
21
NOV
19
DEC
17
JAN 1998 | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 | AZIN-
PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684)
<.003
<.003 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676)
<.003
<.003 | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679)
<.007
<.004 | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669)
<.004
<.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.002
<.002 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.004
<.004 | | OCT 1997
21
NOV
19
DEC
17
JAN 1998
09 | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676)
<.003 | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679)
<.007 | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669)
<.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.002 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.004 | | OCT 1997
21
NOV
19
DEC
17
JAN 1998
09 | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.001
<.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684)
<.003
<.003 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679)
<.007
<.004
<.004 | ULATE WATER FILITRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.002
<.002
<.002 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.004
<.004
<.004 | | OCT 1997
21
NOV
19
DEC
17
JAN 1998
09
21
FEB | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007 <.004 <.004 <.004 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004
<.004
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.002
<.002
<.002
<.002 | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 | | OCT 1997 21 NOV 19 DEC 17 JAN 1998 09 21 FEB 26 DATE | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 (.002) (| AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.001
<.001
<.001
<.001
<.001
<.001
<.001
<.001
(.001
(.001)
(.001)
(.001)
(.001) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004
SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 <003 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007 <.004 <.004 <.004 <.004 <.004 TEBU-THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 GF, REC (UG/L) (82675) | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 GF, REC (UG/L) (82678) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005 | WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 SEDI-MENT, SUS-PENDED (MG/L) (80154) | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SIEVE DIAM. % FINER THAN062 MM (70331) | | OCT 1997 21 NOV 19 JAN 1998 09 21 FEB 26 DATE OCT 1997 21 NOV | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.001
<.001
<.001
<.001
<.001
<.001
<.001
<.001
<.001
<.001
<.001
<.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004
<.004
SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007
<-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 <-007 < | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.007 TERBACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.011 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007 <.004 <.004 <.004 <.004 <.004 TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) E.0285 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.007 COUNTY OF THE TENDER TEN | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 C.004 <.004 <.007 C.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.007
UG/L)
(82681)
<.002 | WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 EDI- MENT, SUS- PENDED (MG/L) (80154) | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. FINER THAN .062 MM (70331) | | OCT 1997 21 NOV 19 DEC 17 JAN 1998 09 21 FEB 26 DATE OCT 1997 21 NOV 19 DEC | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.004 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 <.007 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 E.001 E.001 E.0128 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004
<.004
SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.005 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 < | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.001 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.011 <.007 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007 <.004 <.004 <.004 <.004 <.004 <.004 COUNTIES COU | ULATE WATER FILITRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.001 COUNTY OF THE COUNT | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.006 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001 <.001 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005 | WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.004 MENT, SUS- PENDED (MG/L) (80154) | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004 SED. SIEVE DIAM. FINER THAN (70331) 54 | | OCT 1997 21 NOV 19 JAN 1998 09 21 FEB 26 DATE OCT 1997 21 NOV 19 DEC 17 JAN 1998 | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.000 CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 <.007 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 E.010 E.0169 E.0128 <.018 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.010
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.007
UG/L)
(82685)
<.007
(82685)
<.007
(82685)
<.007
(82685)
<.007
(82685)
<.007
(82685)
<.007
(82685)
 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.005
<.005
<.005 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005
<-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.001 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.011 <.007 <.007 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007 <.004 <.004 <.004 <.004 <.004 TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) E.0285 .0158 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.007 COUNTY OF THE T | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.007 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001 <.001 <.001 | METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.0002 <.0002 | WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SIEVE DIAM. % FINER THAN062 MM (70331) 54 31 | | OCT 1997 21 NOV 19 JAN 1998 09 21 FEB 26 DATE OCT 1997 21 NOV 19 DEC 17 | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 <.007 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 E.001 E.001 E.0128 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004
<.004
SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.005 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 < | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.001 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.011 <.007 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.007 <.004 <.004 <.004 <.004 <.004 <.004 COUNTIES COU | ULATE WATER FILITRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.001 COUNTY OF THE COUNT | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.006 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001 <.001 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005 | WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.004 MENT, SUS- PENDED (MG/L) (80154) | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004 SED. SIEVE DIAM. FINER THAN (70331) 54 | < Actual value is known to be less than the value shown. E Estimated. ## 03526000 COPPER CREEK NEAR GATE CITY, VA LOCATION.--Lat $36^{\circ}40^{\circ}26^{\circ}$, long $82^{\circ}33^{\circ}57^{\circ}$, Scott County, on right bank at upstream side of highway bridge, 0.2 mi upstream from Plank Camp Creek, 1.1 mi downstream from Obeys Creek, and 2.6 mi northeast of Gate City. DRAINAGE AREA. -- 106 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--September 1947 to September 1972, October 1973 to February 1996 (annual maximum only), March 1996 to September 1998 (discontinued as a continuous-record station; converted to a crest-stage partial-record station). REVISED RECORDS.--WSP 1143: 1948. WSP 1306: 1948-50(M). WSP 1556: 1951(M). GAGE.--Water-stage recorder. Datum of gage is 1,301.95 ft above sea level (Virginia Department of Transportation bench mark). Prior to Aug. 30, 1953, nonrecording gage on highway bridge at same site and datum. REMARKS.--No estimated daily discharges. Records good. Maximum discharge, $7,660 \text{ ft}^3/\text{s}$, from rating curve extended above $3,500 \text{ ft}^3/\text{s}$. Minimum gage height, 1.90 ft, Dec. 5,1969. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location. EXTREMES FOR CURRENT YEAR.--Peak discharges equal to or greater than base discharge of 1,200 ft³/s and maximum for year (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Feb. 4 | 0630 | 1,650 | 7.82 | Apr. 20 | 0345 | 1,900 | 8.22 | | Apr. 9 | 2130 | 1,240 | 7.10 | May 11 | 0645 | 1,210 | 7.03 | | Apr. 17 | 1445 | *4,880 | *11.51 | | | | | Minimum discharge, 23 ft³/s, Dec. 17, 20-21, gage height 2.01 ft. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|------|------|------|------|------|------|-------|------|------|------|------|------| | 1 | 41 | 27 | 37 | 38 | 259 | 125 | 148 | 152 | 86 | 336 | 70 | 31 | | 2 | 33 | 29 | 47 | 38 | 225 | 118 | 158 | 160 | 83 | 174 | 54 | 30 | | 3 | 31 | 31 | 45 | 36 | 384 | 110 | 146 | 171 | 84 | 138 | 47 | 31 | | 4 | 30 | 34 | 38 | 36 | 1310 | 105 | 542 | 445 | 219 | 113 | 45 | 33 | | 5 | 30 | 33 | 34 | 41 | 668 | 98 | 530 | 350 | 265 | 103 | 44 | 33 | | | | | | | | | | | | | | | | 6 | 30 | 34 | 32 | 44 | 424 | 94 | 312 | 274 | 240 | 94 | 43 | 34 | | 7 | 30 | 30 | 31 | 104 | 310 | 90 | 243 | 247 | 150 | 86 | 42 | 34 | | 8 | 30 | 27 | 29 | 668 | 268 | 99 | 209 | 256 | 120 | 82 | 42 | 35 | | 9 | 31 | 27 | 31 | 496 | 248 | 266 | 727 | 320 | 127 | 92 | 46 | 35 | | 10 | 31 | 26 | 38 | 217 | 232 | 275 | 687 | 404 | 151 | 80 | 53 | 36 | | 11 | 31 | 27 | 50 | 133 | 229 | 183 | 399 | 959 | 296 | 72 | 102 | 33 | | 12 | 31 | 27 | 53 | 101 | 247 | 150 | 292 | 592 | 185 | 69 | 66 | 32 | | 13 | 30 | 27 | 40 | 86 | 222 | 131 | 241 | 404 | 168 | 66 |
52 | 32 | | 14 | 29 | 28 | 34 | 75 | 186 | 122 | 215 | 301 | 148 | 64 | 51 | 31 | | 15 | 29 | 29 | 31 | 70 | 157 | 113 | 193 | 243 | 139 | 62 | 51 | 31 | | | | | | | | | | | | | | | | 16 | 29 | 28 | 28 | 81 | 144 | 116 | 321 | 207 | 129 | 60 | 62 | 30 | | 17 | 30 | 28 | 26 | 94 | 214 | 130 | 3560 | 182 | 111 | 59 | 130 | 30 | | 18 | 30 | 27 | 26 | 81 | 417 | 241 | 1220 | 161 | 99 | 60 | 107 | 30 | | 19 | 30 | 26 | 26 | 77 | 279 | 873 | 1210 | 146 | 99 | 59 | 69 | 29 | | 20 | 29 | 26 | 25 | 83 | 234 | 643 | 1470 | 136 | 93 | 58 | 53 | 29 | | | | | | | | | | | | | | | | 21 | 29 | 30 | 25 | 87 | 212 | 766 | 718 | 129 | 87 | 56 | 47 | 29 | | 22 | 28 | 38 | 31 | 85 | 188 | 521 | 504 | 123 | 103 | 53 | 43 | 30 | | 23 | 28 | 46 | 32 | 204 | 183 | 363 | 389 | 131 | 549 | 59 | 41 | 30 | | 24 | 28 | 39 | 35 | 238 | 197 | 275 | 309 | 145 | 248 | 60 | 39 | 28 | | 25 | 30 | 32 | 42 | 178 | 178 | 224 | 257 | 122 | 174 | 54 | 38 | 27 | | 26 | 36 | 29 | 43 | 136 | 158 | 193 | 223 | 125 | 147 | 52 | 36 | 27 | | 27 | 45 | 28 | 43 | 185 | 148 | 171 | 201 | 119 | 135 | 50 | 35 | 27 | | 28 | 44 | 27 | 43 | 483 | 136 | 157 | 186 | 105 | 118 | 48 | 34 | 27 | | 29 | 35 | 26 | 39 | 486 | | 145 | 164 | 97 | 107 | 47 | 33 | 28 | | 30 | 30 | 27 | 39 | 398 | | 134 | 156 | 92 | 156 | 46 | 33 | 29 | | 31 | 27 | | 38 | 324 | | 126 | | 88 | | 59 | 32 | | | | | | | | | | | | | | | | | TOTAL | 975 | 893 | 1111 | 5403 | 8057 | 7157 | 15930 | 7386 | 4816 | 2511 | 1640 | 921 | | MEAN | 31.5 | 29.8 | 35.8 | 174 | 288 | 231 | 531 | 238 | 161 | 81.0 | 52.9 | 30.7 | | MAX | 45 | 46 | 53 | 668 | 1310 | 873 | 3560 | 959 | 549 | 336 | 130 | 36 | | MIN | 27 | 26 | 25 | 36 | 136 | 90 | 146 | 88 | 83 | 46 | 32 | 27 | | CFSM | .30 | .28 | . 34 | 1.64 | 2.71 | 2.18 | 5.01 | 2.25 | 1.51 | .76 | .50 | . 29 | | IN. | .34 | .31 | .39 | 1.90 | 2.83 | 2.51 | 5.59 | 2.59 | 1.69 | .88 | .58 | .32 | # 03526000 COPPER CREEK NEAR GATE CITY, VA--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1948 - 1972, 1996**, 1997 - 1998 BY WATER YEAR (WY) | | | | | | | | | | | | • | | |---------|------------------|-----------|-------|-----------|-----------|------|---------|------------|------|----------|-----------|---------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 47.5 | 74.9 | 151 | 217 | 297 | 288 | 223 | 169 | 88.6 | 73.5 | 58.8 | 46.0 | | MAX | 184 | 182 | 327 | 559 | 646 | 784 | 531 | 539 | 228 | 200 | 151 | 124 | | (WY) | 1972 | 1960 | 1997 | 1972 | 1957 | 1963 | 1998 | 1958 | 1950 | 1949 | 1996 | 1966 | | MIN | 21.9 | 21.1 | 28.2 | 30.1 | 71.0 | 92.7 | 78.6 | 54.7 | 35.8 | 28.9 | 26.4 | 19.6 | | (WY) | 1964 | 1954 | 1966 | 1966 | 1954 | 1970 | 1963 | 1964 | 1964 | 1955 | 1953 | 1955 | | | | | | | | | | | | | | | | SUMMARY | STATIST: | ICS | FOR : | 1997 CALE | NDAR YEAR | F | OR 1998 | WATER YEAR | | WATER YE | CARS 1948 | - 1972 | | | | | | | | | | | | | 1996 | k * | | | | | | | | | | | | | 1997 | - 1998 | | ANNUAL | TOTAT | | | 50712 | | | 56800 | | | | | | | ANNUAL | | | | 139 | | | 156 | | | 143 | | | | | MEAN
ANNUAL I | ME AN | | 139 | | | 130 | | | 208 | | 1950 | | | ANNUAL M | | | | | | | | | 80.7 | | 1954 | | | DAILY ME | | | 1800 | Mar 3 | | 3560 | Apr 17 | | 4580 | Moss | 1954 | | | DAILY MEA | | | 25 | aDec 20 | | 25 | aDec 20 | | 10 | | 9 1956 | | | | Y MINIMUM | | 27 | Dec 15 | | 27 | Dec 15 | | 14 | | 12 1956 | | | CANEOUS PI | | | 21 | Dec 15 | | 4880 | Apr 17 | | b6940 | | 12 1950 | | | ANEOUS PI | | | | | | | .51 Apr 17 | | 13.14 | | 12 1963 | | | ANEOUS PI | | | | | | 23 | - | | d3.6 | | 15 1956 | | | RUNOFF (| | | 1.3 | 1 | | 1. | | | 1.35 | | 13 1930 | | | RUNOFF (| | | 17.8 | | | 19 | | | 18.32 | | | | | CENT EXCE | | | 314 | U | | 322 | | | 300 | | | | | CENT EXCE | | | 83 | | | 81 | | | 75 | | | | | CENT EXCE | | | 30 | | | 29 | | | 28 | | | | JU PERC | TEINI EVCEI | טעב | | 30 | | | 29 | | | 20 | | | ^{**} Partial water year. a Also Dec. 21, 1997. b Higher maximum occurred during period of non-continuous record; 7,660 ft³/s, Apr. 5, 1977, gage height, 13.57 ft. c Also Dec. 20-21, 1997. d Result of freezeup. # 03526000 COPPER CREEK NEAR GATE CITY, VA--Continued WATER-QUALITY RECORDS PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1996 to September 1998. WATER TEMPERATURE: October 1996 to September 1998. INSTRUMENTATION. -- Water-temperature and specific conductance recorder since October 1996. REMARKS.--Interruption in record due to conductance probe being out of the water. Records represent specific conductance within 5 microsiemens and water temperature within $0.5^{\circ}C$ at sensors. EXTREMES FOR PERIOD OF RECORD .-- SPECIFIC CONDUCTANCE: Maximum recorded, 401 microsiemens, Oct. 5, 1996; minimum recorded 188 microsiemens, Apr. 17, 1998. WATER TEMPERATURE: Maximum recorded, 25.9°C, July 21, 1997; minimum recorded, 0.0°C, Dec. 17, 1997. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum recorded, 386 microsiemens, Jan. 7; minimum recorded 188 microsiemens, Apr. 17. WATER TEMPERATURE: Maximum recorded, 25.3°C, July 21; minimum recorded, 0.0°C, Dec. 17. SPECIFIC CONDUCTANCE, US/CM @ 25 DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | MEAN | |-------|-----|---------|------|-----|---------|------|-----|---------|------|-----|---------|------| | | | OCTOBER | | NO | OVEMBER | | DI | ECEMBER | | | JANUARY | | | 1 | 341 | 335 | 339 | 336 | 333 | 335 | 323 | 315 | 320 | 338 | 334 | 336 | | 2 | 342 | 336 | 340 | 336 | 329 | 333 | 326 | 318 | 322 | 341 | 337 | 339 | | 3 | 347 | 340 | 344 | 332 | 328 | 330 | 323 | 319 | 321 | 347 | 339 | 343 | | 4 | 350 | 347 | 349 | 331 | 328 | 329 | 323 | 318 | 321 | 344 | 337 | 341 | | 5 | 352 | 349 | 350 | 330 | 327 | 328 | 329 | 322 | 327 | 342 | 337 | 340 | | 6 | 351 | 347 | 349 | 330 | 326 | 328 | 331 | 329 | 330 | 352 | 342 | 346 | | 7 | 351 | 347 | 349 | 330 | 327 | 329 | 333 | 329 | 331 | 386 | 348 | 361 | | 8 | 348 | 345 | 347 | 332 | 330 | 331 | 334 | 329 | 331 | 374 | 298 | 336 | | 9 | 347 | 344 | 345 | 336 | 332 | 335 | 337 | 324 | 329 | 320 | 297 | 309 | | 10 | 346 | 341 | 344 | 338 | 334 | 336 | 329 | 325 | 326 | 334 | 318 | 327 | | 11 | 346 | 341 | 344 | 335 | 333 | 334 | 331 | 327 | 329 | 334 | 330 | 332 | | 12 | 345 | 340 | 343 | 335 | 332 | 334 | 332 | 328 | 330 | 340 | 333 | 336 | | 13 | 345 | 342 | 344 | 333 | 328 | 331 | 336 | 332 | 334 | 342 | 332 | 338 | | 14 | 346 | 344 | 345 | 328 | 323 | 326 | 342 | 336 | 340 | 337 | 331 | 334 | | 15 | 345 | 342 | 344 | 327 | 325 | 326 | 345 | 342 | 344 | 337 | 332 | 335 | | 16 | 345 | 342 | 343 | 327 | 324 | 326 | 345 | 341 | 343 | 344 | 333 | 338 | | 17 | 345 | 342 | 344 | 326 | 323 | 325 | 343 | 335 | 340 | 351 | 338 | 346 | | 18 | 344 | 340 | 342 | 327 | 324 | 325 | 338 | 333 | 336 | 351 | 344 | 346 | | 19 | 342 | 339 | 341 | 326 | 322 | 324 | 334 | 329 | 332 | 346 | 340 | 343 | | 20 | 341 | 337 | 339 | 326 | 323 | 325 | 332 | 325 | 329 | 345 | 340 | 342 | | 21 | 339 | 337 | 338 | 326 | 314 | 320 | 328 | 321 | 325 | 345 | 341 | 343 | | 22 | 338 | 336 | 337 | 322 | 317 | 319 | 322 | 312 | 316 | 347 | 338 | 343 | | 23 | 337 | 335 | 336 | 324 | 320 | 322 | 319 | 315 | 317 | 349 | 338 | 343 | | 24 | 337 | 333 | 336 | 326 | 323 | 324 | 318 | 312 | 316 | 354 | 347 | 351 | | 25 | 336 | 331 | 334 | 328 | 325 | 327 | 321 | 315 | 319 | 357 | 351 | 355 | | 26 | 334 | 320 | 329 | 332 | 327 | 330 | 324 | 319 | 320 | 357 | 348 | 354 | | 27 | 326 | 319 | 324 | 335 | 332 | 333 | 326 | 321 | 323 | 350 | 335 | 344 | | 28 | 326 | 324 | 325 | 336 | 332 | 334 | 329 | 325 | 327 | 335 | 326 | 332 | | 29 | 329 | 324 | 327 | 334 | 330 | 332 | 334 | 329 | 331 | 346 | 326 | 339 | | 30 | 331 | 329 | 330 | 333 | 321 | 328 | 348 | 332 | 338 | 350 | 340 | 347 | | 31 | 333 | 330 | 332 | | | | 348 | 334 | 337 | 356 | 340 | 349 | | MONTH | 352 | 319 | 340 | 338 | 314 | 329 | 348 | 312 | 329 | 386 | 297 | 341 | # 03526000 COPPER CREEK NEAR GATE CITY, VA--Continued SPECIFIC CONDUCTANCE, US/CM @ 25 DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | MEAN | |---|---|--|--|---|---|---|---|---|---|--|---|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 358
357
357
299
291 | 349
351
299
264
274 | 354
355
341
274
281 |
310
311
310
312
312 | 298
298
300
304
300 | 305
305
305
308
307 | 297
309
315
320
318 | 283
297
296
290
303 | 290
303
306
306
310 | 298
297
312
312
315 | 288
283
281
281
299 | 292
291
299
302
307 | | 6
7
8
9
10 | 291
298
303
308
308 | 287
291
298
301
302 | 289
295
301
304
305 | 312
315
311
321
326 | 305
305
299
295
316 | 309
310
305
305
321 | 311
320
331
330
297 | 296
300
317
269
268 | 301
309
324
301
284 | 312
310
311
320
315 | 298
295
298
291
298 | 307
303
305
307
309 | | 11
12
13
14
15 | 308
306
306
303
302 | 299
301
297
294
296 | 304
304
302
299
299 | 321
320
321
320
318 | 314
314
312
308
306 | 317
317
317
314
313 | 303
304
294
301
299 | 297
284
285
290
292 | 299
294
290
296
295 | 313
302
300
300
302 | 291
288
284
286
286 | 300
296
294
294
293 | | 16
17
18
19
20 | 303
304
305
305
308 | 297
291
294
301
304 | 300
299
298
304
306 | 320
314
316
293
286 | 302
307
251
273
273 | 308
310
301
279
281 | 318
257
264
266
262 | 257
188
242
251
259 | 304
225
255
259
261 | 303
304
301
 | 287
287
287
 | 293
297
296
 | | 21
22
23
24
25 | 311
311
309
311
316 | 302
302
304
306
309 | 307
307
307
309
312 | 285
286
289
291
294 | 279
282
284
286
290 | 283
284
287
289
292 | 268
274
277
280
285 | 261
268
274
277
280 | 264
271
275
279
283 | 304
306
311 |
292
298
302 | 299
302
307 | | 26
27
28
29
30
31 | 316
314
314
 | 307
304
302
 | 312
310
308
 | 297
298
302
302
304
304 | 289
288
286
287
285
284 | 294
295
295
295
295
295 | 288
291
293
293
295 | 282
285
285
284
286 | 286
288
290
289
290 | 311
313
318
321
321
322 | 299
306
310
308
306
309 | 304
309
313
316
314
316 | | MONTH | 358 | 264 | 307 | 326 | 251 | 301 | 331 | 188 | 288 | | | | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX
322
317
318
304
311 | | | 325
334
342
343
340 | JULY | | | AUGUST | | | SEPTEMBE | | | 1
2
3
4 | 322
317
318
304 | JUNE
306
307
291
231 | 315
312
311
287 | 325
334
342
343 | JULY
279
301
322
336 | 302
325
339
339
337 | 321
326
328
336
342 | 312
313
319
327 | 316
321
323
333
339 | 347
347
345
343
346 | 344
343
338
336
336 | 346
345
343
341 | | 1
2
3
4
5
6
7
8 | 322
317
318
304
311
330
334
335
333 | JUNE 306 307 291 231 281 311 328 326 310 | 315
312
311
287
299
325
331
331
325 | 325
334
342
343
340
335
333
337
339 | JULY 279 301 322 336 333 328 328 328 330 323 | 302
325
339
339
337
333
331
334
334 | 321
326
328
336
342
339
343
345
339 | 312
313
319
327
336
332
331
319
304 | 316
321
323
333
339 | 347
347
345
343 | 344
343
338
336
336 | 346
345
343
341
342
336
331
328
329 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 322
317
318
304
311
330
334
335
333
335
347
341
341
339 | JUNE 306 307 291 231 281 311 328 326 310 324 299 319 324 330 | 315
312
311
287
299
325
331
331
325
330
322
334
334
335 | 325
334
342
343
340
335
337
337
339
336
341
341
343 | JULY 279 301 322 336 333 328 328 329 330 323 322 334 331 331 332 | 302
325
339
339
337
331
334
332
337
337
337
336
338 | 321
326
328
336
342
339
343
345
339
325
321
331
336
332 | 312
313
319
327
336
332
331
319
304
301
315
320
313
313 | 316
321
323
333
339
337
337
334
327
308
319
326
329
325 | 347
347
345
343
346
340
335
331
333
332
334
334
335
337 | 344
343
343
336
336
336
328
325
327
328
330
331
331
332 | 346
345
343
341
342
336
331
328
329
329
331
333
333
333
333 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 322
317
318
304
311
330
334
335
333
335
347
341
341
339
333
333
331
332
331 | JUNE 306 307 291 231 281 311 328 326 310 324 299 319 324 330 324 320 322 317 | 315
312
311
287
299
325
331
331
325
330
322
334
334
335
328
329
327
328 | 325
334
342
343
340
335
337
339
336
341
341
343
343
338
338 | JULY 279 301 322 336 333 328 328 329 334 331 331 332 330 329 326 326 310 | 302
325
339
337
331
334
334
332
337
337
336
338
335
331
331
331
330
323 | 321
326
328
336
342
339
343
345
339
325
321
331
336
332
344
338
332
348 | 312
313
319
327
336
332
331
304
301
315
320
313
311
328
319
308 | 316
321
323
333
339
337
337
334
327
308
319
326
329
325
338
329
319
343
357 | 347
347
345
343
346
340
335
331
332
334
334
335
337
336
338
337
340
338 | 344
343
338
336
336
332
328
325
325
327
328
330
331
332
332
332
333
331
332
333
333 | 346
345
343
341
342
336
331
328
329
329
329
331
333
333
333
335
335
337 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 322
317
318
304
311
330
334
335
337
347
341
341
339
333
331
329
329
331
329 | JUNE 306 307 291 231 281 311 328 326 310 324 299 319 324 330 324 320 322 317 320 321 282 251 299 | 315
312
311
287
299
325
331
325
330
322
334
335
328
329
327
328
324
324
325
320
283
321 | 325
334
342
343
340
335
337
339
336
341
341
343
343
338
334
337
329
329
329 | JULY 279 301 322 336 333 328 328 329 331 331 332 330 329 326 326 310 319 327 328 322 326 | 302
325
339
337
331
334
332
337
337
336
338
335
331
331
332
323
326
329
331 | 321
328
328
336
342
339
343
345
339
325
321
331
336
332
344
338
332
344
338
332
345
359
358 | 312
313
319
327
336
332
331
304
301
315
320
311
328
319
308
317
357 | 316
321
323
333
339
337
337
337
308
319
326
329
325
338
329
319
343
357
360 | 347
347
345
343
346
340
335
331
332
334
335
337
336
338
337
340
340
340
341
341
341
341 | 344 343 338 336 336 332 328 325 327 328 330 331 332 332 333 331 335 336 335 336 336 336 337 | 346
345
343
341
342
336
331
329
329
329
331
333
333
335
334
335
337
337
337
338
338
338
338
338 | # 03526000 COPPER CREEK NEAR GATE CITY, VA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN
OCTOBER | MEAN | MAX | MIN
IOVEMBER | MEAN | MAX | MIN
ECEMBER | MEAN | MAX | MIN | MEAN | |----------------------------------|---|--|--|------------------------------------|---|--|--|--|--------------------------------------|--|--|--| | 1
2
3
4
5 | 17.0
15.6
15.1
16.0
16.9 | 15.1
13.0
11.9
12.7
13.8 | 16.1
14.4
13.7
14.4
15.3 | 11.7
11.8
10.7
9.8
8.1 | 9.7
10.6
9.3
7.3
5.3 | 10.6
11.3
10.0
8.6
6.7 | 9.6
6.9
7.8
9.0
8.1 | | 8.9
5.8
6.7
8.4
6.4 | 1.5
.7
2.1
3.4
5.8 | .1
.1
.1
1.3
2.1 | .3
.2
1.0
2.3
3.7 | | 6
7
8
9
10 | 17.1
17.2
17.6
17.9
17.7 | 14.2
14.2
14.8
15.0
16.6 | 15.7
15.8
16.3
16.6
17.2 | 7.6
9.0
9.0
9.0 | 6.2
7.3
8.4
8.1
7.8 | 6.9
8.1
8.7
8.5
8.4 | 4.9
2.8
2.6
4.6
6.8 | 2.7
2.1
1.1
2.6
4.6 | 3.6
2.5
2.0
3.6
5.5 | 7.3
10.0
12.1
11.9
9.1 | 5.8
7.2
10.0
9.1
6.9 | 6.4
8.2
11.2
10.8
7.8 | | 11
12
13
14
15 | 19.6
18.9
18.8
18.0
14.6 |
17.3
16.3
16.0
14.6
11.6 | 18.2
17.7
17.5
16.4
13.1 | 8.9
8.5
8.3
8.8
7.9 | 8.3
7.2
6.6
7.9
5.7 | 8.6
7.9
7.4
8.3
6.9 | 6.1
5.5
5.1
3.6
2.1 | 5.3
4.7
3.6
1.9 | 5.6
5.2
4.5
2.6
1.3 | 7.1
8.0
8.7
7.8
7.8 | 6.1
6.9
7.8
5.8
7.1 | 6.6
7.3
8.1
6.8
7.4 | | 16
17
18
19
20 | 13.2
12.8
13.9
14.1
13.0 | 10.2
11.9
11.9
12.5
10.7 | 11.9
12.4
12.9
13.3
12.0 | 5.7
4.9
3.7
5.2
4.9 | 4.5
3.1
1.5
2.8
2.3 | 5.1
4.0
2.8
3.8
3.7 | 1.8
2.0
2.2
2.4
3.2 | .1
.0
.2
.4 | 1.0
1.1
1.3
1.5
2.0 | 8.3
8.0
6.7
6.6
5.9 | 7.7
6.7
5.2
5.9
4.2 | 8.0
7.4
6.1
6.2
5.0 | | 21
22
23
24
25 | 12.5
11.7
10.1
9.3
13.4 | 10.6
10.0
6.7
7.5
9.3 | 11.2
10.8
8.4
8.3
11.3 | 6.0
8.5
8.8
7.2
4.7 | 3.9
6.0
7.2
4.7
2.4 | 4.6
7.4
8.0
5.8
3.7 | 5.0
7.3
7.9
7.2
7.7 | 2.4
5.0
6.6
6.3
6.4 | 3.5
6.1
7.1
6.7
6.9 | 5.8
7.2
8.7
8.8
7.6 | 3.7
5.6
7.2
7.6
6.1 | 4.7
6.2
8.0
8.4
7.0 | | 26
27
28
29
30
31 | 14.1
14.0
10.8
10.0
9.8
10.1 | 13.0
10.8
8.7
7.2
6.6
7.0 | 13.5
12.4
9.9
8.7
8.3
8.6 | 4.5
5.0
5.7
6.7
9.8 | 2.7
3.0
3.3
4.7
6.7 | 3.6
4.1
4.5
5.6
8.3 | 7.5
6.7
5.1
3.9
3.5
2.4 | 6.3
4.8
3.9
2.3
2.4 | 6.8
5.6
4.5
3.1
3.0 | 6.8
5.8
7.4
8.2
8.5
8.2 | 5.1
4.2
4.2
6.6
7.4
7.2 | 5.9
5.1
6.1
7.4
7.9
7.7 | | MONTH | 19.6 | 6.6 | 13.3 | 11.8 | 1.5 | 6.7 | 9.6 | .0 | 4.3 | 12.1 | .1 | 6.3 | | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1
2
3
4
5 | 7.2
7.7
8.5
8.5
8.3 | 5.4
6.1
7.7
8.0
8.0 | 6.4
6.9
8.0
8.1
8.1 | 11.9
10.9
9.0
7.9
9.6 | 10.2
9.0
7.2
6.5
6.3 | 11.0
9.9
7.9
7.0
7.7 | 18.2
17.5
15.0
13.3
13.2 | 15.8
13.4
12.4
11.1
10.1 | 17.0
15.4
13.5
12.1
11.4 | 15.8
15.1
15.6
13.9
14.8 | 14.4
13.6
13.6
13.1
12.3 | 15.0
14.4
14.4
13.5
13.5 | | 6
7
8
9
10 | 8.6
9.0
8.7
9.4
9.1 | 7.8
7.8
7.8
8.0
7.5 | 8.2
8.4
8.3
8.6
8.4 | 9.2
10.5
12.8
12.4
9.9 | 7.3
8.1
10.1
9.9
6.5 | 8.2
9.3
11.4
11.5
8.0 | 14.1
14.8
16.4
15.4
12.8 | 9.9
10.9
12.9
12.8
10.8 | 11.9
12.8
14.5
14.1
11.7 | 16.4
15.8
15.3
16.1
15.6 | 12.6
14.7
14.6
14.3 | 14.5
15.3
15.0
15.1
14.5 | | 11
12
13
14
15 | 9.4
9.4
8.3
9.0
8.2 | 8.1
8.3
7.8
7.2
5.5 | 8.7
8.8
8.1
7.9
6.9 | 6.7
6.9
6.3
8.6
9.6 | 5.0
3.6
2.9
3.9
5.1 | 5.9
5.1
4.6
6.0
7.2 | 13.7
14.7
14.8
15.4
15.5 | 10.0
10.3
11.1
13.3
12.9 | 11.5
12.4
13.0
14.1
14.1 | 15.1
15.7
17.4
18.9
19.9 | 13.7
13.3
13.5
15.3
16.4 | 14.2
14.4
15.3
17.0
18.1 | | 16
17
18
19
20 | 8.7
10.5
10.3
9.5
9.1 | 7.1
8.5
9.4
9.1
8.7 | 7.9
9.3
9.9
9.3
8.9 | 9.1
9.9
10.8
12.6
12.5 | 7.1
7.7
8.8
10.8
11.1 | 8.1
8.8
9.7
11.6
11.7 | 14.9
13.7
13.6
12.9
13.7 | 13.5
12.9
12.6
12.5
12.0 | 14.1
13.3
13.0
12.7
12.8 | 19.4
21.1
20.8
21.0
21.8 | 17.4
17.7
16.7
16.5
17.9 | 18.5
19.2
18.7
18.7
19.7 | | 21
22
23
24
25 | 9.5
9.3
9.1
8.7 | 8.3
7.2
8.5
7.4 | 8.9
8.3
8.9
8.1 | 11.5
9.4
10.1
10.9 | 9.3
8.6
7.3
8.7 | 10.5
9.0
8.7
9.7 | 13.7
13.1
13.6
14.4 | 11.8
12.3
11.7
11.5 | 12.8
12.6
12.6
12.9 | 22.0
20.7
19.4
20.5 | 18.7
18.4
17.9
17.7 | 20.2
19.7
18.5
18.9 | | | 9.8 | 6.5 | 8.1 | 10.2 | 8.6 | 9.4 | 15.4 | 11.4 | 13.4 | 21.0 | 18.6 | 19.8 | | 26
27
28
29
30
31 | | | | | 8.4
11.3
13.1
14.0
14.1
15.2 | 10.8
13.6
15.2
16.0
16.4
16.9 | 15.4
16.7
15.5
15.3
15.6 | 11.4
13.4
13.4
11.9
13.1
14.2 | 14.9
14.4
13.6
14.3
14.9 | 20.9
20.4
22.3
22.8
23.8
23.4 | 18.6
19.0
18.3
18.7
19.7
20.5 | 19.8
19.6
20.0
20.7
21.6
22.0 | # 03526000 COPPER CREEK NEAR GATE CITY, VA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DAY | MAX | MIN | MEAN | |-------|--------------|--------------|--------------|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1 2 | 23.8
21.9 | 20.5
19.3 | 22.0
20.7 | 20.3 | 19.2
17.9 | 19.7
19.0 | 23.1
23.2 | 19.8
19.5 | 21.4
21.4 | 23.1
22.4 | 20.0
19.1 | 21.6
20.9 | | 3 | 22.4 | 19.1 | 20.7 | 21.6 | 18.0 | 19.6 | 22.9 | 18.8 | 20.9 | 21.8 | 19.5 | 20.5 | | 4 | 20.6 | 17.6 | 19.1 | 21.1 | 19.2 | 20.1 | 22.9 | 18.7 | 20.8 | 22.5 | 19.2 | 20.8 | | 5 | 18.8 | 17.1 | 17.8 | 22.5 | 19.6 | 20.9 | 22.8 | 18.8 | 20.9 | 23.3 | 20.2 | 21.8 | | 6 | 18.2 | 16.2 | 17.4 | 23.0 | 19.7 | 21.3 | 23.7 | 19.7 | 21.7 | 22.6 | 20.0 | 21.6 | | 7 | 16.9 | 14.5 | 15.7 | 22.8 | 20.0 | 21.5 | 23.5 | 20.3 | 22.1 | 23.3 | 20.3 | 21.9 | | 8 | 16.8 | 14.2 | 15.6 | 22.2 | 21.1 | 21.7 | 24.3 | 21.4 | 22.8 | 22.7 | 19.8 | 21.4 | | 9 | 16.3 | 15.5 | 15.8 | 23.0 | 21.0 | 21.9 | 23.8 | 21.6 | 22.8 | 19.8 | 16.3 | 17.8 | | 10 | 16.4 | 15.6 | 16.0 | 24.1 | 21.2 | 22.5 | 24.8 | 21.9 | 23.2 | 18.3 | 14.6 | 16.6 | | 11 | 18.4 | 16.0 | 17.1 | 23.7 | 20.6 | 22.2 | 24.5 | 22.0 | 23.3 | 18.8 | 15.1 | 17.1 | | 12 | 19.2 | 17.4 | 18.2 | 24.3 | 20.1 | 22.1 | 24.5 | 21.5 | 23.0 | 19.9 | 16.2 | 18.1 | | 13 | 20.8 | 17.9 | 19.1 | 24.7 | 21.2 | 22.9 | 24.8 | 21.4 | 23.1 | 20.9 | 17.2 | 19.1 | | 14 | 19.2 | 17.6 | 18.4 | 23.9 | 21.9 | 22.5 | 23.7 | 21.8 | 22.4 | 21.8 | 18.3 | 20.1 | | 15 | 20.5 | 17.5 | 18.8 | 23.2 | 20.5 | 21.8 | 22.9 | 21.2 | 22.0 | 21.9 | 18.9 | 20.6 | | 16 | 21.2 | 18.1 | 19.6 | 23.6 | 20.7 | 22.2 | 22.4 | 21.3 | 21.8 | 22.2 | 19.8 | 21.2 | | 17 | 21.9 | 17.9 | 19.8 | 23.9 | 21.2 | 22.5 | 22.2 | 20.0 | 21.3 | 22.7 | 20.0 | 21.4 | | 18 | 22.2 | 18.2 | 20.3 | 24.1 | 20.2 | 22.1 | 23.7 | 20.8 | 22.1 | 22.8 | 20.5 | 21.8 | | 19 | 21.6 | 19.7 | 20.6 | 23.1 | 21.0 | 22.0 | 24.4 | 21.6 | 22.8 | 23.0 | 20.4 | 21.8 | | 20 | 23.4 | 19.4 | 21.2 | 23.4 | 20.5 | 21.8 | 23.6 | 20.1 | 21.9 | 23.1 | 20.3 | 21.8 | | 21 | 22.2 | 20.0 | 20.8 | 25.3 | 20.8 | 22.9 | 23.7 | 20.1 | 21.9 | 22.6 | 21.0 | 21.7 | | 22 | 23.6 | 19.6 | 21.2 | 25.0 | 21.8 | 23.4 | 24.1 | 20.5 | 22.3 | 22.8 | 20.9 | 21.8 | | 23 | 19.8 | 18.2 | 18.9 | 24.3 | 22.3 | 23.1 | 24.7 | 21.1 | 22.9 | 22.0 | 19.7 | 20.7 | | 24 | 20.7 | 18.1 | 19.2 | 23.9 | 22.0 | 22.8 | 25.0 | 21.8 | 23.4 | 19.7 | 16.7 | 18.4 | | 25 | 21.6 | 18.2 | 19.8 | 23.8 | 21.8 | 22.8 | 24.9 | 21.6 | 23.4 | 20.2 | 17.4 | 18.8 | | 26 | 22.4 | 19.8 | 21.0 | 23.8 | 21.4 | 22.6 | 24.6 | 21.7 | 23.3 | 21.5 | 18.2 | 19.8 | | 27 | 23.5 | 20.3 | 21.6 | 23.1 | 21.2 | 22.2 | 24.5 | 21.5 | 23.1 | 21.8 | 18.5 | 20.3 | | 28 | 23.3 | 20.6 | 21.8 | 24.5 | 21.2 | 22.7 | 23.9 | 20.5 | 22.4 | 22.0 | 19.7 | 21.0 | | 29 | 22.4 | 20.9 | 21.5 | 24.9 | 21.3 | 23.1 | 23.2 | 20.5 | 21.9 | 21.6 | 19.4 | 20.7 | | 30 | 22.5 | 19.5 | 20.9 | 24.0 | 21.5 | 22.4 | 24.1 | 21.0 | 22.5 | 22.7 | 20.1 | 21.4 | | 31 | | | | 22.6 | 21.6 | 22.0 | 23.4 | 20.6 | 22.2 | | | | | MONTH | 23.8 | 14.2 | 19.4 | 25.3 | 17.9 | 21.9 | 25.0 | 18.7 | 22.3 | 23.3 | 14.6 | 20.4 | | YEAR | 25.3 | .0 | 13.7 | | | | | | | | | | ## NATIONAL WATER-QUALITY ASSESSMENT PROGRAM TENNESSEE RIVER BASIN SURFACE-WATER QUALITY # 03526000 COPPER CREEK NEAR GATE CITY, VA $\label{location.--Lat 36°40'26", long 82°33'57", Scott County, on right bank at upstream side of highway bridge, 0.2 minupstream from Plank Camp Creek, 1.1 minupstream from Obeys Creek, and 2.6 min ortheast of Gate City.$ DRAINAGE AREA. -- 106 mi². PERIOD OF RECORD: --October 1996 to present. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML)
(31501) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |-----------------------------|--|--|---|--|---|--|---|--|---
--|---|---| | OCT 1997
20 | 2.01 | 29 | 341 | 8.2 | 6.0 | 10.6 | 727 | 9.8 | 450 | 120 | 110 | 38 | | NOV
18 | 2.08 | 28 | 327 | 8.1 | -3.5 | 1.3 | 731 | 13.6 | 150 | 78 | 53 | 42 | | DEC
16 | 2.11 | 32 | 345 | 8.3 | -3.0 | 2 | 728 | 12.6 | 86 | К35 | 33 | 45 | | JAN 1998
09
20
FEB | 4.68 | 484
81 | 305
344 | 8.1
8.3 | 7.0
-1.0 | 10.8
4.1 | 717
726 | 9.1
11.8 | 5400
170 | 2300
K52 | 2400
K33 | 44
47 | | 04
25 | 7.72
3.26 | 1590
182 | 264
315 | 8.0
8.3 | 4.0 | 7.8
6.3 | 712
726 | 10.4
11.7 | 3600
K90 | 2900
70 | 2100
K10 | 40
42 | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | OCT 1997
20
NOV | 19 | 2.1 | 2.2 | 4.7 | 3.8 | <.10 | 6.7 | 222 | 0 | 182 | 196 | <.010 | | 18
DEC | 18 | 2.3 | 1.6 | 5.8 | 4.4 | <.10 | 4.9 | 157 | 4 | 135 | 191 | <.010 | | 16
JAN 1998 | 17 | 3.2 | 1.4 | 8.1 | 6.5 | <.10 | 2.7 | 210 | 0 | 172 | 196 | .020 | | 09
20
FEB | 9.2
14 | 3.7
3.5 | 1.9
1.4 | 10
9.4 | 9.1
7.7 | <.10
.10 | 5.7
4.2 | 150
242 | 0
1 | 123
201 | 185
208 | <.010
<.010 | | 04
25 | 9.1
13 | 2.2 | 1.6
1.2 | 7.9
6.9 | 5.2
5.7 | <.10
<.10 | 5.2
4.8 | 170
181 | 1
6 | 139
158 | 153
177 | <.010
<.010 | | DATE | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
SUS-
PENDED
TOTAL
(MG/L
AS C)
(00689) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | | OCT 1997
20 | .439 | .044 | <.20 | <.20 | <.010 | <.010 | .010 | 5.0 | 3.5 | 1.8 | .40 | <.003 | | NOV
18 | .649 | <.020 | <.10 | <.10 | <.010 | <.010 | .020 | 5.9 | 1.3 | 1.1 | .20 | <.003 | | DEC
16 | .785 | <.020 | <.10 | <.10 | .012 | <.010 | .015 | <10 | <4.0 | 1.9 | .30 | <.003 | | JAN 1998
09
20 | 1.79
1.31 | <.020
<.020 | .79
<.10 | .15
<.10 | .095 | <.010
<.010 | .012
<.010 | 20
<10 | <4.0
<4.0 | 2.9
1.2 | 3.0
<.20 | <.003
<.003 | | 04
25 | 1.32
1.31 | <.020
<.020 | .68
<.10 | .11
<.10 | .118
<.010 | .017
<.010 | .023 | <10
<10 | <4.0
<4.0 | 3.0 | 2.7 | <.003
<.003 | < Actual value is known to be less than the value shown. K Results based on colony count outside the acceptance range (non-ideal colony count). ## NATIONAL WATER-QUALITY ASSESSMENT PROGRAM TENNESSEE RIVER BASIN SURFACE-WATER QUALITY # 03526000 COPPER CREEK NEAR GATE CITY, VA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | |--|--|--|---|--
--|--|---|---|--|--|--|--| | OCT 1997
20 | <.002 | E.008 | <.002 | <.002 | <.002 | <.002 | <.004 | <.009 | <.011 | <.004 | <.002 | E.0131 | | NOV
18 | <.002 | .005 | <.002 | <.002 | <.002 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | E.0033 | | DEC
16
JAN 1998 | <.002 | .005 | <.002 | <.002 | <.002 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | E.0055 | | 09
20
FEB | <.002
<.002 | E.004 | <.002
<.002 | <.002
<.002 | <.002
<.002 | <.002
<.002 | <.004
<.004 | <.003
<.003 | <.003
<.003 | <.004
<.004 | <.002
<.002 | E.0032
E.0052 | | 04
25 | <.002
<.002 | E.003
.005 | <.002
<.002 | <.002
<.002 | <.002
<.002 | <.002
<.002 | <.004
<.004 | <.003
<.003 | <.003
<.003 | <.004
<.004 | <.002
<.002 | E.0025
E.0042 | | DATE | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | | OCT 1997
20 | <.017 | <.002 | <.001 | <.006 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.004 | <.005 | | NOV
18 | <.017 | <.002 | <.001 | <.006 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.004 | <.005 | | DEC
16
JAN 1998 | <.017 | <.002 | <.001 | <.006 | <.002 | <.004 | <.003 | <.003 | <.004 | <.002 | <.004 | <.005 | | 09
20
FEB | <.017
<.017 | <.002
<.002 | <.001
<.001 | <.006
<.006 | <.002
<.002 | <.004
<.004 | <.003
<.003 | <.003
<.003 | <.004
<.004 | <.002
<.002 | <.004
<.004 | <.005
<.005 | | 04 | <.017
<.017 | <.002
<.002 | <.001
<.001 | <.006
<.006 | <.002
<.002 | <.004
<.004 | <.003
<.003 | <.003
<.003 | <.004
<.004 | <.002
<.002 | <.004
<.004 | <.005
<.005 | | | | METHYL | METHYL | | NAPROP- | PRON- | PRO- | PEB- | PENDI- | PER- | | | | DATE | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | | OCT 1997
20 | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | THION,
DIS-
SOLVED
(UG/L) | | OCT 1997
20
NOV
18 | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | OCT 1997
20
NOV
18
DEC
16 | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) |
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | OCT 1997
20
NOV
18
DEC
16
JAN 1998
09 | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679)
<.008 | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669)
<.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.002 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.004 | | OCT 1997
20
NOV
18
DEC
16
JAN 1998
09 | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 | AZIN-
PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 | PANIL WATER FLIRD 0.7 U GF, REC (UG/L) (82679) <.008 <.004 <.004 | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669)
<.004
<.004
<.004
<.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.002
<.002
<.002 | THION, DIS-
SOLVED (UG/L) (39542)
<.004
<.004
<.004 | | OCT 1997
20
NOV
18
DEC
16
JAN 1998
09
20
FEB
04 | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | AZIN-
PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 TER-BACIL WATER FLTRD 0.7 U | PANIL WATER FLIRD 0.7 U GF, REC (UG/L) (82679) <.008 <.004 <.004 <.004 <.004 <.004 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 TER-BUFOS WATER FLTRD 0.7 U | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004
<.004
<.004
<.004 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.002
<.002
<.002
<.002
<.002
<.002 | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004 | | OCT 1997 20 NOV 18 DEC 16 JAN 1998 09 20 FEB 04 25 | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 (.002 (.002 (.002) (.002 (.002) (.00 | AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004
<.004
SI-
MAZINE,
WATER,
DISS,
REC
(UG/L) | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.1003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.008 <.004 <.004 <.004 <.004 <.004 TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005
<.005
THIO-BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.002
<.002
<.002
<.002
<.002
<.002
SEDI-
MENT,
SUS-
PENDED
(MG/L) | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM | | OCT 1997 20 NOV 18 DEC 16 JAN 1998 09 20 FEB 04 25 DATE OCT 1997 20 NOV 18 | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 (.002 (.002) (.002 (.002)
(.002) (.0 | AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 (.001) (.0 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004
<.004
SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .0 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) | PANIL WATER FLITED 0.7 U GF, REC (UG/L) (82679) <.008 <.004 <.004 <.004 <.004 <.004 TEBU- THIURON WATER FLITED 0.7 U GF, REC (UG/L) (82670) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 TER-BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005
<.005
THIO-BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.002
<.002
<.002
<.002
<.002
<.002
SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) | | OCT 1997 20 NOV 18 DEC 16 JAN 1998 09 20 FEB 04 25 DATE OCT 1997 20 NOV 18 DEC | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.004 <.000 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 <.007 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
PRO-
PARGITE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82685) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 <
.003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .0 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.014 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.008 <.004 <.004 <.004 <.004 <.004 TEBU-THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) E.0151 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 TER-BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.013 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005
<.005
THIO-BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.002
<.002
<.002
<.002
<.002
<.002
SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) | | OCT 1997 20 NOV 18 DEC 16 JAN 1998 09 20 FEB 04 25 DATE OCT 1997 20 NOV 18 DEC | LACHLOR WATER DISSOLV (UG/L) (39415) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.004 <.000 PROP-CHLOR, WATER, DISS, REC (UG/L) (04024) <.007 <.007 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
PRO-
PARGITE
WATER
FLITED
0.7 U
GF, REC
(UG/L)
(82685)
<.013
<.013 | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.004
<.004
<.004
<.004
<.004
<.004
SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
<.005 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.004 C.005 C.006 C.007 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 COMMINICATION OF THE TEACH TEA | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.008 <.004 <.004 <.004 <.004 <.004 TEBU-THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) E.0151 <.010 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 TER-BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.013 <.013 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.001 <.001 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.005
<.005
<.005
<.005
<.005
<.005
THIO-BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681)
<.002 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.002
<.002
<.002
<.002
<.002
<.002
<.002
(.002
(.002
(.002)
(.002
(.002)
2.002 | THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 SED. SUSP. SIEVE DIAM. FINER THAN .062 MM (70331) 50 71 | < Actual value is known to be less than the value shown. $\ensuremath{\mathtt{E}}$ Estimated. #### 03528000 CLINCH RIVER ABOVE TAZEWELL, TN LOCATION.--Lat 36°25'30", long 83°23'54", Claiborne County, Hydrologic Unit 06010205, on right bank 0.4 mi upstream from Grissom Island, 4.6 mi downstream from Big War Creek, 10 mi east of Tazewell, and at mile 159.8. DRAINAGE AREA.--1,474 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1918 to current year. Published as "near Lone Mountain" October 1918 to September 1927; as "near Tazewell" August 1927 to December 1936; and as "above Tazewell" July 1935 to current year. Prior to April 1919, monthly discharge only, published in WSP 1306. Gage-height record "near Tazewell" January 1937 to July 1941. REVISED RECORDS.--WSP 803: Drainage area at site "near Tazewell". WSP 1306: Drainage area at site "near Lone Mountain". WSP 1336: 1928. GAGE.--Data collection platform. Datum of gage is 1,060.7 ft above sea level. April 1, 1919, to Sept. 30, 1927, nonrecording gage on railroad bridge 23.3 mi downstream at datum 102.7 ft lower. Aug. 8, 1927, to July 16, 1941, water-stage recorder at site 8.0 mi downstream at datum 47.2 ft lower. Water-stage recorder at present site and datum since July 29, 1935. REMARKS.--No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water-quality data. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in February 1862 reached a stage of about 24 ft, present site and datum, from information by local resident, discharge, about $66,000 \, \mathrm{ft}^3/\mathrm{s}$. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $14,000~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|--------------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Mar 19
Mar 22 | 2100
2130 | 14,700
16,800 | 9.80
10.61 | Apr 18 | 0400 | *35,900 | *16.72 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 Minimum discharge, 171 ft³/s, Oct 18. | | | DIBCIII | MOD, CODI | C 1 DD1 11 | DAII | LY MEAN V | | un(1997 10 | , on thin | II. 1990 | | | |-------------|------------|------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 364 | 262 | 318 | e550 | 3570 | 2480 | 2000 | 2710 | 1880 | 1370 | 467 | 302 | | 2 | 322 | 251 | 395 | e500 | 2990 | 2280 | 2460 | 2680 | 1690 | 1630 | 602 | 288 | | 3
4 | 273 | 247 | 433 | e460 | 3120 | 2070 | 2650 | 2590 | 1390 | 1330 | 662 | 279 | | | 244 | 246 | 471 | 448 | 8520 | 1860 | 6220 | 3890 | 1270 | 1120 | 574 | 270 | | 5 | 225 | 256 | 488 | 468 | 12800 | 1700 | 8820 | 5000 | 2140 | 959 | 484 | 266 | | 6 | 213 | 280 | 436 | 586 | 8740 | 1550 | 6620 | 4160 | 3290 | 863 | 422 | 258 | | 7 | 206 | 310 |
407 | 988 | 5470 | 1440 | 4540 | 3710 | 2950 | 810 | 380 | 249 | | 8 | 199 | 325 | 386 | 5800 | 4110 | 1450 | 3550 | 4050 | 2350 | 758 | 352 | 247 | | 9 | 192 | 301 | 383 | 8750 | 3660 | 1940 | 5060 | 4160 | 1930 | 869 | 337 | 250 | | 10 | 189 | 275 | 493 | 5880 | 3540 | 3380 | 8460 | 6480 | 2190 | 819 | 335 | 257 | | 11 | 185 | 271 | 631 | 3340 | 3910 | 3780 | 8790 | 10700 | 6770 | 868 | 372 | 252 | | 12 | 185 | 264 | 789 | 2280 | 4650 | e3100 | 6720 | 11300 | 10500 | 802 | 553 | 256 | | 13 | 184 | 263 | 741 | 1750 | 7160 | e2600 | 5100 | 7120 | 5570 | 686 | 926 | 242 | | 14 | 183 | 269 | 620 | 1450 | 6540 | 2220 | 4050 | 4870 | 4670 | 623 | 815 | 234 | | 15 | 185 | 282 | 536 | 1270 | 4460 | 1970 | 3390 | 3720 | 3920 | 614 | 842 | 228 | | 16 | 184 | 289 | 469 | 1290 | 3390 | 1840 | 3660 | 3000 | 3380 | 666 | 773 | 222 | | 17 | 178 | 282 | 416 | 1400 | 2980 | 1940 | 28000 | 2520 | 2860 | 594 | 1510 | 217 | | 18 | 173 | 276 | 375 | 1380 | 4320 | 2670 | 33800 | 2150 | 2300 | 556 | 2010 | 209 | | 19 | 178 | 267 | 346 | 1360 | 6670 | 11400 | 27600 | 1870 | 1910 | 561 | 1570 | 202 | | 20 | 178 | 258 | 324 | 1350 | 5550 | 12600 | 25600 | 1650 | 1730 | 561 | 1120 | 197 | | 21 | 178 | 269 | 312 | 1360 | 4330 | 11700 | 18100 | 1490 | 1730 | 564 | 857 | 198 | | 22 | 185 | 418 | 386 | 1370 | 3660 | 14900 | 10500 | 1440 | 1690 | 505 | 686 | 203 | | 23 | 185 | 522 | 504 | 1650 | 3260 | 12500 | 7370 | 1520 | 1730 | 498 | 590 | 203 | | 24 | 185 | 546 | 494 | 3060 | 3150 | 6220 | 5660 | 1780 | 3120 | 855 | 513 | 203 | | 25 | 187 | 484 | 588 | 3140 | 4070 | 4410 | 4550 | 2300 | 2370 | 793 | 461 | 219 | | 26 | 214 | 428 | 622 | 2620 | 3870 | 3490 | 3670 | 3760 | 1980 | 775 | 423 | 240 | | 27 | 298 | 374 | e642 | 2460 | 3220 | 2930 | 3190 | 3160 | 1630 | 644 | 391 | 249 | | 28 | 333 | 335 | e700 | 5550 | 2780 | 2530 | 3220 | 2580 | 1390 | 564 | 364 | 235 | | 29 | 318 | 304 | e650 | 6630 | | 2260 | 2790 | 2510 | 1210 | 496 | 340 | 223 | | 30 | 306 | 293
 | e600 | 4820 | | 2040 | 2540 | 2180 | 1220 | 453 | 326 | 214 | | 31 | 286 | | e575 | 4100 | | 1850 | | 1830 | | 470 | 314 | | | TOTAL | 6915 | 9447 | 15530 | 78060 | 134490 | 129100 | 258680 | 112880 | 82760 | 23676 | 20371 | 7112 | | MEAN | 223 | 315 | 501 | 2518 | 4803 | 4165 | 8623 | 3641 | 2759 | 764 | 657 | 237 | | MAX | 364 | 546 | 789 | 8750 | 12800 | 14900 | 33800 | 11300 | 10500 | 1630 | 2010 | 302 | | MIN | 173 | 246 | 312 | 448 | 2780 | 1440 | 2000 | 1440 | 1210 | 453 | 314 | 197 | | CFSM
IN. | .15
.17 | .21
.24 | .34
.39 | 1.71
1.97 | 3.26
3.39 | 2.83
3.26 | 5.85
6.53 | 2.47
2.85 | 1.87
2.09 | .52
.60 | .45
.51 | .16
.18 | | IN. | .1/ | . 24 | . 39 | 1.9/ | 3.39 | 3.∠6 | 0.53 | ∠.85 | ⊿.09 | .00 | .51 | .18 | e Estimated # 03528000 CLINCH RIVER ABOVE TAZEWELL, TN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 1998, BY WATER YEAR (WY) | OCT NOV | DEC JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|---|-------------------------------------|--------------------------------------|--|--|-------------------------------------|--|------------------------------------|---| | MEAN 664 1117
MAX 2871 4794
(WY) 1990 1978
MIN 145 159
(WY) 1964 1940 | 2364 3485
9107 9500
1927 1937
217 285
1940 1940 | 4173
9426
1957
572
1941 | 4318
11950
1963
990
1988 | 3113
8860
1977
711
1986 | 2325
6382
1929
547
1941 | 1303
3865
1989
301
1988 | 958
3251
1938
239
1988 | 866
4411
1942
169
1925 | 534
2939
1989
136
1955 | | SUMMARY STATISTICS | FOR 1997 CALEN | NDAR YEAR | FC | DR 1998 WA | TER YEAR | | WATER | YEARS 1919 | - 1998 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW | 710407
1946
26600
173
179 | Mar 4
Oct 18
Oct 15 | | 879021
2408
33800
173
179
35900
16.72
171 | Apr 18
Oct 18
Oct 15
Apr 18
Apr 18
Oct 18 | | 2093
3269
850
83300
108
116
98100
a29.
108 | Sep
Apr
32 Apr | 1927
1941
5 1977
11 1925
17 1955
5 1977
5 1977
11 1925 | | ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) | 1.32
17.93 | | | 1.63
22.18 | | | 1. | 42 | | | ANNUAL KUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 4640
1050
225 | > | | 5610
988
235 | | | 4690
1120
271 | 4 3 | | a From floodmarks. # 03528000 CLINCH RIVER ABOVE TAZEWELL, TN--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1963-65, 1971-80, April to September 1996. WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM | FIELI
(STANI
ARD
() UNITS | E TEMPER ATURI WATER () DEG () | E (MM
R OF
C) HG) | IC
-
E OXYGEN
DIS-
SOLVE
(MG/I | CEN SATU | FORM FORM FECA - 0.7 T UM-M R- (COLS N) 100 M | , WATELL, WHOLE TOTALE TOTALE UREAS: ./ (COL) 100 M | R FORM E TOTA L IMME E (COLS / PER L) 100 M | L, HARD L, NESS D. TOTA (MG/ AS L) CACO | NONCARB L DISSOLV L FLD. AS CACO3 3) (MG/L) | |------------------|------|--|---|--|---|--|--|--|--|--|--|--| | OCT
07 | 1345 | 406 | 8.4 | 20.0 | 737 | 13.0 | 148 | K510 | K12 | 10 | 0 180 | 32 | | NOV
24 | 1230 | 399 | 8.3 | 6.0 | 744 | 12.0 | 99 | 92 | 42 | 510 | 0 170 | 14 | | DEC
15 | 1215 | 406 | 7.9 | 2.5 | 738 | 13.3 | 101 | K2 | <2 | 7 | 0 170 | 28 | | JAN
20 | 1300 | 322 | 8.5 | 6.0 | 739 | 14.0 | 116 | K73 | K54 | K880 | 0 140 | 20 | | FEB
10 | 1315 | 307 | 7.3 | 8.5 | 740 | 13.4 | 118 | 95 | 36 | >200 | 0 130 | 28 | | MAR
12 | 1230 | 283 | 7.4 | 6.0 | 750 | 12.6 | 103 | 140 | 130 | K1600 | 0 120 | 15 | | MAY
21 | 1300 | 305 | 8.6 | 23.0 | 735 | 10.1 | 123 | 540 | 40 | 95 | 0 140 | 23 | | DAT | ΓE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | (MG/L | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | WATER
DIS IT
FIELD | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | TOT IT
FIELD | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | | OCT
07 | | 41 | 19 | 21 | 20 | .7 | 2.8 | 10 | 161 | 151 | 1.2 | 46 | | NOV
24 | | 43 | 15 | 15 | 16 | .5 | 2.8 | 5 | 182 | 157 | 1.4 | 49 | | DEC
15 | | 45 | 13 | 18 | 19 | .6 | 2.2 | | 168 | 138 | 3.6 | 53 | | JAN
20 | | 38 | 9.6 | 8.7 | 12 | .3 | 1.6 | 10 | 121 | 115 | .7 | 31 | | FEB 10 | | 36 | 9.1 | 8.3 | 12 | .3 | 1.4 | 0 | 123 | 101 | 10 | 25 | | MAR
12 | | 34 | 8.1 | 6.1 | 10 | .2 | 1.3 | 0 | 126 | 103 | 7.6 | 23 | | MAY
21 | | 36 | 12 | 6.2 | 9 | .2 | 1.4 | 5 | 131 | 117 | .7 | 29 | | DAT | ΓE | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | | OCT
07
NOV | | 8.2 | <.10 | 2.0 | 230 | 229 | .31 | | <.010 | <.050 | <.015 | <.20 | | 24 | | 8.2 | <.10 | 1.3 | 235 | 230 | .32 | | <.010 | .202 | <.020 | <.10 | | DEC
15
JAN | | 8.5 | <.10 | 1.2 | 231 | 225 | .31 | .384 | .014 | .398 | <.020 | <.10 | | 20 | | 8.6 | <.10 | 4.3 | 189 | 175 | .26 | .982 | .013 | .995 | <.020 | <.10 | | FEB
10
MAR | | 12 | <.10 | 5.4 | 165 | 163 | .22 | | <.010 | 1.21 | .020 | <.10 | | 12
MAY | | 6.1 | <.10 | 3.9 | 157 | 148 | .21 | | <.010 | .625 | <.020 | <.10 | | 21 | | 3.9 | <.10 | 1.0 | 174 | 160 | .24 | .300 | .010 | .310 | .043 | <.10 | $\ensuremath{\mbox{\scriptsize K--Results}}$ based on non-ideal colony count. # 03528000 CLINCH RIVER ABOVE TAZEWELL, TN--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 | | NITRO- | | | | PHOS- | | | | CARBON, | | SED. | | |------|----------|---------|---------|---------|---------|---------|---------|---------
---------|---------|---------|--| | | GEN, AM- | | | PHOS- | PHORUS | | MANGA- | CARBON, | ORGANIC | | SUSP. | | | | MONIA + | NITRO- | PHOS- | PHORUS | ORTHO, | IRON, | NESE, | ORGANIC | SUS- | SEDI- | SIEVE | | | | ORGANIC | GEN, | PHORUS | DIS- | DIS- | DIS- | DIS- | DIS- | PENDED | MENT, | DIAM. | | | | TOTAL | TOTAL | TOTAL | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | TOTAL | SUS- | % FINER | | | DATE | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | (UG/L | (UG/L | (MG/L | (MG/L | PENDED | THAN | | | | AS N) | AS N) | AS P) | AS P) | AS P) | AS FE) | AS MN) | AS C) | AS C) | (MG/L) | .062 MM | | | | (00625) | (00600) | (00665) | (00666) | (00671) | (01046) | (01056) | (00681) | (00689) | (80154) | (70331) | | | OCT | | | | | | | | | | | | | | 07 | .48 | | .091 | <.010 | <.010 | 8.5 | 5.0 | 2.2 | .20 | | | | | NOV | | | | | | | | | | | | | | 24 | .15 | .35 | .022 | .012 | .027 | 19 | 2.2 | 1.9 | .30 | 8 | 93 | | | DEC | | | | | | | | | | | | | | 15 | .11 | .51 | <.010 | <.010 | .015 | 21 | <4.0 | 1.6 | .20 | 2 | 92 | | | JAN | | | | | | | | | | | | | | 20 | .12 | 1.1 | .015 | <.010 | <.010 | 13 | <4.0 | 1.1 | .20 | 18 | 84 | | | FEB | | | | | | | | | | | | | | 10 | .14 | 1.3 | .024 | <.010 | .017 | <10 | <4.0 | 1.1 | .40 | | | | | MAR | | | | | | | | | | | | | | 12 | .13 | .76 | <.010 | <.010 | <.010 | 13 | <4.0 | 1.0 | .50 | 14 | 75 | | | MAY | | | | | | | | | | | | | | 21 | .14 | .45 | <.010 | <.010 | <.010 | <10 | <4.0 | 1.2 | .30 | 4 | 30 | | As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to these events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. Records collected at crest-stage partial-record stations are presented in the following table. Discharge measurements made at miscellaneous sites and for special studies are given in separate tables. ## Crest-stage partial-record stations The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device that will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. Maximum discharge at crest-stage partial-record stations during water year 1998 | | Plaximum discharge at crest se | | | | | | | | |---|--|----------------------|----------|----------------|----------------|-----------|----------------|----------------| | | | Period
of | Water y | ear 1998 | maximum | Period of | record | | | Station name
and | Location
and | record
(water | Date | Gage
height | Dis-
charge | Date | Gage
height | Dis-
charge | | number | drainage area | years) | | (ft) | (ft^3/s) | | (ft) | (ft^3/s) | | | | | | | | | | | | | I | POTOMAC RI | VER BASI | N | | | | | | Buffalo Branch
tributary near
Christian, VA
(01622400) | Lat 38°11'55", long 79°13'10", Augusta County, Hydrologic Unit 02070005, on left upstream wingwall of culvert on State Highway 42, 0.8 miupstream from mouth, and 1.3 minorth of Christian. Datum of gage is 1,622.53 ft above sea level. Drainage area is 0.49 mi ² . | 1967-98 | 1- 8-98 | 4.76 | 101 | 9- 6-96 | 7.68 | 244 | | Chub Run near
Stanley, VA
(01629945) | Lat 38°34'31", long 78°27'32",
Page County, Hydrologic Unit
02070005, at culvert on State
Highway 689, 2.2 mi east of
Stanley, and 3.1 mi upstream
from mouth. Datum of gage is
1,023.05 ft above sea level.
Drainage area is 3.16 mi ² . | 1959-69a,
1970-98 | 2- 5-98 | 4.57 | 486 | 9- 6-96 | >10.08 | * | | Crooked Run near
Mt. Jackson, VA
(01632970) | Lat 38°45′44″, long 78°41′06″, Shenandoah County, Hydrologic Unit 02070006, on right upstream wingwall of culvert on State Highway 263, 0.4 mi upstream from mouth, and 2.3 mi west of Mt. Jackson. Datum of gage is 962.84 ft above sea level. Drainage area is 6.49 mi². | 1972-98 | 1- 8-98 | 3.68 | 395 | 1-19-96 | 11.34 | 5,700 | | Pughs Run near
Woodstock, VA
(01633650) | Lat 38°55'48", long 78°32'43",
Shenandoah County, Hydrologic
Unit 02070006, on left up-
stream wingwall of culvert
on State Highway 623, 4.0 mi
northwest of Woodstock, and
5.4 mi upstream from mouth.
Datum of gage is 1,027.27 ft
above sea level. Drainage
area is 3.66 mi ² . | 1971-98 | 2- 5-98 | 5.19 | 139 | 9- 6-96 | 13.39 | 1,100 | ^{*} Discharge not determined. > Greater than. a Records provided by U.S. Department of Agriculture, Soil Conservation Service. ## DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES Maximum discharge at crest-stage partial-record stations during water year 1998--Continued | | Maximum discharge at crest-stage pa | artial-record | d stations | during wa | ter year 19 | 98Continu | ed | | |---|---|---|-------------------|-------------------------------------|---|-------------------------|------------------------------------|---| | Station name
and
number | Location
and
drainage area | Period
of
record
(water
years) | <u>Water</u> Date | year 1998
Gage
height
(ft) | maximum
Dis-
charge
(ft ³ /s) | <u>Period o</u>
Date | f record
Gage
height
(ft) | maximum
Dis-
charge
(ft ³ /s) | | | POTOMA | C RIVER BA | ASINCoi | ntinued | | | | | | Fourmile Run at
Alexandria, VA
(01652500) | Lat 38°50'35", long 77°05'09", Arlington County, Hydrologic Unit 02070010, on left up- stream wingwall of bridge on Shirlington Road, at Arlington County-Alexandria City line, 0.1 mi upstream from Interstate Highway 395, and 2.5 mi upstream from mouth. Datum of gage is 28.57 ft above sea level. Drainage area is 13.8 mi². | 1947,
1952-69‡b,
1970-73b,
1974-75‡,
1976-77,
1979-82‡,
1983-98 | 9-22-98 | 7.94 | 2,310 | 7-22-69 | b11.60 | 14,600 | | | GREA | T WICOMICO | O RIVER I | BASIN | | | | | | Bush Mill Stream
near Heaths-
ville, VA
(01661800) | Lat 37°52'36", long 76°29'42",
Northumberland County,
Hydrologic Unit 02080102, on
right bank 12 ft upstream
from bridge on State High-
way 601, 2.2 mi northwest
of Howland, and 3.0 mi
southwest of Heathsville.
Datum of gage is 22.22 ft
above sea level. Drainage
area is 6.82 mi ² . | 1964-69‡,
1970-86‡,
1987-98 | 2- 5-98 | 7.36 | 485 | 7-30-79 | 8.52 | 714 | | | RAP | PAHANNOCK | RIVER BA | ASIN | | | | | | Pony Mountain
Branch near
Culpeper, VA
(01665050) | Lat 38°27'04", long 77°57'24",
Culpeper County, Hydrologic
Unit 02080103, at culvert
on State Highway 3, 0.3 mi
upstream from mouth, and
2.7 mi southeast of Culpeper.
Elevation of gage is 335 ft
above sea level, from topo-
graphic map. Drainage area
is 0.30 mi ² . | 1958-69a,
1970-98 | 1- 8-98 | 1.92 | 71 | 8-16-70 | 4.02 | 196 | | Farmers Hall
Creek near
Champlain, VA
(01668300) | Lat 38°00'05", long 76°58'40",
Essex County, Hydrologic
Unit 02080104, on left up-
stream wingwall of culvert
on U.S. Highway 17, 1.0 mi
upstream from Rouzie Swamp,
and 1.2 mi southeast of
Champlain. Datum of gage is
42.10 ft above sea level.
Drainage area is 2.18 mi ² . | 1966-98 | 2- 5-98 | 5.49 | 100 | 8-20-69 | 19.2 | 510 | | | PI | ANKATANK I | RIVER BAS | SIN | | | | | | My Ladys Swamp
near Saluda,
VA
(01669800) | Lat 37°34′34″, long 76°31′30″, Middlessex County, Hydrologic Unit 02080102, on left upstream wingwall of culvert on State Highway 629, 1.45 mi upstream from mouth, and 4.4 mi southeast of Saluda. Datum of gage is 4.16 ft above sea level. Drainage area is 4.81 mi². | 1970-98 | 2- 5-98 | 8.13 | 524 | 1- 2-85 | 8.38 | 592 | [‡] Operated as a continuous-record gaging station. a Records provided by U.S. Department of Agriculture, Soil Conservation Service. b At different site and datum 6.02 feet lower. ## DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES
Maximum discharge at crest-stage partial-record stations during water year 1998--Continued | | Maximum discharge at crest stage pe | Period | | | 7 7 | 750 CONCING | | | |---|--|----------------------|----------|------------------------|--|------------------|------------------------|--| | | | of | Water | year 1998 | | Period of | f record m | | | Station name
and
number | Location
and
drainage area | record
(water | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | dramage area | years) | | (10) | (IC/S) | | (10) | (IC/S) | | | | YORK RIV | ER BASIN | | | | | | | Pamunkey Creek
at Lahore, VA
(01670180) | Lat 36°11'53", long 77°58'09",
Orange County, Hydrologic
Unit 02080106, on right
bank on upstream side of
bridge on State Highway 669,
0.45 mi south of Lahore, and
3.8 mi upstream from Lake
Anna. Elevation of gage
is 200 ft above sea level,
from topographic map.
Drainage area is 40.5 mi ² . | 1989-91‡,
1992-98 | 3-21-98 | 9.23 | 1,670 | 6-27-95 | 17.20 | 6,900 | | Contrary Creek
near Mineral,
VA
(01670300) | Lat 38°03'53", long 77°52'45",
Louisa County, Hydrologic
Unit 02080106, on left bank
200 ft downstream from
bridge on U.S. Highway 522,
4.0 mi northeast of Mineral.
Elevation of gage is 275 ft
above sea level, from topo-
graphic map. Drainage area
is 5.53 mi². | 1976-86‡,
1987-98 | 3-21-98 | 3.63 | 1,000 | 11-28-93 | 6.94 | 7,050 | | Waldrop Creek
near Louisa,
VA
(01671650) | Lat 38°00'08", long 78°04'22",
Louisa County, Hydrologic
Unit 02080106 on left up-
stream wingwall of culvert
on State Highway 632, 2.3 mi
upstream from mouth, and
4.2 mi southwest of Louisa.
Datum of gage is 361.41 ft
above sea level. Drainage
area is 2.85 mi ² . | 1969-98 | 5- 8-98 | 6.97 | 357 | 8-20-69 | 21.00 | 2,500 | | Reedy Creek
near Dawn, VA
(01674200) | Lat 37°52'55", long 77°21'35",
Caroline County Hydrologic
Unit 02080105, at bridge on
U.S. Highway 301, 3.3 mi
north of Dawn, and 11 mi
south of Bowling Green.
Drainage area is 16.8 mi ² . | 1951-69,
1972-98 | 2- 5-98 | 5.10 | 191 | 8-20-69 | 7.28 | 2,500 | | | | JAMES RIV | ER BASIN | | | | | | | Jackson River
at Falling
Spring, VA
(02012500) | Lat 37°52'36", long 79°58'39", Alleghany County, Hydrologic Unit 02080201, on right bank 20 ft upstream from Smith Bridge, 0.8 mi south of Falling Spring, and 5.5 mi north of Covington. Datum of gage is 1,333.49 ft above sea level. Drainage area is 411 mi ² . | 1925-84‡,
1987-98 | 3-23-98 | 9.52 | 6,180 | 3-17-36
c1913 | 14.74 2
20 ds | 24,700
50,000 | | Cowpasture River
near Head
Waters, VA
(02015600) | Lat 38°19'30", long 79°26'14",
Highland County, Hydrologic
Unit 02080201, on left down-
stream wingwall of bridge on
U. S. Highway 250, 1.2 mi
west of Head Waters, and
3 mi upstream from Shaw Fork.
Datum of gage is 1,985.65 ft
above sea level. Drainage area
is 11.3 mi ² . | 1949-94,
1996-98 | 1- 8-98 | 6.13 | 190 | 6-17-49 | 6.5 | 5,650 | [‡] Operated as a continuous-record gaging station. c Maximum known historical peak outside period of record. d Approximate. | | | Period | | | | | | | |---|---|----------------------------------|----------------------|--|---|-------------------------|------------------------------------|---| | Station name
and
number | Location
and
drainage area | of
record
(water
years) | <u>Water</u>
Date | <u>year 1998</u>
Gage
height
(ft) | maximum
Dis-
charge
(ft ³ /s) | <u>Period o</u>
Date | f record
Gage
height
(ft) | maximum
Dis-
charge
(ft ³ /s) | | | JAMES | RIVER BA | SINCon | tinued | | | | | | Craig Creek
tributary near
New Castle, VA
(02017700) | Lat 37°33'21", long 79°59'52",
Craig County, Hydrologic
Unit 02080201, on right up-
stream wingwall of culvert
on State Highway 606, 0.4 mi
upstream from mouth, and
7.1 mi northeast of New
Castle. Drainage area is
2.05 mi ² . | 1968-98 | 3-21-98 | Unknown | Unknown | 11- 4-85 | 13.45 | 1,100 | | Renick Run near
Buchanan, VA
(02020100) | Lat 37°35'27", long 79°38'04", Botetourt County, Hydrologic Unit 02080201, on left up- stream wingwall of culvert on Frontage Road F054 of Interstate Highway 81 between Exits 48 and 49, 2.2 mi upstream from mouth, and 4.8 mi northeast of Buchanan. Datum of gage is 1,261.85 ft above sea level. Drainage area is 2.06 mi ² . | 1967-98 | 2- 5-98 | 6.86 | 628 | 8-20-69 | 9.90 | 1,210 | | South River
near Steeles
Tavern, VA
(02023300) | Lat 37°55′50″, long 79°09′55″, Augusta County, Hydrologic Unit 02080202, at bridge on State Hightway 608, 2.5 mi northeast of Vesuvius, 3 mi east of Steels Tavern, and 5 mi south of Greenville. Elevation of gage is 1,600 ft above sea level, from topographic map. Drainage area is 15.7 mi². | 1951-98 | - | <2.04 | <135 | 8-20-69 | 8.70 | 4,700 | | James River at
Bedford Dam
near Major, VA
(02024750) | Lat 37°34'40", long 79°22'36", Amherst County, Hydrologic Unit 02080203, on left bank 10 ft upstream from head- gates on headrace to city of Bedford hydroelectric plant, 1.2 mi north of Major, and 1.4 mi upstream from Blue Ridge Parkway. Drainage area is 3,070 mi ² . | 1989-98 | 1- 8-98 | 10.59 | 70,800 | 1-20-96 | 14.63 | 104,000 | | Buffalo River
tributary near
Amherst, VA
(02027700) | Lat 37°33'45", long 78°57'35",
Amherst County, Hydrologic
Unit 02080203, on left bank
just upstream from culvert
on U.S. Highway 60, 0.8 mi
upstream from mouth, and
5.2 mi southeast of Amherst.
Datum of gage is 583.66 ft
above sea level. Drainage
area is 0.46 mi ² . | 1966-98 | 1-28-98 | 3.47 | 34 | 9- 6-96 | 7.33 | 196 | | Stockton Creek
near Afton, VA
(02030800) | Lat 38°01'48", long 78°48'30", Albemarle County, Hydrologic Unit 02080204, on left up- stream wingwall of culvert on State Highway 6, 1.7 mi east of Afton, and 4.3 mi upstream from Stony Run. Datum of gage is 835.27 ft above sea level Drainage area is 2.80 mi². | 1967-98 | 1- 8-98 | 6.49 | 284 | 6-21-72
11-23-92 | | 678
425 | < Less than. e Affected by debris jam at upstream end of culvert. | | daximum discharge at crest-stage pa | | . 504010115 | war ring wa | cor year 15 | 20 00110111146 | | | |--|--|--|----------------------|-------------------------------------|---|--------------------|------------------------------------|---| | Station name
and
number | Location
and
drainage area | Period
of
record
(water
years) | <u>Water</u>
Date | year 1998
Gage
height
(ft) | maximum
Dis-
charge
(ft ³ /s) | Period o | f record
Gage
height
(ft) | maximum
Dis-
charge
(ft ³ /s) | | | JAMES | RIVER BAS | SINCont | inued | | | | | | Muddy Run near
Stanardsville,
VA
(02032300) | Lat 38°14'05", long 78°37'02", Albemarle County, Hydrologic Unit 02080204, on right downstream abutment of bridge on State Highway 810, 0.7 mi upstream from mouth, and 11 mi southwest of Stanardsville. Datum of gage is 756.79 ft above sea level. Drainage area is 3.36 mi ² . | 1967-98 | 5- 8-98 | 6.24 | 1,760 | 5-13-73
8-28-79 | 8.33
8.33 | * | | Moores Creek
near Char-
lottesville,
VA
(02033300) | Lat 38°00'25", long 78°34'25", Albemarle County, Hydrologic unit 02080204, on right downstream wingwall of culvert on access road, 30 ft north of U.S. Highway 29, 2.8 mi upstream from Morey Creek, and 4 mi southwest of Charlottesville. Datum of gage is 505.40 ft above sea level. Drainage area is 3.52 mi ² . | 1967-98 | 5- 8-98 | 14.68 | 206 | 6- 2-79 | 18.74 | * | | Willis River
at Lakeside
Village, VA
(02034500) | Lat 37°40'00", long 78°10'00", Cumberland County, Hydrologic Unit 02080205, on left bank 15 ft upstream from bridge on State Highway 690, 0.4 mi east of Lakeside Village, 6.9 mi upstream from mouth, and 7.7 mi downstream from Reynolds Creek. Datum of gage is 178.98 ft above sea level. Drainage area is 262 mi ² . | 1927-86‡,
1987-98 | 1-28-98 | 17.04 | 4,430 | 6-22-72 | 29.80 | 24,000 | | Falling Creek near
Chesterfield, VA
(02038000) | Lat 37°31'21"long 77°31'21", Chesterfield County, Hydrologic Unit 02080206, on left bank 50 ft upstream from bridge on State Highway 651,0.8 mi downstream from Licking Creek, 2.8 mi upstream from
Pocoshock Creek, and 4.7 mi northwest of Chesterfield. Elevation of gage is 126.39 ft above sea level. Drainage area is 32.8 mi ² . | 1955-94‡,
1996-98 | 3-19-98 | 11.30 | 1,620 | 10- 1-79 | 15.32 | 5,930 | | Holiday Creek
near Toga, VA
(02038840) | Lat 37°25′58″, long 78°41′12″, Buckingham County Hydrollogic Unit 02080207, on left bank 40 ft downstream from State Forest Road 2307 (old Richmond Road), 1.8 mi upstream from confluence of North Holiday Creek, and 5.2 mi south-southwest of Toga. Datum of gage is 614.40 ft above sea level. Drainage area is 1.68 mi². | 1971-98 | 1-28-98 | 2.42 | 144 | 6-21-72 | 6.72 | 2,820 | ^{*} Discharge not determined. ‡ Operated as a continuous-record gaging station. | <u></u> | Maximum discharge at crest-stage p | artial-recor | d stations | during wa | ter year 19 | 98Continu | ea | | |---|--|--|---------------------|-------------------------------------|---|-------------------------|------------------------------------|---| | Station name
and
number | Location
and
drainage area | Period
of
record
(water
years) | <u>Water</u> y | year 1998
Gage
height
(ft) | maximum
Dis-
charge
(ft ³ /s) | <u>Period o</u>
Date | f record
Gage
height
(ft) | maximum
Dis-
charge
(ft ³ /s) | | | JAMES | S RIVER BA | SINCont | inued | | | | | | North Holiday
Creek near
Toga, VA
(02038845) | Lat 37°26'09", long 78°40'04", Buckingham County, Hydro-logic Unit 02080207, on left bank 18 ft upstream from State Forest Road 2307 (old Richmond Road), 1.0 mi upstream from confluence of Holiday Creek, and 4.5 mi south-southwest of Toga. Datum of gage is 588.84 ft above sea level. Drainage area is 1.31 mi². | 1971-98 | 1-28-98 | 2.78 | 59 | 6-21-72 | 6.79 | 1,570 | | Flat Creek near
Amelia, VA
(02040500) | Lat 37°23'27", long 78°03'45",
Amelia County, Hydrologic
Unit 02080207, at bridge on
State Highway 681, 0.5 mi
downstream from Horsepen
Creek and 6.0 mi northwest
of Amelia. Elevation of
gage is 240 ft above sea
level, from topographic map.
Drainage area is 73.0 mi ² . | 1947,
1954-70,
1972-98 | 12- 2-96
1-28-98 | 7.25
9.70 | f978
2,290 | 4-16-87 | 12.38 | 5,260 | | Bailey Branch
tributary at
Spring Grove,
VA
(02042250) | Lat 37°10'29", long 76°59'13",
Surry County, Hydrologic
Unit 02080206, on right up-
stream wingwall of culvert
on State Highway 10, 1.0 mi
northwest of Spring Grove.
Datum of gage is 61.39 ft
above sea level. Drainage
area is 0.71 mi ² . | 1967-98 | 2- 5-98 | 3.44 | 44 | 7-14-75 | 6.52 | 282 | | Jordans Branch
at Richmond,
VA
(02042400) | Lat 37°35'10", long 77°29'55",
Henrico County, Hydrologic
Unit 02080206, on left down-
stream wall of bridge on U.S.
Highway 250 (Broad Street),
at Richmond, and 2.0 mi up-
stream from mouth. Drainage
area is 2.53 mi ² . | 1965-98 | 3-19-98 | 10.48 | 1,340 | 6-22-91 | 13.10 | 2,760 | | West Branch
Long Hill Swamp
near Lightfoot,
VA
(02042780) | Lat 37°18'50", long 77°46'01",
James City County, Hydrologic
Unit 02080206, on left up-
stream wingwall of culvert
on State Highway 612, 2.2 mi
upstream from mouth, and
2.0 mi south of Lightfoot.
Drainage area is 2.47 mi ² . | 1970-76,
1978-98 | - | g | ā | 9- 1-75 | 5.20 | 320 | | | | CHOWAN RI | VER BASIN | 1 | | | | | | Falls Creek
tributary near
Victoria, VA
(02044200) | Lat 37°02'04", long 78°10'26",
Lunenburg County, Hydrologic
Unit 03010201, at upstream
end of culvert on State High-
way 49, 3.6 mi northeast of
Victoria. Datum of gage is
409.21 ft above sea level.
Drainage area is 0.34 mi ² . | 1962-98 | 3-19-98 | 4.36 | 70 | 6-21-72 | 9.15 | 343 | f Published incorrectly in the 1997 report. g Affected by backwater from beaver dam. | | aximum dibendige de crebe bedge po | arciar record | | | 7 2 | | | | |---|--|---|----------|-------------------------------------|---|-------------------------|------------------------------------|---| | Station name
and
number | Location
and
drainage area | Period
of
record
(water
years) | Water y | year 1998
Gage
height
(ft) | maximum
Dis-
charge
(ft ³ /s) | <u>Period c</u>
Date | f record
Gage
height
(ft) | maximum
Dis-
charge
(ft ³ /s) | | | CHOWAI | N RIVER BA | SINCon | tinued | | | | | | Blackwater River
tributary near
Holland, VA
(02050050) | Lat 36°38'44", long 76°51'29",
Suffolk City, Hydrologic
Unit 03010202, on left up-
stream wingwall of culvert
on State Highway 272, 3.0 mi
upstream from mouth, and
4.9 mi southwest of Holland.
Datum of gage is 29.25 ft
above sea level. Drainage
area is 2.76 mi ² . | 1967-98 | 2- 5-98 | 6.34 | 231 | 8- 3-73 | 7.65 | 408 | | | 1 | ROANOKE RI | VER BASI | N | | | | | | Powells Creek
near Turbeville,
VA
(02075350) | Lat 36°34'50", long 79°11'20",
Halifax County, Hydrologic
Unit 03010104, at culvert on
U.S. Highway 58, 0.8 mi up-
stream from mouth, 1.1 mi
east of Halifax-Pittsylvania
County line, and 8.8 mi
southwest of Turbeville.
Datum of gage is 386.76 ft
above sea level. Drainage
area is 0.28 mi ² . | 1958-69a,
1970-98 | - | <4.21 | <42 | 7-11-65 | 7.86 | 384 | | Dan River at
South Boston,
VA
(02076000) | Lat 36°41'37", long 78°54'09",
South Boston City, Hydro-
logic Unit 03010104, on
left bank 100 ft upstream
from Norfolk and Western
Railroad bridge at South
Boston. Datum of gage is
299.23 ft above sea level.
Drainage area is 2,730 mi ² . | 1900-07‡,
1923-52‡,
1953-62h,
1980-98h | 1-30-98 | 27.34 | * | 8-16-40 | 31.8 | 81,000 | | Bearskin Creek
near Chatham,
VA
(02076200) | Lat 36°50'30", long 79°29'05", Pittsylvania County, Hydrologic Unit 03010105, on left upstream wingwall of culvert on State Highway 57, 4.5 mi west of Chatham, and 6 mi upstream from mouth. Elevation of gage is 630 ft above sea level, from topographic map. Drainage area is 4.06 mi ² . | 1967-98 | 2- 4-98 | 5.52 | 393 | 6-29-95 | 19.90 | 2,850 | | Blacks Creek
near Mt. Airy,
VA
(02076700) | Lat 36°56'40", long 79°09'56", Pittsylvania County, Hydrologic Unit 03010105, on left upstream wingwall of culvert on State Highway 40, 1.5 mi east of Mt. Airy, and 3.5 mi upstream from mouth. Elevation of gage is 420 ft above sea level, from topographic map. Drainage area is 3.44 mi ² . | 1966-98 | 1-28-98 | 7.40 | 526 | 9- 8-87 | j19.5 | 2,200 | ^{*} Discharge not determined. ‡ Operated as a continuous-record gaging station. < Less than. a Records provided by U.S. Department of Agriculture, Soil Conservation Service. h Operated as a stage-only station. j From high-water marks. | | Maximum discharge at crest-stage pa | rtial-record | d stations d | uring wa | ter year 19 | 98Continu | ed | | |---|--|--|----------------|------------------------------------|---|-----------------|------------------------------------|---| | Station name
and
number | Location
and
drainage area | Period
of
record
(water
years) | <u>Water y</u> | ear 1998
Gage
height
(ft) | maximum
Dis-
charge
(ft ³ /s) | <u>Period o</u> | f record
Gage
height
(ft) | maximum
Dis-
charge
(ft ³ /s) | | | ROANOKI | E RIVER B | ASINCon | tinued | | | | | | Roanoke River
at Buggs
Island, VA
(02079500) | Lat 36°36'06", long 78°17'56", Mecklenburg County, Hydrologic Unit 03010106, on left bank 1,200 ft downstream from John H. Kerr dam, 5.3 mi upstream from bridge on U.S. Highway 1, and 6.7 mi southeast of Boydton. Datum of gage is 196.72 ft above sea level. Drainage area is 7,789 mi ² . | 1947-62‡,
1963-98 | 2-23-98 | 10.13 | * | 12- 7-48 | a14.97 | 76,000 | | | К | ANAWHA RI | VER BASIN | 1 | | | | | | Mira Fork
tributary near
Dugspur, VA
(03167300) | Lat 36°50'16", long 80°35'47",
Carroll County, Hydrologic
Unit 05050001, on left up-
stream wingwall of culvert
on U.S. Highway 221, 1.3 mi
upstream from mouth, and
2.2 mi northeast of Dugspur.
Datum of gage is 2,602.96 ft
above sea level. Drainage
area is 0.62 mi ² . | 1967-98 | 1- 8-98 | 5.67 | 165 | 4-21-92 | 7.20 | 257 | | Thorne Springs
Branch near
Dublin, VA
(03168750) | Lat 37°05'30", long 80°44'34",
Pulaski County, Hydrologic Unit 05050001, at pond dam just upstream from U.S. Highway 11, 3.3 mi southwest of Dublin, and 4.3 mi upstream from mouth. Elevation of gage is 1,975 ft above sea level, from topographic map. Drainage area is 4.77 mi ² . | 1957-69a,
1970-98 | 3-21-98 | 2.23 | 127 | 5-28-73 | 8.01 | 2,200 | | | ВІ | G SANDY R | RIVER BASI | IN | | | | | | Russell Fork at
Council, VA
(03208040) | Lat 37°04'41", long 82°03'56",
Buchanan County, Hydrologic
Unit 05070202, on left bank
50 ft upstream from bridge
on State Highway 80, 750 ft
downstream from Ball Creek,
0.6 mi southeast of Council,
and 4.7 mi upstream from
Hurricane Creek. Elevation of
gage is 1,680 ft above sea
level, from topographic map.
Drainage area is 10.2 mi ² . | 1981-83‡,
1984-98 | 4-17-98 | 6.65 | 1,320 | 4-17-98 | 6.65 | 1,320 | | North Fork
Pound River at
Pound, VA
(03208700) | Lat 37°07'32", long 82°37'36", Wise County, Hydrologic Unit 05070202, on right bank at Pound, 700 ft downstream from Stacy Branch, and 1,600 ft downstream from North Fork Pound River dam. Datum of gage is 1,500.00 ft above sea level. Drainage area is 18.5 mi ² . Prior to Oct. 1, 1965, at datum 44.88 ft higher. | 1963-87‡,
1988-98 | 4-17-98 | 51.54 | 349 | 3-12-63 | 61.58 | 4,480 | ^{*} Discharge not determined. ‡ Operated as a continuous-record gaging station. a Records provided by U.S. Department of Agriculture, Soil Conservation Service. | | | Period | | | | | | | |--|---|----------------------|--------------|-------------------|--------------------------------|---------------------------------|----------------|--------------------------------| | Station name | Location | of
record | <u>Water</u> | year 1998
Gage | maximum
Dis- | Period of record max:
Gage D | | maximum
Dis- | | and
number | and
drainage area | (water
years) | Date | height
(ft) | charge
(ft ³ /s) | Date | height
(ft) | charge
(ft ³ /s) | | | BIG SAN | IDY RIVER | BASINCo | ontinued | ì | | | | | Pound River above
Indian Creek,
at Pound, VA
(03208800) | Lat 37°07'26", long 82°36'29", Wise County, Hydrologic Unit 05070202, on left bank at Pound, 1,600 ft downstream from confluence of North and South Forks, 0.5 mi upstream from bridge on U.S. Highway 23, and 0.7 mi upstream from Indian Creek. Datum of gage is 1,535.64 ft above sea level. Drainage area is 36.7 mi². | 1966-78‡,
1979-98 | 4-17-98 | 12.60 | 1,780 | 5-18-75 | 19.44 | 3,460 | | Pound River below
Bold Camp Creek
at Pound, VA
(03208850) | Lat 37°07'19", long 82°35'55", Wise County, Hydrologic Unit 05070202, at Pound, on left bank 1,000 ft upstream from bridge on State Highway 83, 0.3 mi downstream from Bold Camp Creek, and 0.5 mi downstream from Indian Creek. Datum of gage is 1,527.36 ft above sea level Drainage area is 61.2 mi ² . | 1966-78‡,
1979-98 | 4-17-98 | 17.40 | 3,020 | 5-18-75 | 25.64 | 6,290 | | Pound River near
Georges Fork,
VA
(03208900) | Lat 37°09'51", long 82°31'30", Dickenson County, Hydrologic Unit 05070202, on right bank 50 ft upstream from bridge on State Highway 624, 150 ft upstream from Camp Creek, and 2.6 mi northwest of Georges Fork. Datum of gage is 1,470.39 ft above sea level. Drainage area is 82.5 mi ² . | 1964-82‡,
1983-98 | 4-17-98 | 9.54 | 3,540 | 5-18-75 | 14.91 | 10,900 | | Russell Fork
at Bartlick,
VA
(03209200) | Lat 37°14'45", long 82°19'25", Dickenson County, Hydrologic Unit 05070202, on left bank at Bartlick just upstream from bridge on State Highway 611, 0.2 mi downstream from Pound River, and 1.1 mi upstream from Fall Branch. Datum of gage is 1,165.00 ft above sea level. Drainage area is 526 mi ² . | 1963-82‡,
1983-98 | 4-17-98 | 18.59 | 17,300 | 4- 4-77 | 27.55 | 50,000 | | Knox Creek
at Kelsa, VA
(03213590) | Lat 37°27'02", long 82°03'34",
Buchanan County, Hydrologic
Unit 05070201, on downstream
end of right bridge pier on
State Highway 697, 0.3 mi
downstream from Pawpaw
Creek, 0.8 mi northeast of
Kelsa, and 10.0 mi upstream
from mouth. Elevation of
gage is 945 ft above sea
level, from topographic map.
Drainage area is 84.3 mi ² . | 1980-81‡,
1982-98 | 6-10-98 | 14.10 | 7,330 | 5- 7-84 | 20.2 | 13,000 | [‡] Operated as a continuous-record gaging station. | | | Period
of | Water y | year 1998 | maximum | Period o | f record | maximum | |--|--|----------------------------|-----------|------------------------|--|----------|------------------------|--| | Station name
and
number | Location
and
drainage area | record
(water
years) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | r | ENNESSE R | IVER BASI | IN | | | | | | Cedar Creek near
Meadowview, VA
(03475600) | Lat 36°44′50″, long 81°51′20″, Washington County, Hydro-logic Unit 06010102, on left downstream wingwall of culvert on U.S. Highway 11, 1.2 mi south of Meadowview, and 2.5 mi upstream from mouth. Datum of gage is 2,034.66 ft above sea level. Drainage area is 3.38 mi². | 1967-98 | 4-17-98 t | Unknown | Unknown | 7-10-71 | 7.54 | 92 | | Lick Creek near
Chatham Hill,
VA
(03487800) | Lat 36°57'44", long 81°28'21",
Smyth County, Hydrologic
Unit 06010101, on left bank
270 ft upstream from bridge
on State Highway 42, 2.9 mi
northeast of Chatham Hill,
and 1.6 mi upstream from
mouth. Datum of gage is
2,076.97 ft above sea level.
Drainage area is 25.5 mi ² . | 1966-68‡,
1969-98 | 4-17-98 | 5.08 | 903 | 11- 7-77 | 8.09 | 2,660 | | Brumley Creek at
Brumley Gap, VA
(03488450) | Lat 36°47'30", long 82°01'10", Washington County, Hydro-logic Unit 06010101, on left downstream wingwall of bridge of State Highway 611, 0.2 mi upstream from mouth, 0.8 mi southeast of Brumley Gap, and 2.7 mi downstream from Lee Creek. Datum of gage is 1,489.16 ft above sea level. Drainage area is 21.1 mi ² . | 1979-81‡,
1982-98 | 4-17-98 | 5.48 | 919 | 5- 7-84 | 6.60 | 1,500 | | Cove Creek
near Shelleys,
VA
(03489800) | Lat 36°39'13", long 82°21'16",
Scott County, Hydrologic
Unit 06010101, on right down-
stream wingwall of bridge on
U.S. Highway 58 and 421,
1.5 mi northwest of Shelleys,
and at mile 3.3. Datum of
gage is 1,381.53 ft above
sea level. Drainage area
is 17.3 mi ² . | 1951-98 | 4-17-98 | 6.81 | 1,350 | 3-12-63 | 8.40 | 2,500 | | North Fork
Holston River
near Gate City,
VA
(03490000) | Lat 36°36'31", long 82°34'05",
Scott County, Hydrologic
Unit 06010101, on left bank
75 ft upstream from bridge
on U.S. Highway 23, 1.6 mi
downstream from Big Mountain
Creek, 2.1 mi southeast of
Gate City, and at mile 8.8.
Datum of gage is 1,197.56 ft
above sea level. Drainage
area is 672 mi ² . | 1932-81‡,
1982-98k | 4-17-98 | 14.11 | 22,700 | | 19.79
k22.5 | | [‡] Operated as a continuous-record gaging station. c Maximum known historical peak outside period of record. k Records provided by Tennessee Valley Authority. | - | Maximum discharge at crest stage pa | Period | | | 2 | | | |---|--|---|---------|----------------|--------------------------------|----------|--| | | | of | Water y | ear 1998 | maximum | Period o | f record maximum | | Station name | Location | record | | Gage | Dis- | | Gage Dis- | | and
number | and
drainage area | (water | Date | height
(ft) | charge
(ft ³ /s) | Date | height charge
(ft) (ft ³ /s) | | | urainage area | years) | | (10) | (IL/S) | | (10) (10/8) | | | TENNESSI | EE RIVER I | BASINCo | ontinued | l | | | | Clinch River
at Richlands,
VA
(03521500) | Lat 37°05'10", long 81°46'52", Tazewell County, Hydrologic Unit 06010205, on right bank 1.0 mi southeast of Richlands, 1.6 mi downstream from Middle Creek, 2.2 mi upstream from Big Creek, and at mile 321.0. Datum of gage is 1,924.08 ft above sea level. Drainage area is 137 mi ² . | 1946-89‡,
1990-98 | 3-21-98 | 12.63 | 5,150 | 6-22-01 | k21.3 k11,500 | | Guest River
at Coeburn,
VA
(03524500) | Lat 36°55'45", long 82°27'23", Wise County, Hydrologic Unit 06010205, on right bank 30 ft downstream from bridge on State Highway 72, 1.0 mi southwest of Coeburn, 1.4 mi upstream from Jaybird Branch, 1.8 mi downstream from Pine Camp Creek, and at mile 6.3. Datum of gage is 1,935.80 ft above sea level. Drainage area is 87.3 mi ² . | 1950-59‡,
1960-78,
1979-81‡,
1982-98 | 4-17-98 | 10.52 | 3,530 | 4- 5-77 | 20.95 18,000 | | Stony Creek
at Ka, VA
(03524900) | Lat 36°48'57",
long 82°37'02",
Scott County, Hydrologic
Unit 06010205, at Ka, on
left bank 300 ft upstream
from bridge on State High-
way 619, 600 ft downstream
from Straight Fork, and
4.2 mi upstream from mouth.
Elevation of gage is 1,510 ft
above sea level, from topo-
graphic map. Drainage area
is 30.9 mi ² . | 1981‡,
1982-98 | 3-19-98 | 6.00 | 3,200 | 5- 7-84 | 7.31 8,010 | [‡] Operated as a continuous-record gaging station. k Records provided by Tennessee Valley Authority. Maximum discharge at crest-stage partial-record stations during water year 1998--Continued | Station name
and
number | Location
and
drainage area | Period
of
record
(water
years) | <u>Water</u> | vear 1998
Gage
height
(ft) | maximum
Dis-
charge
(ft ³ /s) | <u>Period o</u> | of record
Gage
height
(ft) | maximum
Dis-
charge
(ft ³ /s) | | |-------------------------------|----------------------------------|--|--------------|-------------------------------------|---|-----------------|-------------------------------------|---|--| |-------------------------------|----------------------------------|--|--------------|-------------------------------------|---|-----------------|-------------------------------------|---|--| FOOTNOTES FOR CREST-STAGE PARTIAL-RECORD STATIONS: 1998 water year - * Discharge not determined. - ‡ Operated as a continuous-record gaging station. - C Less than. > Greater than. a Records provided by U.S. Department of Agriculture, Soil Conservation Service. b At different site and datum 6.02 feet lower. c Maximum known historical peak outside period of record. - c Maximum known historical peak outside period of red Approximate. e Affected by debris jam at upstream end of culvert. f Published incorrectly in the 1997 report. g Affected by backwater from beaver dam. h Operated as stage-only station. j From high-water marks. k Records provided by Tennessee Valley Authority. | Page | Page | |--|---| | A | Charlottesville, Moores Creek near | | Access to USGS water data | Chatham, Bearskin Creek near | | Acre-foot, annual runoff, explanation of | Chestnut Creek at Galax | | Afton, Stockton Creek near | Chlorophyll, definition of | | Algae, definition of | Chowan River Basin, crest-state partial-record stations in 579 | | Amelia, Flat Creek near | Christian, Buffalo Branch tributary near 574 Chub Run near Stanley 574 Classification of surface-water-quality records 11 | | Materials (ASTM), reference to | Claytor Reservoir near Radford | | Annual 7-day minimum, definition of | Clinch River, above Tazewell, TN at Cleveland | | highest, explanation of | Clintwood, Cranes Nest River near 91-92 Coeburn, Guest River at 584 Coliform bacteria, fecal 15 | | Annual runoff (cfsm), explanation of | total | | Annual total, explanation of] | Color unit, definition of | | Ash mass, definition of | Contrary Creek near Mineral | | | Control, definition of 16 Cooperation, definition of 8 Cooperation, explanation of 1 | | Back Creek (Roanoke River Basin) near Dundee | Cooperators, list of | | total coliform, definition of | Cowpasture River near Head Waters | | Bartlick, Russell Fork at | Crooked Run near Mt. Jackson | | Bed load discharge, definition of 20 Bed load, definition of 20 Bed material, definition of 16 | Cubic foot per second, definition of | | Big Rock, Levisa Fork at | D | | crest-state partial-record stations in 581-582
Biochemical oxygen demand (BOD), | Daily discharges, estimated, explanation of 10 Daily mean values, explanation of 9 Daily mean, highest, explanation of | | definition of 16 Biomass, definition of 16 Blacks Creek near Mt. Airy 580 | lowest, explanation of | | Blackwater River tributary near Holland | Damascus, South Fork, Holston River near 107-108 Dan River at South Boston 580 Data table of daily mean values, | | Bristol, Beaver Creek at | explanation of | | Buchanan, Renick Run near | and water discharge | | Buggs Island, Roanoke River at | presentation, stage and water-discharge 7-10 surface-water quality | | C Coder Creek peer Meederrier | Definition of terms | | Cedar Creek near Meadowview 583 Cells/volume, definition of 16 CFSM, annual runoff, explanation of 10 Champlain. Farmers Hall Creek near 575 | median discharge for period 1961-90 for four representative gaging stations 3 | | CFSM, annual runoff, explanation of | | | Page | Page | |---|--| | Discharge, 10 percent exceeds, explanation of 10 | Glen Lyn, New River at | | Discharge, 50 percent exceeds, explanation of 10 Discharge, 90 percent exceeds, explanation of 10 | Graysontown, Little River at | | Discharge, definition of | stations in | | annual 7-day minimum, definition of | Green algae, definition of | | estimated daily, definition of | Guest River at Coeburn 584 | | instantaneous, definition of | | | Dissolved trace-element Concentrations | Н | | Dissolved, definition of | | | Dissolved-solids concentration, definition of 17 | Hardness of water, definition of | | Downstream order system, explanation of 5-6 Drainage area, definition of 17 | Pound River below Flannagan Dam, near 95-96 | | Diamage area, derimition of | Russell Fork at 83-84 | | explanation of, stage and water discharge 8 | Head Waters, Cowpasture River near 576 | | explanation of, surface-water quality 12 | Heathsville, Bush Mill Stream near | | Drainage basin, definition of | Holland, Blackwater River tributary near 580 | | Dublin, Thorne Springs Branch near 581 | Holston River: | | Dugspur, Mira Fork tributary near 581 | Middle Fork, at Seven Mile Ford 111-112 | | Dundee, Back Creek near 21-22 | near Meadowview | | | near Saltville | | E | South Fork, at Riverside, near Chilhowie 103-104 | | | near Damascus 107-108 | | Estimated daily discharges, identification of 10 | Hot Springs, Jackson River below Gathright Dam, near | | Explanation of stage and | Lake Moomaw near 5-6 Hydrologic bench-mark network, definition of 5 | | surface-water-discharge records 5-10 | explanation of | | Explanation of surface-water-quality records11-13, ??-13 | Hydrologic conditions, summary of | | Extremes, explanation of: stage and surface-water discharge 8 | surface-water discharge | | surface-water quality | hydrologic unit, delinition of | | 2-2-2-2 | I | | F | - | | | Identifying estimated daily discharge 10 | | Falling Creek near Chesterfield 578 | INCHES (IN.), explanation of | | Falling Spring, Jackson River at | Inches, annual runoff | | Falls Mills, Bluestone River at 75-76 | Instantaneous low flow, explanation of | | Farmers Hall Creek near Champlain 575 | Instantaneous peak flow, explanation of 9 | | Fecal coliform bacteria, definition of | Instantaneous peak stage, explanation of | | streptococcal bacteria, definition of 16 Figure 1. Annual mean discharge at | Instrumentation, explanation of | | | Standards (ISO), reference to | | selected stream-gaging stations 3 | Introduction 1 | | Monthly and annual mean discharge
during 1997 water year compared | Ivanhoe, New River at | | with median of monthly and | J | | annual mean discharge for period | U | | 1961-90 for four representative | Jackson River, at Falling Spring | | stream-gaging stations 4 3. System for numbering selected | near Bacova | | J. Dybeem for numbering befeeted | Jackson Riverat Falling Spring 576 | | miscellaneous sites 5-6 | James River at Bedford Dam near Major 577 | | 4. Map of Virginia showing location | James River Basin crest-state partial-record stations in 576-579 | | of surface-water-discharge and surface-water-quality | James River Basin, Analyses of samples | | data-collection stations 30-31 | gaging-station records in 1-?? | | 5. Map of Virginia showing location | Jonesville, Powell River near | | of surface-water partial-record | Jordans Branch at Richmond 579 | | stations | K | | Flat Creek near Amelia 579 | K | | Footnotes, surface-water-discharge and | Ka, Stony Creek at | | | Kanawha River Basin, crest-state partial-record stations in | | surface-water-quality records | 581 | | | Kelsa, Knox Creek at | | G | knox creek at keisa | | | L | | Gage height (G.H.), definition of | | | Gage, explanation of | Laboratory measurements | | daging scatton, definition of | | | Galax, Chestnut Creek at | Lahore, Pamunkey Creek at 576 | | Galax, Chestnut Creek at 29-30 New River near 25-26 | Lahore, Pamunkey Creek at | | New River near 25-26 Gate City, Cooper Creek near 135-136 | Lahore, Pamunkey Creek at 576 | | New River near 25-26 | Lahore, Pamunkey Creek at | | Page | Page | |---|---| | Moomaw, Lake, near Hot Springs 5-6 | National Water-Quality Assessment (NAWQA) | | Pound Lake, North Fork of, at Pound 87-88 | 3.61.11.1.6 | | Lakeside Village, Willis River at 578 | program, definition of 5, 18 | | Latitude-longitude system, explanation of 6 | Natural substrate, definition of | | Levisa Fork, at Big Rock 79-80 | New Castle, Craig Creek tributary near 577 | | Lick Creek near Chatham Hill 583 | New River, at Allisonia 37-38 | | Lightfood, West Branch Long Hill Swamp near 579 | at Glen Lyn 69-70 | | Little River (Kanawha River Basin), | at Ivanhoe 33-34 | | at
Graysontown 45-46 | at Radford 57-58 | | Little River Reservoir Radford 53, 54 | near Galax | | Location, explanation of: | Niagara, Roanoke River at | | | North Fork Holston River near Gate City 583 | | stage and water-discharge 8 | | | surface-water quality | North Holiday Creek near Toga 579 | | Louisa, Waldrop Creek near 576 | Numbering system for selected | | Low flow, instantaneous, explanation of 10 | miscellaneous sites 5-6 | | Lowest daily mean, explanation of9 | Numbers, station identification 5 | | М | 0 | | Major Tamog Piyor at Podford Dam noar 577 | On-gite managerements and sample collection | | Major, James River at Bedford Dam near 577 | On-site measurements and sample collection, | | Map of Virginia showing location of: | surface-water quality | | surface-water, partial-record stations 32-33 | Organic mass, definition of | | surface-water-discharge and | Organism count/area, definition of 18 | | | Organism count/volume, definition of 18 | | surface-water-quality | Organism total count, definition of 18 | | data collection stations 30-31 | Organism, definition of | | MAX, explanation of9 | Other records available, explanation of 10 | | Meadowview, Cedar Creek near | | | Middle Fork Holston River near 115-116 | _ | | Mean concentration, definition of | P | | | | | Mean discharge, definition of | Pamunkey Creek at Lahore 576 | | MEAN, explanation of | Parameter code, definition of | | highest daily, explanation of 9 | Partial-record station, definition of | | lowest daily, explanation of 9 | | | Measurements, on-site | explanation of | | laboratory 12 | Particle size, definition of | | Metamorphic stage, definition of | Particle-size classification, definition of 19 | | Methylene blue active substances (MBAS), | Peak flow, instantaneous, explanation of 9 | | | Peak stage, instantaneous, explanation of 10 | | definition of | Percent composition, definition of | | Micrograms per gram, definition of | Percent exceeds 10%, 50%, 90%, | | Micrograms per liter, definition of | | | | explanation of 10 | | Milligrams of carbon per area or volume per | Period of record, explanation of: | | unit time for periphyton, macrophytes, | stage and water discharge | | and phytoplankton, definition of | surface-water quality | | Milligrams of oxygen per area or volume per | | | unit time for periphyton, macrophytes, | Periphyton, definition of | | and phytoplankton, definition of 20 | Pesticides, definition of | | Milligrams per liter, definition of 18 | Phytoplankton, definition of | | MIN, explanation of 9 | Piankatank River Basin, crest-state partial-record sta- | | Mineral, Contrary Creek near 576 | tions in 575 | | Mira Fork tributary near Dugspur 581 | Picocurie, definition of | | Miscellaneous sites, discharge measurements | Plankton, definition of | | explanation of | Pony Mountain Branch near Culpeper 575 | | numbering system for 5-6 | Potomac River Basin | | Monthly and annual mean discharge during | crest-state partial-record stations in 574-575 | | | Pound | | 1997 water year compared with median of | Pound River above Indian Creek, at 582 | | monthly and annual mean discharge for | Pound River below Bold Camp Creek, at 582 | | 1961-90 at four representative | | | stream-gaging stations 3 | Pound River, North Fork, at | | Monthly mean data, statistics of 9 | Pound Lake, North Fork of, at Pound 87-88 | | Moores Creek near Charlottesville 578 | Pound River | | Mt. Airy, Blacks Creek near 580 | below Bold Camp Creek, at Pound 582 | | Mt. Jackson, Crooked Run near 574 | near Georges Fork 582 | | Muddy Run near Stanardsville | North Fork, at Pound 581 | | My Ladys Swamp near Saluda | Pound River, above Indian Creek, at Pound 582 | | | below Flannagan Dam, near Haysi 95-96 | | | Pound, North Fork of Pound Lake at 87-88 | | N | Powell River, near Jonesville | | | Powells Creek near Turbeville | | Narrows, Wolf Creek near 65-66 | | | | Primary productivity, definition of | | National Geodetic Vertical Datum | Publications on techniques of water-resources | | | | | of 1929 (NGVD of 1929), definition of 18 | investigations 23-26 | | National Stream-Quality Accounting Network | Pughs Run near Woodstock 574 | | | | | (NASQAN), definition of 5, 18 | R | | National Technical Information Service | Л | | National Trends Network, changes in procedures 35 | | | definition of | Radford, Claytor Reservoir near 41-42 | | 2222 22 22222 | | | rage | Page | |---|--| | Little River Reservoir near 53, 54 | monthly mean data | | New River at | Steeles Tavern, South River near | | Rappahannock River Basin, crest-state partial-record sta- | Stony Creek at Ka | | tions in | Streamflow, definition of | | Records, accuracy of | Streptococcal bacteria, fecal, definition of 10 | | arrangement of surface-water quality 11 | Substrate, definition of | | classification of surface-water quality 11 collected by the State of Virginia 2 | artificial, definition of | | explanation of, stage and water discharge 6-10 | Summary of hydrologic conditions 2-4 | | surface-water quality | Summary statistics | | other available | Surface area, defintion of | | Recoverable from bottom material, | Surface-water-quality records, explanation of 11-13 | | definition of | Surficial bed material, definition of | | Reedy Creek near Dawn | Suspended, definition of | | Remark Codes | Suspended, recoverable, definition of | | Remarks, explanation of: | Suspended, total, definition of | | stage and water discharge 8 | Suspended-sediment concentration, | | surface-water quality | definition of | | Reports, selected U.S. Geological Survey, | Suspended-sediment discharge, definition of 20 | | Reported, Bellevela C.D. Geological Barvel, | Suspended-sediment load, definition of | | on water resources in Virginia 26-29 | System for numbering selected | | Reservoir stations, explanation of | | | Return period, definition of | miscellaneous sites | | Revised records, stage and discharge, | | | explanation of 8 | Т | | Revisions, stage and water-discharge records 8 | | | surface-water-quality records | Tables Publications on techniques of water | | Richlands, Clinch River at 584 | Publications on techniques of water-
resources investigations | | Richmond, Jordans Branch at | Selected U.S. Geological Survey reports on | | Roanoke River Basin | water-resources in Virginia 26-? | | crest-state partial-record stations in 580-581 | Taxonomy, definition of | | Roanoke River, at Altavista | Techniques of water-resources investigations, | | at Niagara | publications on | | at Roanoke | Temperature, water, explanation of | | Runoff (acre-feet), annual, explanation of 10 | Tennessee River Basin | | Runoff (cfsm), annual, explanation of | crest-state partial-record stations in 583-584 | | Runoff in inches, definition of 10, 20 | Thermograph, definition of | | Runoff, (inches), annual, explanation of 10 | Thorne Springs Branch near Dublin | | Russell Fork at Council | Tinker Creek near Daleville | | Russell Fork, at Bartlick | Toga | | at Haysi 83-84 | Holiday Creek near 57 | | | North Holiday Creek near | | S | Tons per day, definition of | | | Total discharge, definition of | | Saltville, North Fork Holston River near 123-124 | Total organism count, definition of 18 | | Saluda, My Ladys Swamp near 575 | Total sediment discharge, definition of 20 | | Sea level, definition of | Total, definition of | | Sediment, definition of 20 explanation of 12 | Total, recoverable, definition of | | total, discharge, definition of | Tritium Network, definition of | | Selected USGS reports on water resources | Tubeville, Powells Creek near 580 | | in Virginia 26-29 | | | Seven Mile Ford, Middle Fork Holston River at 111-112 | V | | Seven-day 10-year low flow, definition of 20 Shelleys, Cove Creek near 583 | | | Sodium-adsorption-ratio, definition of | Victoria, Falls Creek tributary near 579 | | Solute, definition of | | | South Atlantic Slope basins, gaging-station | \mathtt{W} | | records in | | | South Boston, Dan River at | Waldrop Creek near Louisa 576 | | Special networks and programs | Walker Creek at Bane 61-62 | | Specific conductance, definition of | Water-resources investigations, publications | | Spring Grove, Bailey Branch tributary at 579 | on techniques of 23-20 | | Stage and water-discharge records, | Water resources data for Virginia, 1997 | | evolunation of | | | explanation of | explanation of 1-39 | | Stanardsville, Muddy Run near 578 | Water resources reports, selected, | | Stanley, Chub Run near 574 | in Virginia 26-?? | | Station identification number, explanation of 5 | Water Temperature, explanation of | | Station manuscript, explanation of | Water year, definition of | | Statistics, explanation of summary of 9 | | | Page | Page | |--|------| | Water-discharge records and stage, | | | explanation of | | | Y | | | York River Basin, crest-state partial-record stations is 576 | n | | Z | | | Zooplankton, definition of | | Page Page